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Abstract 

Populations of organisms show prevalent genetic differences called 

polymorphisms. Understanding the effects of polymorphisms is of central 

importance in biology and medicine. Here, we ask which polymorphisms occur at 

high frequency when organisms evolve under tradeoffs between multiple tasks. 

Multiple tasks present a problem, because it is not possible to be optimal at all 

tasks simultaneously and hence compromises are necessary. Recent work 

indicates that tradeoffs lead to a simple geometry of phenotypes in the space of 

traits: phenotypes fall on the Pareto front, which is shaped as a polytope: a line, 

triangle, tetrahedron etc. The vertices of these polytopes are the optimal 

phenotypes for a single task. Up to now, work on this Pareto approach has not 

considered its genetic underpinnings. Here, we address this by asking how the 

polymorphism structure of a population is affected by evolution under tradeoffs. 

We simulate a multi-task selection scenario, in which the population evolves to 

the Pareto front: the line segment between two archetypes or the triangle 

between three archetypes. We find that polymorphisms that become prevalent in 

the population have pleiotropic phenotypic effects that align with the Pareto front. 

Similarly, epistatic effects between prevalent polymorphisms are parallel to the 

front. Alignment with the front occurs also for asexual mating. Alignment is 

reduced when drift or linkage is strong, and is replaced by a more complex 

structure in which many perpendicular allele effects cancel out. Aligned 

polymorphism structure allows mating to produce offspring that stand a good 
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chance of being optimal multi-taskers in at least one of the locales available to 

the species. 

 

Media Summary 

Populations of organisms show many genetic differences called polymorphisms. 

These polymorphisms often cause variation in biological traits between 

individuals, and thus understanding them is important for biology and 

medicine. Here, we ask which polymorphisms occur when organisms evolve 

under tradeoffs between multiple tasks. Multiple tasks present the organism with 

a problem, because it is not possible to be optimal at all tasks at once and hence 

compromises are necessary. We use theory and simulation to find that 

polymorphisms under multi-task natural selection have special structure that 

'learns' the range of optimal compromises between the tasks. This special 

structure allows mating to produce offspring that stand a good chance of being 

optimal multi-taskers. 

 

 

Introduction 

Organisms show prevalent genetic differences called allelic polymorphisms. 

Allelic polymorphisms, together with environmental and epigenetic effects, cause 

much of the variation in traits between individuals. Each polymorphism typically 

affects multiple phenotypic traits at once (pleiotropy), and each trait is usually 

affected by many different polymorphisms [1,2].  
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Understanding the origin and distributions of polymorphisms is of central 

importance in evolutionary and quantitative genetics. Most theoretical 

approaches to the evolution of polymorphisms employ the classic picture of the 

fitness landscape: a genotype determines phenotype, and the phenotype 

determines fitness [3] (Fig 1A). Natural selection leads to phenotypes that 

maximize fitness, provided that there is sufficient time, genetic variation, and that 

populations and selection pressures are large enough to overcome genetic drift 

[4]. In this approach, the shape of the fitness landscape, in particular the slopes 

near the maximum, influences the distribution of phenotypes and genotypes in 

the population. For example, simulations show that a fitness ridge can lead to 

mutation-selection balance in which traits vary along the ridge [5,6]. 

Here, we consider an extension of the fitness landscape picture for cases 

in which fitness derives from an organism’s performance at multiple tasks. The 

need to perform multiple tasks introduces an inherent tradeoff, because in most 

cases no single phenotype can be optimal at all tasks. For example, a bird may 

need to both eat seeds and pollen. However, cracking seeds requires a beak 

shaped like a plier whereas pollen requires a pincer-like beak [7]. 

 In such cases, the ‘genotype → phenotype → fitness’ scheme should be 

modified to include performance at different tasks as an intervening step between 

phenotype and fitness [8]:genotype → phenotype → performance at task 1,2, … 

àfitness). The genotype determines phenotype, which is defined by a set of 

traits ! such as morphological parameters (e.g. beak width and length), gene 

expression levels or enzyme activities. The phenotype, in turn, determines the 
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performance at different tasks: The performance at task i is given by the 

performance function !!(!) (Fig 1B). Fitness is an increasing function of the 

performances, ! !! ! ,!! ! ,… . The fitness in a given locale is given by some 

(potentially nonlinear) weighting of the performances in the different tasks (Fig 

1C). Therefore, each locale has its own fitness function F that combines the 

performances in the tasks.  

