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Abstract 
Due to noise in the synthesis and degradation of proteins, the concentrations of individual vertebrate 

signaling proteins were estimated to vary with a coefficient of variation (CV) of approximately 25% 

between cells. This high variation enables population-level regulation of cell functions but abolishes 

accurate single-cell signal transmission. Here we measure cell-to-cell variability of relative protein 

abundance using quantitative proteomics of individual Xenopus laevis eggs and cultured human cells 

and show that variation is typically much lower, in the range of 5-15%, compatible with accurate single-

cell transmission. Furthermore, we show that MEK and ERK expression covary which improves 

controllability of the fraction of cells that activate bimodal ERK signaling, arguing that covariation has 

a role in facilitating population-level control of binary cell-fate decisions. Together, our experimental 

and model data argues for a control principle whereby low covariation limits signaling noise for 

accurate control analog single-cell signaling. In contrast, increased covariation widens the stimulus-

range over which external inputs can regulate binary cell activation, thereby enabling accurate control 

of the fraction of activated cells at the population level. 
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Introduction 

Vertebrate signaling has been shown to control both binary and analog outputs. Here we use the term 

binary if the output is bimodal and the term analog if the output signal changes in parallel with the input 

signal without bifurcations during the transmission. Examples of binary signaling decisions include the 

commitment to start the cell cycle (Cappell et al., 2016), cell differentiation (Ahrends et al., 2014; 

Chang et al., 2008; Jukam and Desplan, 2010), apoptosis (Spencer et al., 2009), action potentials 

(Hodgkin and Huxley, 1952) and the explosive secretory response of mast cells when encountering 

an antigen (Hide et al., 1993). Effective analog signaling in individual cells has been observed, for 

example, in the visual transduction system where the number of absorbed photons proportionally 

increases electric outputs in cone cells (Arshavsky et al., 2002), in single-cell IP3 and Ca2+ regulation 

by GPCR’s (Nash et al., 2001), as well as for CD-8 (Tkach et al., 2014) and IL-2 signaling (Feinerman 

et al., 2008) in T-cells.  Analog signaling is also needed to accurately regulate the timing or duration 

of intermediate cell processes such as in the cell cycle where the time between the start of S-phase 

to mitosis has only small variation between individual cells (Spencer et al., 2013). Such precise 

regulation of durations requires low noise in the signaling steps before mitosis (Kar et al., 2009). 

Together, these examples suggest that accurate analog signaling is important for graded control of 

cell outputs in single cells as well as for accurate internal timing.  

 A main motivation for our study were the high levels of protein expression variation that have 

been reported in vertebrate cells with coefficient of variations (CVs) of approximately 25% (Gaudet et 

al., 2012; Sigal et al., 2006; Spencer et al., 2009). Such high levels of expression variation are 

beneficial for binary signaling which is often regulated at the population- rather than single cell-level. 

In population-based signaling, a goal of organisms is to use different levels of input to regulate the 

fraction of cells in a population that make a binary decision such as whether to proliferate, differentiate 

or secrete. For input stimuli to control which fraction of cells are activated, high noise in signaling is 

needed between cells in the population such that individual cells have different sensitivities to input 

stimuli (Ahrends et al., 2014; Eldar and Elowitz, 2010; Kalmar et al., 2009; Raj and van Oudenaarden, 
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2008; Süel et al., 2007). However, the same high noise needed to control population-level signaling 

does not have any benefit for analog signaling and just serves to degrade signal transmission. These 

different demands on noise for analog and binary signaling suggest that there is a trade-off for noise 

between population-level and single-cell signaling (Suderman et al., 2017). Nevertheless, the reported 

high levels of expression variation and signaling noise in mammalian cells (Cheong et al., 2011; 

Gaudet et al., 2012; Selimkhanov et al., 2014; Sigal et al., 2006) raise the question of how noise in a 

signaling system can be low enough for analog signaling accuracy. It also remained unclear how the 

different potential internal noise sources could generate optimal conditions for analog single-cell 

versus binary population-level signaling.    

 Here we measure cell-to-cell variation in the relative abundance of pathway components to 

understand the limits of analog and binary signaling accuracy. We also investigated the role of 

covariation of pathway components as we considered that covariation may exacerbate the analog 

signaling problem and/or enable the control of population-level binary signaling. We considered that 

previous estimates of cell-to-cell variation in protein expression might be too high due to experimental 

challenges in accurately measuring small differences in protein abundance between cells and 

accounting for “hidden variables” such as differences in cell size and cell cycle state (Symmons and 

Raj, 2016). To determine lower limits of protein variation, we developed single-cell quantitative 

proteomics methods in single Xenopus laevis eggs and employed quantitative normalization of 

cultured human cells to accurately measure variations in protein abundance normalized by protein 

mass. We found that cell-to-cell variation in relative protein abundance is much lower than expected, 

with CVs of between 5% and 15%, suggesting that expression variation is less limiting than currently 

believed and is compatible with accurate analog signal-transmission. Furthermore, our simulations 

show that these experimentally-observed low levels of expression variation pose a challenge for cells 

to accurately control population-level decisions. A solution to this problem was revealed by 

experiments which showed significant covariation between the single-cell expression of two sequential 

signaling components, MEK and ERK, and a correlation between MEK and ERK expression levels 
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and whether or not ERK is activated. Our modeling showed that such increased covariation - which 

increases the overall noise in the signaling pathway – allows populations of cells to control the fraction 

of cells that activate ERK over a wider range of input stimuli, providing a potential role for covariation 

of signaling components as a general strategy for populations of cells to more accurately control binary 

cell fate decisions. Finally, our findings of covariation and low variation of pathway components led us 

to develop a metric to describe how systems can use opposing strategies to accurately control single-

cell analog and population-level binary signal transmission by using different numbers of regulatory 

components, levels of expression variation, and degrees of covariation. 