This picture of tradeoffs between tasks has been shown to result in a 

simple geometry of phenotypes in the space of traits (trait space) [9]. Under quite 

general assumptions, the optimal phenotypes in all possible environments fall 

within polytopes in trait-space (polytopes are the generalization of polygons to 

any dimension, such as lines, triangles, tetrahedra, etc.). The vertices of the 

polytopes are the phenotypes that are optimal for a single task. These vertices 

are called archetypes, and the polytopes they define are the Pareto fronts.  

Each point on the Pareto front corresponds to a phenotype that maximizes 

fitness in a locale that requires a specific degree of specialization in each of the 

tasks (Fig 1C). For example, a trade-off between two tasks leads to phenotypes 

along a line segment, with the two archetypes at either end; generalists lie in the 

middle. A trade-off between three tasks leads to a full triangle (Fig 1D), four tasks 

lead to a tetrahedron and so on. Such straight edged polytopes occur in 

coordinate systems in which performance declines with a distance metric [10]. If 

trait axes are nonlinearly transformed (e.g. trait->trait2), the polygons have curved 

edges, but still preserve the distinct vertices at the archetypes optimal for each 

task.  
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Evidence for such lines, triangles and tetrahedra was found in 

morphological datasets [9,11,12]; animal life-history traits [13]; locomotive 

behavior [14,15] and gene expression data [9,16–18]. The polytopes offer a way 

to deduce the tasks from the data, by observing the special features of 

organisms near each archetype. In the studies cited above, the archetypes found 

by fitting the data to polytopes [16] revealed clues about the tasks at play in each 

case. For example, primary tasks for E. coli gene expression are growth and 

survival [9]. For this reason, this theoretical approach is called Pareto task 

inference (ParTI). 

Up to now, work on the ParTI approach has not considered its genetic 

underpinnings. Here, we address this by asking how the allelic polymorphism 

structure of a population is affected by evolution under tradeoffs between multiple 

tasks. We simulate a multi-task selection scenario, in which the population 

evolves to the Pareto front: the line segment between the two archetypes or the 

triangle between three archetypes. We find that the polymorphisms that become 

prevalent in the population have phenotypic effects that align with the Pareto 

front. Epistatic effects between prevalent polymorphisms are also parallel to the 

front. This polymorphism structure allows rapid evolution to new environments 

that require the same tasks at different weightings. It also provides a mechanism 

that allows mating to produce offspring that stand a good chance of being optimal 

multi-taskers. Alignment to the front is reduced when genetic drift is strong, and 

is replaced by a more complex structure in which perpendicular effects of alleles 

collectively cancel out. 
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Materials and Methods 

We assume that performance at each task decays with distance r to the 

archetype [9,19]. Performance functions were !!(!)  = !!  !(!,!!) , where 

distance r from the archetype !! is an inner-product norm ! !,!! = ! −

!!
!!! ! − !!  with a positive-definite matrix Qi (Euclidean distance is obtained 

for Qi = I). Unless otherwise noted, all simulations used Qi = I. We chose 

population sizes N for which simulation duration for 10N generations was 

feasible, namely up to N=2000.  

 

Results 

A selection scheme for multi-task evolution 

We consider a setting where fitness is determined by the performance at L 

different tasks. Phenotypes are described as vectors ! in a trait space, where 

each axis corresponds to a quantitative trait. The performance functions for the L 

tasks are Pi(!) for i=1..L. The maxima of these performance functions are the 

archetypes, !!… !!, the phenotypes optimal at single tasks, and performance at 

each task decays with distance to the archetype [9,19] (Methods).  

To address evolution under a tradeoff between the tasks, we developed a 

selection process as follows: we consider N discrete locales, such as territories 

or nesting sites, each of which can be occupied by a single individual (results 

apply also when locales can be occupied by several individuals, Electronic 
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Supplementary Material, Section 1). The locales differ in environmental factors, 

and therefore the different tasks are more or less important for overall fitness at 

the locale. This heterogeneity can result from geographic clines, patchy 

environments, variation in other species, and so on. Hence, each locale has its 

own fitness function (individual selection surface) with locale-specific weights for 

the different performance functions: !{!!} = !!!!! , where the weights wi are 

positive (similar results are found for fitness functions that are non-linear in the 

performances, Electronic Supplementary Material, Section 2). In the simulations 

shown below, we sample wi uniformly with Σ!! = 1. Other distributions for wi yield 

the same qualitative results (Electronic Supplementary Material, Section 3).  

 

The weights wi correspond to the fitness contribution of each task in the 

locale. With this mathematical description, the phenotype that maximizes fitness 

in each locale can be shown to fall within trait space in the polytope whose 

vertices are the archetypes [9], namely the Pareto front: a line for two tasks, a 

triangle for three tasks and so on. 

 

Each round of the simulation begins with N diploid individuals, each in a different 

locale. We randomly choose kN pairs (k > 1) and mate each pair with 

recombination to generate one offspring per pair (simulations where mating 

probability depends on fitness yield the same qualitative result, Electronic 

Supplementary Material, Section 4). Offspring gain new mutations with 

probability !.  
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The kN offspring compete for the locales as follows. We choose a locale at 

random, select the individual with highest fitness according to the fitness function 

for that locale. We put that locale and individual aside in a ‘survivor list’, and 

repeat the process with remaining individuals and locales until all sites are filled. 

The remaining individuals are removed, and the N survivors make up the next 

generation (Fig 1F). Selecting individuals stochastically according to their fitness 

yields the same quantitative results, Electronic Supplementary Material, Section 

5). As the parameter k increases, the competition for the sites intensifies and drift 

effects become smaller.  

 

This selection scheme acts on individuals represented by a genome 

composed of a set of mutant alleles. Each mutation moves the phenotype in trait-

space. Mutation effect is a randomly oriented vector whose length is drawn from 

an exponential distribution with mean q=1, which is 1% of the distance in trait 

space between the archetypes. Mutation effects are additive (non-additive 

epistasis is addressed below). The number of new mutations introduced in an 

individual per generation is Poisson distributed with mean µ. For recombination 

we assume an infinite site model [20,21] and free recombination [22] (for more 

details see Electronic Supplementary Material, Section 6). 

We also simulated variants of this model as follows: (i) linkage, in which 

recombination was done by swapping chromosomes at a single recombination 

spot (ii) No mating: asexual populations with a single chromosome and no 

recombination.  
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Phenotypes in the population become spread along the Pareto front 

We begin with simulations with two tasks, which define a Pareto front in the 

shape of a line segment between the two archetypes. The initial condition is a 

cloud of phenotypes that are off the Pareto front (Fig 2A). For a wide range of 

model parameters (!" =10-50, N=100-2000, k=1.1-5), we find that within a few 

tens of generations the population spreads along the Pareto front. The 

distribution around the line becomes narrower as generations pass (Fig 2B-E). 

 

Regardless of parameters, phenotypic standard deviation parallel to the front !|| 

is much larger than perpendicular standard deviation !⊥. For example, for 

N=1000 and k=2, we find after 100N generations !⊥ /! ǁ = 0.012 ± 0.0003. Similar 

results are found also when varying the shapes of the performance function 

contours (!! ≠ !), and for linkage and asexual mating, as described in Electronic 

Supplementary Material, Section 7 and in Fig 2G. 

 

Prevalent polymorphisms have effects parallel to the Pareto front 

We next asked about the allelic polymorphism structure of the evolved 

population. In principle, there are two possible structures that give rise to 

phenotypes along the front: either mutation effects are parallel to the front, or 

there exists pairs of mutations or higher-order combinations whose components 

perpendicular to the front cancel out (Fig 1E).  
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We measured alignment with the front using the angle ! of each allele effect with 

the front. We find that while newly arising mutations are isotropic (median 

angle=45°), polymorphisms that persist in the population (>1% of the population) 

are closely aligned with the Pareto front (Fig 2B-D insets). For example, the 

median angle of these polymorphisms is 0.80°± 0.03° after 100,000 generations, 

for typical simulation parameters (N=1000, k=2, !=0.05).The more aligned a 

polymorphism is with the front, the more frequent it is in the population (Fig 2F, 

Electronic Supplementary Material, Sections 8-9). We next asked how genetic 

drift affects the alignment. We find that the smaller the population (the larger the 

drift), the weaker the alignment (Fig 2H, Electronic Supplementary Material, 

Section 8). Similarly, alignment is weaker when the competition parameter k is 

small, again a situation with larger drift (Fig 2F). Drift effects seem to become 

important at population sizes smaller than a few hundreds. 

We also asked about the effects of recombination on alignment. Alignment is 

reduced at a given population size when free recombination is replaced with 

single-site recombination (linkage) or in the case of asexual mating (no 

recombination) (Fig 2H). At small populations sizes alignment is poor (>20° at 

N=500, for both asexual mating and linkage) but the phenotypes are still are 

close to the front (!↖/!ǁ < 0.05), indicating that the allelic polymorphisms have a 

complex structure in which perpendicular effects cancel out. Nevertheless, 

simulations with linkage or asexual mating still showed good alignment 

(angle<10°) at large population sizes.  
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We conclude that regardless of linkage or asexual mating, at large enough 

population sizes common allelic polymorphisms align with the front in these 

simulations, whereas at small population sizes alignment is weaker and instead 

polymorphism structure is more complex with cancelling perpendicular effects.  