 

Results and Discussion 

Computational simulations using reported levels of expression variation show a dramatic loss 

of analog single-cell transmission accuracy 

Our study was motivated by the reported high levels of expression variation and the detrimental impact 

that this source of noise may have on analog single-cell signaling, especially since signaling pathways 

typically have multiple components which necessarily results in an even higher cumulative signaling 

noise. To define the general control problem of how expression variation increases overall signaling 

noise and limits signaling output accuracy, we carried out simulations by applying a relative fold-

change in input signal (R) to a signaling pathway and stochastically varying the expression of pathway 

components for each simulation. To determine how accurately a multi-step signaling pathway can 

transmit a relative input stimulus (R) to an analog output (A*), we modeled the signaling pathway as 

shown in Figure 1A. Specifically, we used a 5-step model where a relative change in input R acts 

through four intermediate steps, possibly reflecting a kinase cascade with counteracting 

phosphatases, to generate corresponding changes in the output A*. The regulation of these steps can 

be at the level of activity or localization of pathway components. We considered 5 steps with 10 

variable regulators to be a typical signaling pathway since it has been shown that step numbers in 

signaling pathways can range from very few in visual signal transduction (Stryer, 1991) to over 10 
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steps in the growth-factor control of ERK kinase and cell cycle entry (Johnson and Lapadat, 2002). In 

our simulations, each of the parameters represents a regulatory protein that activates or inactivates 

one of the pathway steps. We assumed that each of these components has "expression variation", 

meaning that each of their protein concentrations varies between individual cells with a standard 

deviation divided by the mean (CV). We simulated this expression variation by multiplying a log-normal 

stochastic noise term of either 5%, 10%, or 25% (standard deviation over the mean) to each parameter 

in the model (Ahrends et al., 2014). As is apparent in the top plots in Figure 1B for a CV of 5%, the 

signaling responses of cells to 3-fold (red) and 9-fold (blue) increases in the input stimulus, R, can be 

readily distinguished from the signaling responses of unstimulated cells (black traces). For a higher 

CV of 10%, the signaling responses to a 3-fold increase in R partially overlap with the unstimulated 

cell responses, and only the responses to a 9-fold increase in R can be unequivocally distinguished 

from unstimulated cell responses. For a CV of 25%, even responses to a 9-fold increase in input 

stimulus overlap with the responses of unstimulated cells, showing a dramatic loss in signaling 

accuracy. 

One way to overcome this dramatic loss in signaling accuracy due to expression variation of 

pathway components is to increase the input stimulus. We reasoned that we could use a fold-increase 

parameter to quantify the loss in signal accuracy. We thus defined a fold-Input Detection Limit (fIDL) 

as the minimal fold-stimulus needed to generate signaling responses that can, in 95% of cases, be 

distinguished from cell responses in unstimulated cells (see Methods for calculation). Figure 1C shows 

an example of how the fIDL is calculated by determining the fold-input stimulus that results in only a 

5% overlap between the signaling output distributions (A*) of unstimulated and stimulated cells (blue 

and red histograms, respectively). In the case shown, an fIDL stimulus of 2.83 is needed to overcome 

the loss of signaling accuracy caused by having 10% expression variation in pathway components. 

We used a fold-Input Detection Limit instead of a commonly-used Mutual Information metric since 

Mutual Information between Input (R) and Output (A*) has a strong dependency on the dynamic range 

of the system output, while the fold-Input Detection Limit is largely independent of saturation (Figure 
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EV1). As shown in the barplots in Figure 1D, increasing the CV of pathway components from 10% to 

25% increases the fold-Input Detection Limit from 2.83 to 14, a stimulus requirement that is likely 

prohibitive for analog single-cell signal transmission. Our realization that fold-Input Detection Limits 

are very high for reported expression variation levels was a main motivation for our strategy below to 

accurately measure expression variation in order to understand if and how analog signaling in single 

cells is limited by this noise source.  

We were also interested to determine if the expression of vertebrate proteins may covary since 

covariance has been shown to exist in a yeast regulatory pathway (Stewart-Ornstein et al., 2012). We 

considered that if proteins within a signaling pathway would covary, the overall noise in the output 

response would increase. To illustrate what a maximal effect of covariance can be on a multi-step 

analog signaling pathway, we added covariation to the model shown in Figure 1A by making the 

positive regulators (e.g. kinases) covary together and also made the negative regulators (e.g. 

phosphatases) covary together. As shown in Figure 1E, covariance causes the error propagation to 

increase, and the overall variation of a signaling output is much higher compared to the case where 

variation of proteins in the same pathway are independent. Given this marked increase of the overall 

noise of the signaling response by covariation, one would expect that covariation between components 

of the same signaling pathway should generally be avoided to allow for accurate analog signaling. 

 

Development of a method to accurately measure the relative abundance of tens of proteins in 

a single cell  

To probe the lower limits of protein expression variation, we selected a system with a need for analog 

single-cell signaling that was also suitable for parallel proteomics analysis. We chose Xenopus laevis 

eggs for three reasons. First, previous studies showed that the timing of the cell cycle during early 

embryogenesis is very precise with an accuracy of ~5% (Tsai et al., 2014), suggesting that the 

Xenopus system must have accurate analog signaling to maintain such timing. Second, eggs do not 

grow in size and have only minimal new synthesis and degradation of mRNA, two features which we 
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thought would reduce experimental and technical variation that was unrelated to cell-internal control 

of protein concentration. Third, Xenopus laevis eggs are well suited for single-cell proteomics analysis 

due to their large size (Ferrell, 1999), allowing us to very sensitively measure and compare relative 

abundances of many proteins simultaneously in the same cell.  

 To accurately compare the abundance of tens of endogenous proteins in parallel in single 

cells, we used a low-noise quantitative mass spectrometry method (SRM-MS) (Abell et al., 2011; 

Ahrends et al., 2014; Picotti and Aebersold, 2012). Cytoplasmic proteins were extracted from eggs 

and subjected to trypsin digestion and phosphatase treatment before undergoing targeted 

quantification on a triple quadrupole mass spectrometer. Heavy isotope-labeled reference peptides 

were spiked in proportionately to a measured total protein concentration, and the ratio of the light 

(endogenous) peptide to the heavy (synthetic) peptide was used as a readout of relative protein 

abundance. Small calibration errors were further corrected for during the analysis using the median of 

22 normalized peptide intensities as a correction factor similar to previous studies (Abell et al., 2011; 

Feng and Picotti, 2016; Ludwig et al., 2012). We measured relative protein abundance (abundance 

over total protein mass) as a measure of protein concentration since reaction rates and signaling 

processes depend on the concentration rather than abundance of proteins (Padovan-Merhar et al., 

2015).  

We first validated our method using bulk cell analysis at different timepoints during the first cell 

cycle which can be initiated by addition of calcium ionophore and takes approximately 90 minutes to 

complete (Rankin and Kirschner, 1997). We measured the abundances of a set of 26 proteins that we 

selected to include known regulators of signaling and cell cycle progression, as well as several control 

proteins (Figure 2A; Table EV1). Time course analysis over the first cell cycle further showed that we 

could observe the expected cycling behavior of Cyclin A and Cyclin B (Figure 2B).  We next showed 

that we could measure timecourses of relative protein abundances in single cells by carrying out 

measurements at 5 time points with 5 eggs each (Figure 2C). Except for a few known cell-cycle 

regulated genes, Cyclin A, Cyclin B, Cdc6 and Emi1, all of the measured proteins changed their 
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abundance on average less than a few percent during the first egg cell cycle (Peshkin et al., 2015). 

The constant average level of many of these signaling and cell cycle proteins can in part be explained 

by only minimal mRNA synthesis during early Xenopus laevis cell cycles (Krauchunas and Wolfner, 

2013).   

 

Low variation in the relative abundance of proteins explains how cells can accurately control 

analog single-cell functions  

We next focused on analyzing the extent to which protein abundance varies between single cells. We 

first analyzed the set of 25 individual eggs from Figure 2C and determined the variation of each protein 

in each of the batches of 5 eggs collected at each of the 5 time points (Figure 3A, left). Markedly, all 

CVs were much lower than expected with the median CV across all proteins and timepoints being only 

7% (Figure 3A, histogram in right panel). To independently verify these low variation measurements, 

we collected and analyzed a larger set of 120 individual eggs: 60 eggs collected at 60 and at 80-

minutes after activation. To test for reproducibility of the measured variation, we divided the 60 eggs 

at each timepoint into batches and carried out a variation analysis (Figure 3B). Bootstrapping analysis 

showed similar low variation (Figure EV2). As further validation, the variations measured in the two 

independent experiments were similar to each other (Figure 3C). We also noted that most of the 

proteins that have high cell-to-cell variation (marked as red circles in Figure 3C) also change their 

abundance during the cell cycle (Figure 2C) suggesting that high CVs reflect proteins whose 

abundances are actively regulated. Thus, our finding of low CVs answers the question raised in 

Figures 1A-C how cells can accurately control analog single-cell signaling outputs. Since expression 

variation can be as low as 5-10%, this main source of signaling noise is compatible with accurate 

single-cell signaling and timing control. Such low variation may also permit accurate timing in the 

Xenopus laevis embryonic cell cycle, which has been measured to be on the order of +/- 5% between 

eggs (Tsai et al., 2014),  
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We would like to note that the biological variation might be for some proteins even lower than 

we were able to measure in these experiments. To test whether there is a lower limit for measuring 

variation, we carried out control experiments in which 30 individual eggs were lysed and mixed 

together to remove biological variability. This mixed lysate was then pipetted into 30 individual tubes, 

and the sample in each tube was prepared and analyzed separately by SRM mass spectrometry. The 

variation between these 30 individually prepared and analyzed aliquots of the same starting lysate 

were compared to obtain a measure of technical variation. As shown in Figure EV3, the technical 

variation is comparable to the lowest CV measurements we show in Figures 3A-C, suggesting that 

further technical improvements may reveal even lower biological variation.  

Our analysis so far argues that expression variation can be much lower than previously 

assumed, which would enable accurate analog single-cell signaling as shown by how decreasing 

expression variation in Figure 1B allows for less overlap between unstimulated and stimulated cell 

responses. We next tested whether we would find the same low variation in protein expression in 

cultured human cells (HeLa cells) by carrying out immunocytochemistry experiments. To accurately 

measure relative protein abundances, we first gated for cells in the same G0/G1 cell cycle state by 

using Hoechst DNA stain measurements (2n-peak; Cappell et al., 2016). We further normalized the 

abundance of each protein to total protein mass in each cell. The latter was measured using an amine-

reactive dye that stains all proteins in a cell (Kafri et al., 2013). Since total protein mass is proportional 

to cell volume (Grover et al., 2011), normalization by total protein mass can be used as a measure of 

protein concentration, analogous to the normalization we used in the single egg experiments. To 

minimize small illumination non-uniformities associated with imaging, we also confined our analysis to 

cells in the center area of images where the illumination and light collection is more uniform (see 

Methods). For comparison with the egg data, we measured corrected CVs for the relative abundances 

for ERK, MEK, MCM5, MCM7 as well as the control proteins GAPDH and ENO1 (Figure 3D). We 

validated that the antibody staining for ERK, MEK, MCM5 and MCM7 could be knocked down by the 

respective siRNAs (Figure EV5). The resulting CVs for relative protein abundance were in the 10-15% 
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range, lower than typically reported mammalian protein CV values (Gaudet et al., 2012; Niepel et al., 

2009; Sigal et al., 2006).  

 

Covariance between the relative abundances of pathway components facilitates the control of 

population-level binary signaling responses  

We next determined if there was covariance between proteins. To measure covariance, we used the 

same 120-egg proteomic dataset shown in Figure 2B. As shown in Figure 3A, our correlation analysis 

uncovered several covarying regulatory proteins. For example, there was significant co-regulation 

between MCM5 and MCM7 (Figures 4A and 4B), which is expected since the loaded MCM Helicase 

is a multimeric complex whose members have been shown to be subject to non-exponential decay, 

likely due to free subunits being degraded before complexed subunits (Mcshane et al., 2016). 

Nevertheless, we were surprised to also find significant covariation between MEK (MAP2K1) and ERK 

(MAPK1) (Figures 4A and 4B) because such a covariance adds extra noise to the signaling pathway 

and would not be beneficial for accurate analog signal transmission. In order to test the statistical 

significance of the covariance, p-values were validated by multiple comparison testing using 

Bonferroni corrections (Table EV2), suggesting that both the MCM5/MCM7 and the MEK/ERK 

covariation are significant. 