 

Phenotypic effects of polymorphisms align with moderately-curved Pareto 

fronts  

We also tested curved Pareto fronts which occur when the performance functions 

have eccentric contours (!! ≠ !) that point at an angle with respect to each other 

[10], as shown in Electronic Supplementary Material, Section 10, Fig S13. When 

the front curvature is mild, polymorphisms are still aligned with the local front (for 

example, when k=2 and curvature is as shown in Fig S11C, the median 

polymorphism angle is 6.1° ±  0.1°); this alignment is reduced at high front 

curvatures and high competition (for example, when k=5 and curvature is higher 

as shown in Fig S12B, the median angle is 24.1° ±  0.2°) (Fig S11-13, Electronic 

Supplementary Material, Section 10).  

 

Allelic polymorphism effects align with a triangular Pareto front in 

the case of three tasks 

We asked whether these conclusions apply also to higher numbers of tasks. We 

simulated evolution under three tasks, which results in a Pareto front shaped as 

a triangle whose vertices are the three archetypes. We used a three-dimensional 

trait space, with the triangle oriented at angle with respect to all trait axes. We 
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find that, again, populations rapidly converge to the triangle (Fig 3A-C). Prevalent 

polymorphisms align with the plane of the triangle (median angle ~2°, Fig 3D-F). 

This effect is seen also when mating probability depends on fitness (Electronic 

Supplementary Material, Section 11). 

 

Epistatic effects between the two copies of the same allele align with the 

Pareto front  

We next consider the effects of tradeoffs on epistasis. We begin with the non-

additive interaction between two alleles of the same gene [23–25], which is 

related to the phenomenon of dominance. We modelled this epistasis by 

assigning to each mutation i a randomly oriented vector !!, such that the 

heterozygote mutant effect is !! and the homozygote is 2!! + !!. We find that as 

before, the main effects of prevalent polymorphisms !! align with the front. 

Importantly, the epistatic effects !! of common polymorphisms also align with the 

front (Electronic Supplementary Material, Section 12). Those with epistatic 

effects off of the front are selected against. Thus epistasis, not only main effect, 

tends to align with the front, provided that drift is not too large. 

 

Epistasis in a molecular mechanism that generates triangular fronts 

In addition to epistasis between the alleles of the same gene, we studied 

epistasis between different genes. In this case, the effects of each polymorphism 

depend on the genetic background. To study this, we focus on epistasis due to 

nonlinear interactions within a molecular mechanism inspired by gene expression 
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[9]. This molecular mechanism is of interest because it occurs in bacteria, and 

naturally provides scope for a triangular Pareto front.  

In the model, genes are regulated by three regulators Xi that compete over a 

limiting factor R. For example, in bacteria, three sigma factors compete over RNA 

polymerase [26,27]) (Fig 4A). The traits are the expression of different genes. 

The genes are regulated by the three sigma factors bound to RNA polymerase 

which bind to sites in the promoter of the gene. The effect of regulator i on gene j 

expression is !!". Thus, expression of gene j is !! = ! !!"  !!
!!!

 !
!!! , (Electronic 

Supplementary Material, Section 13). The competition between Xi for binding to 

R leads to the nonlinear term  !!
!!!

 which causes epistasis between allelic 

variants.  

We simulated evolution in this model for the case of three tasks (in 

bacteria such as E. coli, tasks can be growth, survival and motility regulated by 

the σ-factors σ70, σS and σA [26,27]). Each mutation varies one of the 

biochemical parameters: Xi, !!" or R. Phenotypes evolve to the triangular front 

(Fig. 4B-D).  

Importantly, we find that almost all of the prevalent polymorphisms affect 

the levels of the regulators Xi; there are almost no prevalent polymorphisms that 

affect the levels of the other biochemical parameters, the promoter strengths !!" 

or RNA polymerase levels R (Fig 4E), once the mutations that set !!" become 

fixed (at around 1000 generations, Electronic Supplementary Material, Section 

14).  
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Thus, evolution first encodes the coordinates of the three archetypes in 

the promoter sequences that set the weights !!". The position on the triangle is 

then given by the relative values of the regulators Xi. For example, phenotypes at 

the vertices of the triangle have one regulator Xi high and the rest very low.  

The polymorphisms in Xi have phenotypic effects that depend on the genetic 

background (Fig 4F) due to the epistasis. For genetic backgrounds near the 

center of the front, polymorphisms in Xi move the phenotype in all directions 

along the plane of the triangle; near the vertices, they move the phenotype in a 

tapered way that fits into the corner of the triangle, preventing phenotypes from 

leaving the triangle. None of these polymorphisms has a sizable component that 

moves off of the plane of the triangle (Fig 4G). In contrast,	the mutations that are 

actively selected against and hence do not reach high prevalence - those in the 

parameters !!"  (promoter mutations) and R (RNA polymerase) - have effects that 

move the phenotype off of the plane the triangle. For example, increasing a 

weight !!" moves expression of gene i up, without affecting the other genes, a 

move which is off of the plane of the triangle. Altering the level of the limiting 

substrate R changes expression of all genes at once, a direction that is also off of 

the plane of the triangle. Expression levels of R and of genes will presumably be 

determined by the benefit and cost of production and maintenance. Such cost is 

included in the performance functions - increasing expression of genes carries a 

cost that, at high enough expression levels, reduces performance [28,29]. This 

demonstrates how a regulatory mechanism focuses the selection of mutations to 

certain components (regulator activity) and not to others (promoters, RNA 
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polymerase). The common polymorphisms have epistatic interactions that keep 

them within a sharp triangle of phenotypes [30]. The same idea can be 

generalized to any number of tasks by using more regulators. 

 

Polymorphism structure under tradeoffs allows rapid selection along the 

Pareto front 

The polymorphism structure found above has implications for artificial selection 

towards desired traits. To explore this, we exposed populations that have 

evolved for 100K generations under two or three tasks (linear or triangular Pareto 

front) to selection towards a given phenotypic target (Electronic Supplementary 

Material, Section 15). We compared selection to a target aligned with the original 

front to selection to a target that is not aligned with the front. Each generation, we 

selected the top fraction p of the population closest to the target. 

We find that evolution to a target aligned with the original front is much faster and 

results in phenotypes that move farther from the original phenotypes than 

selection perpendicular to the original front (Fig 5A-B and Electronic 

Supplementary Material, Section 15, Fig S17B). For example, for typical 3-task 

simulation parameters (N=1000,k=5,!=0.05), and artificial selection parameter p 

in the range 0.1-0.9, response to selection aligned with the original front is 9-fold 

to 17-fold larger than the response to selection perpendicular to it.  

Evolution to a target off the front results in rapid motion to the point on the front 

that is closest to the target (the projection of the target on the plane of the 

triangle). This is followed by much slower evolution off of the front that stops 
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when perpendicular genetic variation is depleted (Fig 5A).  

Simulations of selection in the case of two tasks (Fig 5B) are qualitatively similar 

to experiments on Bicyclus anynana butterfly eyespot size [31], in which artificial 

selection parallel to the observed suite of variation lead to stronger evolutionary 

change than selection perpendicular to the suite of variation (Fig 5C).  

Additional simulations show that prolonged selection perpendicular to the original 

front can generate a population that is spread along a hyperplane parallel to the 

original front (plane for 3 tasks and a line for 2 tasks) (Fig 5D and Electronic 

Supplementary Material, Section 15, Fig S17D). A similar effect has been 

observed in experiments on radish morphology (Fig 5E) [32,33]. 

 

The present predictions are supported by a range of experimental data  

To further test the present conclusions requires experiments that perturb 

molecular pathways and measure the resulting phenotypic changes, in relation to 

the natural suite of variation. A set of studies that exemplify this approach 

considered the pathways that shape the beak of Darwin’s finches [34–36].	

The normalized beak dimensions of different Darwin’s ground finch species fall 

approximately on a plane (first two principle components account for 99.6% of 

the variation, Fig 5F), and within that plane on a triangle corresponding to the 

tasks of eating large seeds, small seeds and pollen/nectar [9,37]. Perturbations 

of the major beak morphogenic pathways, BMP, calmodulin, and premaxillary-

bone modification factors (TGFβIIr, β-catenin and Dkk3), have phenotypic effects 

that are pleiotropic in a way that is approximately aligned with this plane [36] (Fig 
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5F). We hypothesize that polymorphisms that affect the expression of these 

factors are likely to be prevalent and underlie the variation of the beak 

morphology along the Pareto front.  

One can extend this framework to consider different species in a taxon 

that have comparable traits and share the same tasks. In this case, a prediction 

of additive, aligned polymorphism structure is that populations within a species 

will have variation that is aligned with the front defined by the variation of different 

species [9,38]. A recent example on bird toe-bone proportions showed that 

different bird species fall on a triangle. The tasks in this case are grasping, 

walking and scratching/rapturing (Fig 5G) [11]. Populations of chicken and zebra 

finch individuals fall in a flattened cloud aligned with the triangular Pareto front 

defined by the other bird species, as predicted (Fig 5G). 