We next determined whether the covariances we observed in Xenopus laevis eggs are 

conserved in human cells. As shown in Figure 4C, we found a strong covariance between MCM5 and 

MCM7. siRNA-mediated depletion experiments confirmed that MCM5 and MCM7 likely co-stabilize 

each other as both levels are reduced upon knockdown of either MCM5 or MCF7 in HeLa cells (Figure 

EV5). While control experiments showed weak covariation between MCM5 and the control protein 

GAPDH, we once again found a significant covariation between MEK and ERK, similar to the 

covariance observed in Xenopus laevis eggs (Figure 4C). This co-regulation is likely due to shared 

upstream expression regulation, or indirect feedbacks, as siRNA-mediated depletion of MEK and ERK 

showed opposing effects on ERK and MEK expression, respectively (Figure EV5). The unexpected 
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covariation found between MEK and ERK in both Xenopus laevis eggs and human cells made us 

consider whether it might be beneficial for a cell to have components of the same pathway covary, 

possibly in the context of binary cell activation that is often associated with MEK and ERK signaling 

pathways. 

 

Using modeling to understand the effect of variation and co-variation on controlling the 

fraction of cells in the population that respond to input stimulus (for binary single-cell 

signaling) 

 As mentioned in the introduction, previous studies showed that noise in signaling is beneficial 

for controlling the fraction of cells in a population that are activated over a range of input stimuli 

(Ahrends et al., 2014; Suderman et al., 2017). Since the MEK-ERK signaling pathway often controls 

binary proliferation and differentiation decisions, it was conceivable that the relevant output of the 

system could be at the population-level, reflecting the fraction of cells that would be activated or not. 

We carried out simulations to show how cell-to-cell variation and covariation in expression of pathway 

components would affect population-level regulation of binary cell fate decisions. As shown in the 

schematic in Figure 5A, we again used the model in Figure 1A but now assumed a last regulatory step 

whereby a cell with a y5* value above 10 would trigger a switch into an active state. However, if the 

output value y5* cell stays below a threshold of 10, the cell would remain inactive. This last step is 

denoted as B* versus B, reflecting the active and inactive binary output state, respectively. The results 

discussed here are largely independent of the value of this threshold (see Methods). 

 We used this binary model to determine the percentage of cells in a population that will switch 

into the active state for different fold-increases of input stimuli and levels of expression variation. As 

shown by the black circles in Figure 5B, if there is no expression variation of pathway components, all 

cells will abruptly switch from the inactive to active state for a very small increase of the input stimulus 

since all cells will either reach the output threshold of 10 or not for a given stimulus. As the CVs of 

relative abundances of pathway components increase, the percentage of cells in a population that 
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switch from the inactive to active state can be controlled over a wider range of input stimuli, with there 

being a close to linear relationship in the five-step model between percent of cells activated and 

relative input stimulus amplitude at 40% CV of pathway components. This widening of the input 

stimulus control window can be quantified by fitting a Hill coefficient (HC) to the fractional activation 

data. The Hill coefficient measures how well the population-level output can be controlled by the input. 

The fitted Hill coefficients for systems with different amounts of protein expression variation are shown 

in the right bar plot of Figure 5C. A system with a smaller HC can be more accurately controlled over 

a wider-range of input levels which would be desirable in physiological settings where external 

hormone input stimuli may not be precise themselves. Another consideration to take into account is 

that physiological responses to hormone stimulation can typically be elicited over a 10-fold or greater 

range of relative hormone stimulus increases (R) (Atgié et al., 1997; Katakam et al., 2001; Kimura et 

al., 2007). Such a broad range of control requires a low Hill coefficient of approximately 1 (Figure 5B) 

which would require a system with high variation (approximately 40%) in the expression of pathway 

components or other sources of noise that vary the sensitivity of cells.  

Given this need for low Hill coefficients to control population-level responses to physiological 

stimuli, we next determined whether covariation could be another source of noise that could lower the 

Hill coefficient and improve controllability. Such an increase in overall noise is needed as a system 

with 10% expression variation would not generate sufficient signaling noise for accurate population-

control of binary signaling responses. Indeed, as shown in the simulations in Figure 5D, adding 

covariation to a regulatory system that has 10% variation of the pathway components improves the 

controllability of population-level binary responses by reducing the relationship between input stimulus 

and percentage of cells activated from a Hill coefficient of over 5 down to 2.3. Thus, our 5-step model 

demonstrates that a system with high covariation of signaling components enables population-level 

regulation of binary outputs over a broader range of signaling inputs. We next tested the validity of this 

conclusion computationally and experimentally by using an established model of the MAPK/ERK 

signaling system and by carrying out live-cell experiments to measure ERK activation in human cells. 
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Using modeling and live-cell imaging to demonstrate the biological significance of MEK and 

ERK expression covariation in regulating bimodal ERK activity  

We first explored the effects of covariation in the MEK-ERK pathway computationally using an 

established model of the MAPK pathway which uses 7 protein species: Ras, MEK, ERK, 4 

phosphatases, and RasGTP as the input (Sturm et al, 2010). We varied the model parameters and 

tested the model over a range of RasGTP input doses. In the calculations shown, we either kept the 

concentration variations of ERK and MEK random or covaried them with each other (lognormal 15% 

CV), and also used random lognormal concentration variation for the other parameters/components 

in the model (lognormal 10% CV). With this added variation, the output of the model, phosphorylated 

ERK (pERK), which reflects ERK activity, becomes variable between cells and is bimodal for 

intermediate concentrations of EGF stimuli as shown by the timecourse traces in Figure 6A, as well 

as in the histograms in Figure 6B.  

The orange and blue curves in Figure 6B plot the fraction of cells in the cell population that go 

into a high pERK (activated) state in response to different doses of EGF stimulus in the model when 

MEK and ERK vary randomly (orange) or when MEK and ERK covary fully (100%) with each other 

(blue). When comparing the effect of random variation versus covariation of MEK and ERK 

concentrations, we find a small but significant broadening of the relationship between the stimulus 

intensity and the fraction of cells in the active state when there is covariation (Figure 6B, orange versus 

blue curves). This effect is proportionally reduced if the covariation is partial and would increase if 

more pathway components - in addition to MEK and ERK - would covary with each other.  