 

Discussion  

We find that allelic polymorphisms that persist under multi-task selection 

have phenotypic effects oriented along the Pareto front rather than perpendicular 

to the front. Similarly, polymorphisms that persist have epistatic effects that tend 

to keep phenotypes on the front.  

We also tested the effects of genetic drift on the polymorphism structure. 

Small population sizes and low competition, both situations with large drift, lead 

to weaker alignment with the front.  

Polymorphism structure is also affected by linkage, which can cause 

alleles to be carried together. We therefore studied the effect of linkage and 
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asexual mating on the polymorphism structure. We find in simulations with 

linkage that polymorphisms still tend to align with the front. However, alignment 

at a given population size is weaker than in the case of free recombination. 

Instead, allelic polymorphisms have sizable perpendicular components that 

cancel each other out. Alignment with the front even occurs in simulations with 

asexual reproduction (no recombination). This is relevant to micro-organisms, 

and perhaps to tumors, whose gene expression has been suggested to show 

tradeoffs between tasks [16].  

 

To demonstrate a mechanistic model of tradeoffs and gene-gene 

epistasis, we analyzed a molecular mechanism that can give rise to polytope-

shaped fronts, based on bacterial sigma-factor regulation. Here, k regulators 

compete over a limiting factor, (eg RNA polymerase). This competition naturally 

gives rise to a polytope with k vertices in gene expression space. Each vertex 

corresponds to the expression if there was only one sigma factor present, 

allowing specialization in a certain task. This mechanism can also provide 

phenotypic plasticity, the ability of an organism to change its phenotype in 

response to changes in the environment. Plasticity occurs in this mechanism 

when environmental signals affect the levels of the regulators through upstream 

pathways – just as sigma factor activities in E. coli are affected by stresses and 

nutrients. The resulting plasticity moves the phenotypes along the Pareto front 

and not off of it, reaching optimal solutions in different environments. Thus, in the 
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present picture, plasticity can arise from the same mechanism that provides 

evolution/selection to a polytope-like front.  

The Pareto front in empirical examples from morphology has straight 

edges when using traits that are traditionally used by morphologists such as 

bone and tooth areas. However, if these traits are nonlinearly transformed, e.g. 

from !! to √!!, the fronts change from straight to curved. Thus, plotting the data 

with traits of bone volume or length instead of area would lead to curved fronts. 

Curved fronts are more difficult for polymorphisms to align to than straight fronts. 

This raises an interesting hypothesis: the effects of common mutant alleles 

should be additive in the traits that provide straight fronts (e.g. additive in effects 

on bone/tooth area rather than volume or length). In this way, additive effects can 

best keep offspring along the front. In the case of gene expression, in which 

straight fronts have been observed in log-transformed data [16,17], this 

prediction means that mutation effects should be additive in log space 

(multiplicative effects). Indeed, mutation effects often combine in a multiplicative 

fashion [39,40]. 

 

Other ways that phenotypes can evolve to be on a line have been 

suggested. These mechanisms do not involve multiple tasks, but instead involve 

migration [41] or consider a fitness landscape with a pronounced ridge [5,6]. 

These studies do not directly apply to the present case which employs selection 

in multiple locales with different conditions. More generally, rather than assuming 

the existence of a fitness ridge a-priori, the Pareto picture suggests a natural 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 6, 2018. ; https://doi.org/10.1101/244210doi: bioRxiv preprint 

https://doi.org/10.1101/244210


21	
	

explanation for geometries such as lines, triangles and higher-order polytopes in 

trait space based on the positions of the archetypes that emerge from 

evolutionary tradeoff between the tasks. 

 

The alignment of polymorphisms with the Pareto front has several 

implications. First, the progeny of any two parents in the population is likely to be 

on the Pareto front, as long as the mutations are additive or at least have 

epistatic effects parallel to the front, such as the epistatic effects described here. 

Without polymorphism alignment, mating would often result in phenotypes off of 

the front, which would be at a disadvantage because there exists a potential 

phenotype on the front which is better at all tasks.  

 

  A second feature of the alignment of polymorphisms with the Pareto front 

is rapid response to selective pressures along the front. Evolutionary response is 

accelerated towards new selection pressures provided that they relate to the 

same underlying tasks - and therefore align with the Pareto front. Evidence for 

rapid response to selection pressures along the main axis of phenotypic variation 

has been reviewed [42] (Fig 5C).  