The contribution of covariance can best be seen in the histograms shown at the bottom of 

Figure 6B. The histograms plot the number of cells with a particular ERK activity output in response 

to different doses of input stimuli. The black dotted line in each histogram marks the threshold above 

and below which cells are defined as having active or inactive ERK, respectively. The leftmost 

histogram shows that already for low input stimuli, the fraction of activated cells is more than doubled 
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in the case of covariation compared to the case of random variation. The relatively higher fraction of 

activated cells in the case of covariation is caused by a widening of the range over which cells in a 

population are activated since for both the case of covariation or random variation, the model shows 

approximately the same number of cells - half of the population - are activated for the same 

intermediate input stimulus.  The broadening of the range over which increasing input stimuli 

concentrations can control increasing fractions of activated cells can also be seen in the third 

histogram for high input stimuli: for both random variation and covariation, the high stimulus causes 

most cells to shift into the active state. However, twice as many cells still remain in the inactive state 

in the case of covariation compared to the random variation case. Together, this suggests that 

covariation broadens the window over which the fraction of activated cells in a cell population can be 

controlled by changes in input stimuli concentrations, which would be particularly important if 

organisms need to control the activation of small fractions of cells in a population such as to enable 

low rates of cell differentiation (Ahrends et al., 2014) or apoptosis (Spencer et al., 2009) in tissues. 

Finally, Figure 6C shows that cells in the population with high ERK activity have on average higher 

MEK and ERK levels compared to cells that have low ERK activity, arguing that the concentrations of 

MEK and ERK are limiting and thus matter in determining whether or not a cell will be activated.   

 In summary, these model calculations show that covariation of MEK and ERK expression can 

improve the population-level fractional control of ERK activation. For this model to apply to ERK 

activation in a particular cell type, a few conditions are critical: 1) The ERK signaling output should be 

bimodal or at least variable for intermediate stimuli in the same population. Variable outcomes for the 

same stimulus are needed if the goal of the signaling system is to control the fraction of cells in a 

population that is activated. 2) The expression of MEK and ERK should covary with each other in the 

particular cell system tested. Significant covariation is needed for it to contribute to broaden the input 

range over which cells can control the fraction of activated cells. 3) Finally, the structure of the ERK 

signaling model predicts that variation of expression levels of MEK and ERK proteins make a 

significant contribution to the variability of the ERK signaling output. To test whether this is indeed 
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correct, the expression of MEK and ERK should on average be higher in cells with high ERK signaling 

compared to cells with low ERK signaling when analyzed in the same population of cells for the same 

intermediate input stimulus.  

We tested whether these conditions are met in EGF-stimulated MCF10A cells. Specifically, we 

generated an MCF10A cell line expressing a FRET sensor of ERK activity to measure ERK activation 

in live cells (Albeck et al., 2013; Aoki et al., 2013). The FRET intensity of this sensor, EKAR-EV, was 

shown previously to faithfully report pERK levels in MCF10A cells (Yang et al., 2017). We used EGF 

to activate the pathway, and after 60 minutes, cells were fixed and stained with antibodies to measure 

the concentration of MEK and ERK, so that the pathway response could be related back to the relative 

level of the two proteins. An EGF titration was performed to test for bimodal ERK activation and to 

identify intermediate stimuli doses that induced heterogeneous responses (Figure 7A). We quantified 

the ERK activity in each timecourse by calculating integrated ERK activity as the area under the curve 

after EGF stimulation. As shown in Figure 7B, the integrated ERK activity values can be approximated 

as bimodal, allowing us to define cells as active or inactive using the indicated threshold (dotted vertical 

black line). From the histograms in Figure 7B, it is apparent that the fraction of activated cells in the 

cell population increases as the EGF concentration increases, and this relationship is more directly 

plotted in Figure 7C. Thus, in these human MCF10A cells, there is a wide range of input stimuli over 

which the fraction of the cell population that is activated can be controlled. 

The abundances of MEK and ERK in individual cells were measured at the end of the EGF 

timecourses by immunocytochemistry, and the values were normalized by an intracellular total protein 

stain following established protocols from (Kafri et al., 2013) in order to correct for cell volume and to 

obtain relative protein abundances. When we compared relative MEK and ERK abundances in cells 

with active or inactive ERK activity, we confirmed the prediction from Figure 6C that activated cells 

have on average higher MEK and ERK concentrations, and inactive cells have on average lower MEK 

and ERK concentrations (Figures 7D and 7E). Furthermore, we confirmed that MEK and ERK covary 

with each other in these cells (Figure 7F) with a correlation coefficient of 0.7. The covariation between 
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MCM5 and MCM7 and lack of covariation between MCM5 and GAPDH are shown as controls 

Together, these modeling and experimental results support each other and show that covariation in 

the relative abundance of components in a signaling pathway can broaden the signaling variation of 

cells in a cell population and thereby facilitate the regulation of the fraction of activated cells at the 

population level.  

 

Constraints on accurate control of analog and binary signaling by expression variation and 

covariation. 

We used our experimentally-measured low CV values for relative protein abundances and our finding 

that covariation regulates binary signaling outputs, to explore the respective ranges of variation and 

covariation where single-cell and population-level signaling can be effectively controlled. As depicted 

in Figure 8A, we employed a modification of the model from Figure 1A to directly compare analog and 

binary signaling outcomes by assuming that the same pathway drives in one case an analog single-

cell output (A*) and in the second case, binary cell activation if the output y5* reaches higher than a 

threshold of 10 (B*). We measure analog single-cell signaling accuracy by using fold-Input Detection 

Limits (fIDL), as defined in Figures 1C and 1D, and accurate controllability of population-level binary 

signaling by using Hill Coefficients (HC), as defined in Figure 5C. As discussed in Figure EV1, the fIDL 

parameter is a measure of analog signaling accuracy that is inversely related to mutual information 

but is less dependent on the dynamic range of the output, and the Hill coefficient is an inverse measure 

of the input range over which the population-level output can be controlled. The equations used to 

calculate the fold-Input Detection Limit and Hill Coefficient are shown on top of Figures 8B and 8c (see 

Methods for derivation).  

 As shown in Figures 8B and 8C, single-cell analog or population-level binary outputs can be 

optimally controlled if the fold-Input Detection Limit or Hill Coefficient, respectively, are small and close 

to 1. The conflicting constraint between the control of single-cell analog and population-level binary 

signaling by expression variation can be seen clearly by combining the two graphs in Figures 8B and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2018. ; https://doi.org/10.1101/244236doi: bioRxiv preprint 

https://doi.org/10.1101/244236


 17 

8C into a single competition curve (Figure 8D). Increasing the variation in the concentration of pathway 

components moves cells along this curve from optimal conditions for analog single-cell signaling (CV 

of 5%, right bottom) towards optimal conditions for control of binary population-level signaling (CV of 

40%, left top) with the curve staying far away from the origin at the left bottom where analog and binary 

signaling would both be accurate. Thus, the same signaling system with a CV of 5% that has optimal 

analog single-cell accuracy loses its ability to accurately control binary population-level outputs. 

Similarly, a system with a CV of 40% that is optimal for controlling binary population-level outputs loses 

its ability to accurately control analog single-cell signaling. Thus, cells cannot have a shared pathway 

that controls accurate analog single-cell signaling outputs and also accurately controls binary 

population-level signaling outputs.   

As shown in the Figures 8C and 8D, as well as in Figure 5B, a CV of 40% or greater would be 

optimal for controlling population-level signaling outputs. However, our study and previous work by 

others suggests that such high CVs of protein concentrations are not common (Gaudet et al., 2012; 

Sigal et al., 2006), indicating that cells must use other mechanisms to generate the necessary high 

signaling noise to accurately control the fraction of activated cells for population-level binary outputs. 

We considered that changes in the number of pathway components as well as the covariance of 

pathway components are strategies to alter the overall signaling output noise. We used the fIDL versus 

HC co-dependency curve to first determine how changes in pathway component numbers control 

analog or binary signaling (Figure 8E). While our analysis so far assumed 10 regulatory elements, 

fewer or higher numbers of signaling steps are common in signaling systems. Notably, changing the 

number of signaling steps improves one signaling mode at the cost of the other. Fewer signaling steps 

move the system towards improved analog single-cell signal transmission and more signaling steps 

towards improved control of population-level binary outputs. To illustrate the effect of increasing or 

decreasing signaling steps with examples: since many signaling systems are complex with likely 20 

or more regulators (Gaudet et al., 2012; Sturm et al., 2010), such complex systems must necessarily 

be mediating population-level signaling responses. In contrast, the visual signal transduction pathway 
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in retinal cone cells, which transduces light intensity inputs proportionally into electrical outputs, has 

only a few main regulatory components (Arshavsky et al., 2002) which benefits the control of analog 

single-cell signaling responses.  

Our modeling and experimental data in Figures 5-7 showed that a potent strategy to increase 

noise, without adding expression variation to individual components, is based on positive covariation 

between pathway components. Covariation can increase accurate binary signal transmission as we 

show in the case of the MEK-ERK signaling pathway. Indeed, Figure 8F shows that adding covariation 

moves cells away from a state where they can accurately perform analog single-cell signaling towards 

a state where they can accurately control the fraction of activated cells at the population-level. This 

suggests that covariation is a powerful strategy to improve the control of population-level binary cell 

functions without that the expression variation or number of pathway components themselves have to 

be increased. We also note that covariation can in some cases be used to improve rather than increase 

analog single-cell accuracy if directly opposing enzymes (e.g. a kinase and a phosphatase) covary 

with each other (Feinerman et al., 2008). Together, our analysis shows that cells have a versatile set 

of internal tools to control whether a signaling pathway can accurately control single-cell analog or 

population-level binary signaling by either changing the expression variation of individual components, 

the number of pathway components, or the covariation in expression between components. 

Furthermore, if pathways share components, these model calculations argue that analog signals have 

to minimize component numbers by branching out early in a pathway, while binary population-level 

signal responses would optimally go on for longer with pathway components covarying with each other 

(Figure 8G). 

 

Conclusions 

Our study employed sensitive single-cell mass spectrometry of Xenopus laevis eggs and 

normalized single-cell immunofluorescence analysis in cultured mammalian cells to reveal a low 

variation in relative protein abundances in the 5-15% range, suggesting that expression variation is 
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not prohibitively high for analog signal transmission in single cells as was often assumed in previous 

studies. Nevertheless, the relative abundance of components of signaling pathways still show 

significant variation, arguing that there is a lower biological limit for accurate analog single-cell signal 

transmission in cells. Our simulations in Figure 1A showed that low CV values of 5-10% can enable 

accurate analog signaling for input changes that are two-fold or greater. However, as shown in Figure 

5, these low CV values are too low for accurate control of population-level binary signaling systems, 

arguing that other mechanisms besides just relative protein abundance variation must exist to increase 

signaling output noise. Our modeling showed that covariance of signaling components is an effective 

mechanism to increase output noise and thereby control binary cell responses at the population-level. 

We were able to experimentally confirm such a beneficial role of covariation in our study of MEK-ERK 

signaling in Figures 6 and 7. Nevertheless, our analysis in Figure 1E showed that covariation also has 

an opposing effect by harming the accuracy of analog single-cell signaling. Given these opposing roles 

of expression variation and covariation, our study answers a fundamental question of how cells can 

adapt these two core sources of signaling noise to generate signaling systems that can accurately 

control single-cell analog or population-level binary signaling responses. Finally, we used model 

simulations that show a control principle whereby noise contributions from number of pathway 

components and covariation can shift signaling systems with the same expression variation of pathway 

components either towards accurate analog single-cell or binary population-level signaling. 
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MATERIALS AND METHODS 

Contact for Reagent and Resource Sharing 

All reagents including cell lines and antibodies are listed in Table EV5. Further information and 

requests for reagents may be directed to, and will be fulfilled by the corresponding author, Dr. Mary 

N. Teruel (mteruel@stanford.edu). 

 
 

Xenopus Laevis Egg Collection and Activation:  

Xenopus egg extracts were prepared based on modifications of a previous protocol (Tsai et al., 2014). 

All of the animal protocols used in this manuscript were approved by the Stanford University 

Administrative Panel on Laboratory Animal Care. To induce egg laying, female Xenopus laevis were 

injected with human chorionic gonadotropin injection the night before each experiment. To collect the 

eggs, the frogs were subjected to pelvic massage, and the eggs were collected in 1X Marc’s Modified 

Ringer’s (MMR) buffer (1M NaCl, 20mM KCl, 10mM MgCl2, 20mM CaCl2, 50mM HEPES, pH 7.8). To 

remove the jelly coat from the eggs, they were placed in a solution of 2% cysteine in 1X MMR buffer 

for 4 minutes and gently agitated, after which they were washed 4 times with 1X MMR buffer. To 

activate the cell cycle, eggs were placed in a solution of 0.5ug/mL of calcium ionophore A23187 

(Sigma) and 1X MMR buffer for 3 minutes, after which they were washed 4 times with 1X MMR buffer. 