   

 To further test the present conclusions requires data on many phenotypic 

traits together with genomic information for a large number of individuals. Such 

datasets are expected to become more prevalent in the near future [43,44]. It will 
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be fascinating to explore to what extent the effects of common polymorphisms 

align with the Pareto front of phenotypic traits. 
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Figure Legends 

Figure 1. Tradeoff between tasks leads to phenotypes arranged along 

polygons in trait space (A) Standard approaches assume a fitness landscape 

in the space of phenotypic traits. Selection tends to favor phenotypes near the 

maximum. (B) When the system needs to perform several tasks, each task has a 

performance function in trait space, whose maximum is called the archetype. 

Each colored hill represent a performance function !!(!) at a single task i, where 

! is the vector of traits, and fitness at locale q is an increasing function of all 

performance functions !! !! ! ,… ,!! !  (C) In an environment where task 1 is 

more important, fitness is maximized at a phenotype close to archetype 1; In an 

environment where task 3 is more important, fitness is maximized at a phenotype 

closer to archetype 3. Fitness maxima in the two environments can be different. 

(D) Fitness maxima in all possible environments in which fitness is an increasing 

function of performance in the three tasks lie in the full triangle whose vertices 

are the 3 archetypes- known as the Pareto front- when the conditions of Shoval 

et. al [9] are fulfilled. (E) Possible allelic polymorphism structures that keep a 
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phenotype on the front: either mutation effects are parallel to the front (left), or 

pairs of mutations whose components perpendicular to the front cancel out 

(right). (F) Schematic of the selection process described in the Results section, 

for the case of three tasks that define a triangle whose vertices are the three 

archetypes. Locales and individuals best at the locales are sequentially removed 

into a survivor list, and remaining individuals are removed. Survivors make up the 

next generation. Here we consider 7 locales (N=7); phenotypes that maximize 

fitness in these locales are connected to the relevant locale using a black line.  

 

 

 

Figure 2. Phenotypes converge to the Pareto front by means of 

polymorphisms whose effects align with the front. (A-D) Snapshot of the 

phenotypes at different generations in a simulation, for the case of two tasks. The 

Pareto front is shown in red. Insets: The phenotypic effects of all allelic 

polymorphisms present in at least 1% of genomes increasingly align with the 

Pareto front. Each arrow represents the phenotypic effect of one polymorphism 

(magnified for illustration purposes). At generation zero, no mutation is present at 

>1% of the genomes. Simulation parameters: N =1000, µ=0.05, k = 2, infinite 

recombination. Median angle ! of polymorphisms relative to the front was 17°, 

9°, 0.4°, for B-D, respectively. The ratio between perpendicular and parallel 

standard deviation of phenotypes is mentioned in each panel A-D, along with the 

phenotypic RMS distance from the front, normalized by the distance between 
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archetypes. Axes are traits 1 and 2. (E) The ratio of the perpendicular and 

parallel standard deviation of phenotypes with respect to the front is 1 for the 

initial population at generation 0, decreases with generations, and begins to 

plateau after ~100,000 generations. (F) Polymorphisms that are aligned with the 

front tend to increase in frequency (log-linear scale) and with competition k. 

Simulation parameters are as above except k that varies as indicated. Error bars 

represent 95% confidence intervals from bootstrapping. Alignment is defined as 

! = !∥ !

!∥ !! !! !, where !∥  and !!  are the mean parallel and perpendicular 

component of the mutation effect vectors in each bin of mutation frequency. A = 1 

and 0.5 occur when mutations are completely aligned or randomly oriented, 

respectively. Note that data is for frequencies <1, at frequency=1 the mutation 

becomes fixed in the population. (G-H) Phenotypic standard deviation ratio !!!|| (G) 

and median angle ! (H) to the front, as a function of population size N, for three 

different recombination schemes: free recombination, linkage, and asexual 

mating. In all simulations presented, !"=50, and competition parameter k =2. 

Error bars represent 95% confidence intervals from bootstrapping. 

 

 

Figure 3. For three tasks, polymorphisms align with the plane of the 

triangular Pareto front (A-C) Phenotypes (blue dots) lie close to the Pareto (red 

triangle) front after 100,000 generations. Panels show the data from three 

different views. Simulation parameters are N = 1000, µ=0.05, k=5, infinite-

recombination. (D-F) Effects of allelic polymorphisms present in at least 1% of 
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the genomes (black arrows) align with the Pareto front (effects magnified by 10-

fold for visualization). Each arrow represents the phenotypic effect of one 

polymorphism. Panels show the data from three different views.  