Single eggs were collected at their respective time points and placed into 600uL tubes and snap frozen 

in liquid nitrogen before being stored at -80C. 

SRM Sample Prep 

Single eggs were lysed mechanically by pipetting the egg in 100uL of lysis buffer (100mM NaCl, 25mM 

Tris pH 8.2, Complete EDTA-free protease inhibitor cocktail (Sigma)). The lysate was then placed in 

a 400uL natural polyethylene microcentrifuge tube (E&K Scientific 485050) and spun at 15,000g in a 

right angle centrifuge (Beckman Microfuge E) at 4 degC for 5 minutes. The lipid layer was removed 

by using a razor blade to cut the tube off just beneath it, and the cytoplasmic fraction was pipetted into 

a 1.5mL protein LoBind tube (Fisher Scientific 13-698-794), being careful to leave the yolk behind. To 

precipitate the proteins from the cytoplasmic fraction, 1mL of ice cold acetone was added to each 

sample and placed at -20 degC overnight. 

To collect precipitated proteins, the samples were centrifuged at 18,000g for 20 minutes at 4 

degC. Acetone was decanted and the protein pellets were resolubilized in 25uL of 8M urea. To fully 

solubilize the protein pellet, the samples were placed in a shaker for 1 hour at room temperature. The 

samples were then diluted to 2M urea with 50mM ammonium bicarbonate to a 100ul volume, after 
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which protein concentration was measured in duplicate with a BCA assay by taking two 10ul aliquots 

of each sample. The proteins in the remaining 80ul of sample volume were reduced with 10mM TCEP 

and incubated for 30 minutes at 37degC, then alkylated with 15mM iodoacetamide and incubated in 

the dark at room temperature. Next the samples were diluted to 1M urea with 50mM ammonium 

bicarbonate, and heavy peptides (JPT SpikeTides) were added based on BCA assay results. Trypsin 

(Promega V5113) was then added at a ratio of 10ng trypsin per 1ug protein (no less than 500ng was 

added to a sample). The trypsin digestion was carried out at 37degC for 12-16 hours. 

 To stop the trypsin, formic acid (Fisher A117-50) was added at a ratio of 3uL per 100uL of 

sample to bring the pH down to less than 3. Peptides were cleaned up using an Oasis HLB uElution 

plate (Waters), equilibrated and washed with 0.04% trifluoroacetic acid in water, and eluted in 80% 

acetonitrile with 0.2% formic acid. All solutions used are HPLC grade. Samples were then lyophilized. 

 To remove any variance produced by phosphorylated peptides, the samples were 

phosphatase treated. Peptides were resolubilized in 50uL of 1X NEBuffer 3 (no BSA), and calf 

intestinal alkaline phosphatase (NEB M0290S) was added at a ratio 0.25 units per ug of peptide and 

incubated for 1 hour at 37degC. The peptides were cleaned up again according to steps described 

above. Peptides were resolubilized in 2% acetonitrile and 0.1% formic acid before SRM analysis. 

 

SRM Data Acquisition 

As detailed in previous publications (Abell et al., 2011; Ahrends et al., 2014), 2μg of peptides were 

separated on an EASY-nLC Nano-HPLC system (Proxeon, Odense, Denmark) with a 200 mm × 0.075 

mm diameter reverse-phase C18 capillary column (Maisch C18, 3 μm, 120 Å) and were subjected to 

a linear gradient from 8 to 40% acetonitrile over 70 min at a flow rate of 300 nl/min. Peptides were 

introduced into a TSQ Vantage triple quadrupole mass spectrometer (Thermo Fisher Scientific, 

Bremen, Germany) via a Proxeon nanospray ionization source. The transitions for the light 

(endogeneous) and heavy (SpikeTide) peptides were measured using scheduled SRM-MS and 

analyzed using Skyline version 3.5 (MacCoss Lab, University of Washington). Relative peptide 

quantifications were determined by ratioing the peak area sums of the transitions of the corresponding 

light and heavy peptides. Only transitions common between the heavy and light peptides with relative 

areas that were consistent across all samples were included in the quantification. Lists of transitions 

used for the 25-egg measurements in Figures 1F, 2A, and 2D and for the 120-egg measurements in 

Figures 2B and 3A are given in Tables EV3 and EV4, respectively. 

 

SRM Data Statistical Analysis: 

To minimize sample processing differences, a maximum of 30 single eggs were prepped and analyzed 
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at the same time by SRM mass spectrometry. While we normalized the amount of heavy reference 

peptides added to each egg extract to the measured single egg protein concentration, this leaves still 

a small measurement error between individual eggs. This is likely both a result of small errors in the 

measurement of protein concentration and small volume pipetting errors, causing small under- or 

overestimation of relative protein abundances in a sample. This small calibration error was in previous 

protocols corrected using a normalization factor measured as a median of a set of anchor protein 

peptides (Abell et al., 2011; Feng and Picotti, 2016; Ludwig et al., 2012). Here we used the median of 

22 normalized peptide intensities that minimally change during the cell cycle to derive a concentration 

correction factor for each egg (this factor was typically between 0.9 and 1.1). The lack of change in 

expression of these proteins during the cell cycle can be seen in Figure 1D. The correction we used 

makes the assumption that the 22 peptides are not overall co-regulated in the same direction, an 

assumption that is supported by both our SRM-MS and immunohistochemistry experiments (Figure 

4). Specifically, we measured for a set of analyzed single eggs (e.g. 25 eggs in Figure 2A) the medians 

of the relative abundances for each of the 22 peptides across all eggs. To obtain a correction factor 

for each egg, we first normalized each peptide by the median of that particular peptide across all 

samples of interest (for example, for the 25-egg analysis show in Figure 1D, each peptide value was 

first divided by the median of that peptide across all 25 samples).  Then we calculated the median of 

the 22 normalized peptide values for each egg. The resulting correction factor value was typically in 

the range of 0.9 to 1.1, and we divided all 26 relative protein abundances from that egg by this factor. 

The variation and co-variation values shown in this paper use these corrected relative abundances.  