 

Figure 4. Epistasis due to a molecular mechanism evolves to keep 

phenotypes within the triangular front (A) A mechanism based on bacterial 

transcription considers genes whose promoters are regulated by 3 regulators 

(sigma factors) Xi that compete over a limiting factor R (RNA polymerase). The 

effect of Xi on the promoter of gene j is ωij. (B-D) Phenotypes (blue dots) reside 

on the Pareto (red triangle) front after 100,000 generations with this mechanism. 

Panels show the data from three different views. Simulation parameters (N = 

1000, µ=0.05, k=5, equal maximal fitness in all locales. Each mutation changed 

one of the parameters Xi, ωij or R by multiplying the parameter by number drawn 

from a lognormal distribution LN(1,1). (E) Fraction of prevalent polymorphisms 

(>1% of genomes) in each of the parameters R, ωij (summed over all ω’s) and Xi 

(summed over X1, X2, X3). Median and median deviation over 100 different 

simulations is shown at 100,000 generations. (F) Effect of mutations that change 

Xi by 10%. Arrows are 10% changes in X1 (black arrow), X2 (purple arrow), or X3 

(yellow arrow), and the blue contour is the boundary of the effects of 

simultaneously changing X1, X2 and X3 so that the total change is 10%. Mutation 

effects are magnified by 12 for illustration. Mutations show epistasis, by having 

different effects at different genetic backgrounds that correspond to four different 

phenotypes on the front. (G) Fraction of angles with respect to the plane of the 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 6, 2018. ; https://doi.org/10.1101/244210doi: bioRxiv preprint 

https://doi.org/10.1101/244210


30	
	

triangle that are smaller (left) or bigger (right) than 1°, for all polymorphisms 

present at >1% of the genomes. Each polymorphism was evaluated in all of the 

genomes in which it appears, because the angle can vary due to epistasis. 

Results in (B-D) are based on simulation with parameters N = 1000, µ=0.05, k=5, 

infinite-recombination. Each mutation changed one of the parameters Xi, ωij or R 

by multiplying the parameter by number drawn from a lognormal distribution 

LN(1,1). 

 

Figure 5. Simulations on artificial selection and population variation agree 

with a range of experimental results (A) Response to selection towards a 

target off the front (black point) of an initial set of 100 phenotypes close to 

archetype 1 in a case of three tasks. The target is equally distant parallel and 

perpendicular to the front. Each blue point represents the mean phenotype in the 

population at time steps of one generation of selection towards the target with 

p=0.1. The population rapidly evolves to the projection of the target on the plane 

of the triangle, followed by much slower evolution off the triangle. Inset: Parallel 

(red) and perpendicular (blue) distance from the initial population mean as a 

function of generation number. (B) Response to selection towards a far target 

along front (red) and perpendicular to the front (blue). Each point represents the 

mean phenotype at subsequent generations of selection. Initial population was 

evolved for 10,000 generations with N=100, !=0.5, k=2, infinite-recombination, 

before artificial selection for another 10 generations. Artificial selection used 

p=0.5. (C) Artificial selection experiments by Allen et. al [31] on butterfly eyespot-
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size show that the response along the main axis of phenotypic variation of the 

natural population is larger than the response to selection perpendicular to this 

axis. The axes are the normalized sizes of the two dorsal eye-spots, and the 

mean phenotype of the initial population is at the origin. Adapted from [31]. (D) 

Extended simulations of artificial selection perpendicular to the Pareto front 

results in a line parallel to the front. Initial population was same as in (B), artificial 

selection was performed for 100 generations. (E) Experiments by Conner on 

radish artificial selection perpendicular to the axis of natural variation results in 

mean offspring on a line (red, blue) parallel to the axis of natural variation 

(green). Adapted from [33]. Radish image is modified from 

https://commons.wikimedia.org/wiki/File:Wild_Radish_flower_(5360402586).jpg. 

(F) Normalized beak dimensions of Darwin’s ground finch species fall 

approximately on a plane in the space of beak traits. Perturbations of the beak 

morphogen pathways, BMP, calmodulin, and the premaxillary-bone modification 

factors denoted B, C and P in the figure, have phenotypic effects (arrows) 

approximately aligned with this plane (generated using data from [36]). See 

Electronic Supplementary Material, Section 16 for details. (G) Phalanx 

proportions of different species of birds fall in a triangle. Populations of chickens 

and zebra-finches show variation aligned with this triangle. Adapted from [11]. 

Toe image is modified from [11]. 
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