 

Cell culture 

MCF10A cells (ATCC, CRL-10317) were cultured in a growth media consisting of DMEM/F12 

(Invitrogen) supplemented with 5% horse serum, 20 µg/ml EGF, 10 µg/ml insulin, 0.5 µg/ml 

hydrocortisone, 100 ng/ml cholera toxin, 50 U/ml penicillin, and 50 µg/ml streptomycin. HeLa cells 

were cultured in DMEM (Invitrogen) plus 10% fetal bovine serum (FBS) and penicillin-streptomycin- 

glutamine (PSG).  

 

EKAR-EV-NLS stable cell line 

pPBbsr2-EKAR-EV-NLS was described previously (Komatsu et al., 2011). To generate stable cell 

lines, the construct was co-transfected with the piggybac transposase vector using polyethylenimine 

(Yusa et al., 2009). Cells with stable integration of the vector were selected for using 10ug/ml 

blasticidin (Invivogen). 
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Immunofluorescence 

Cells were fixed by adding paraformaldehyde to the cell media for 15 minutes (final concentration of 

paraformaldehyde in media was 4%). Cells were then washed three times in PBS before they were 

permeabilized by adding 0.2% triton X-100 for 20 minutes at 4 degC before being washed again with 

PBS. To remove cell size effects, cells were then stained with Alexa 647 NHS Ester as a marker of 

total protein mass and surrogate for cell volume/thickness following protocols described in (Kafri et al., 

2013). The Alexa 647 NHS Ester was added at a concentration of 0.04 ug/mL in PBS for 1 hour. After 

washing again in PBS, a blocking buffer consisting of 10% FBS, 1% BSA, 0.1% triton X-100, and 

0.01%NaN3 in PBS was added, and the cells were incubated for 1 hour at room temperature. Then 

primary antibodies were added overnight at 4 degC, followed by incubation with secondary antibodies 

for 1 hour at room temperature. To obtain particular protein concentrations for each cell, the mean 

total cell intensities of the respective antibodies were ratioed over the mean total cell intensity of the 

Alexa 647 NHS Ester. 

 

siRNA transfection 

siRNAs were used at a final concentration of 20nM and are listed in the Key Resources Table (Table 

EV5). MCF10A and Hela cells were reverse-transfected with siRNA using Lipofectamine RNAiMax 

according to the manufacturer’s instructions. The cells were fixed 48 hours after reverse transfection 

with siRNA. 

 

Image Acquisition 

For both fixed and live-cell imaging, cells were plated in 96-well, optically clear, polystyrene plates 

(Costar #3904). Approximately 10,000 HeLa cells or 5000 MCF10A cells were plated per well. For 

MCF10A cells, the wells were first coated with collagen (Advanced BioMatrix Cat #5005, PureCol Type 

I Bovine Collagen Solution) by placing fifty ul of collagen dissolved at a ratio of 1:100 in PBS in each 

well, incubating for 2-3h at room temperature, and then rinsing 3 times with PBS. MCF10A cells were 

then plated into the wells in MCF10A growth media. For assays to determine EGF responses, the 

media was aspirated from the cells 24 hours after plating and replaced with serum starvation media 

for 60 hours (DMEM/F12, 0.3% BSA, 0.5ng/mL hydrocortisone, 100ng/ml cholera toxin, PSG). For 

imaging, the cells were placed into an extracellular buffer consisting of 50mM KCl, 1.25M NaCl, 

200mM Hepes, 15 mM MgCl2, 15 mM CaCl2 and 10 mM glucose. Time-lapse imaging was performed 

initially in 75 ul of extracellular buffer per well to which an additional 75ul of extracellular buffer 

containing 2X EGF doses was added to stimulate the cells.  
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Cells were imaged in a humidified 37degC chamber at 5% CO2. Images were taken every 2 

min in the CFP and YFP channels using a fully automated widefield fluorescence microscope system 

(Intelligent Imaging Innovations, 3i), built around a Nikon Ti-E stand, equipped with Nikon 20x/0.75 

N.A. objective, an epifluorescence light source (Xcite Exacte), and an sCMOS cameras (Hammatsu 

Flash 4), enclosed by an environmental chamber (Haison), and controlled by SlideBook software (3i). 

Five non-overlapping images were taken per well. 

 

Image Processing and Analysis 

Segmentation and Tracking 

Cell segmentation and tracking were performed using the “MACKtrack” package for MATLAB available 

at http://github.com/brookstaylorjr/MACKtrack, and described in (Selimkhanov et al., 2014). In place 

of the first-step cellular identification using differential-interference-microscopy, the first pass whole-

cell segmentation was performed here by thresholding the total protein stain image.  

 

Signal Measurement 

Four channel fluorescent images were taken with a 10x objective on a MicroXL microscope, and image 

analysis was performed using Matlab analysis. Background subtraction was used in the Hoechst (to 

stain DNA and mask the nucleus), the two immunofluorescence, and the protein mass fluorescent 

channels. Signal intensities were corrected for non-uniformity but were still restricted to a central 

R=350 region of 2x2 binned images (1080x1080 pixels) of the image to minimize potential spatial non-

uniformities in illumination and light collection towards the corners. The Hoechst stain was used to 

establish a nuclear mask and to select cells in the 2N G0/G1 state based on the integrated DNA stain. 

The Hoescht intensity levels used to define cells in the 2N state were selected by inspection of the 

Hoescht histograms. The live-cell FRET measurements of nuclear ERK activity were performed on a 

Nikon Ti2 controlled by 3i software (Intelligent Imaging, Denver, CO). The mean nuclear intensities of 

the FRET and CFP channels were ratioed for each cell to obtain the normalized FRET value at each 

timepoint. At the end of the timecourses, the cells were fixed and stained with either an ERK or MEK 

antibody, as well an Alexa 647 NHS Ester as an estimate of cell volume. To obtain ERK and MEK 

concentrations for each cell, the mean total cell intensities of the ERK and MEK antibodies were 

ratioed over the mean total cell intensity of the Alexa 647 NHS Ester. The final ERK and MEK 

concentrations for each cell were then matched to the corresponding FRET timecourse for that 

particular cell. 
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Description of simulations of the multistep signaling pathway in Figures 1, 5, and 8. 

We used Matlab simulations of analog and binary signal transmission to help explain the consequence 

of expression variation in the concentration of pathway components and covariation between the 

components. We used a 5-step linear signaling pathway with a single input and output as an example 

of a typical vertebrate signaling pathway (see below for precise assumptions and calculation). The 

model was not saturated and uses a single fold-input R to increase pathway activation linearly above 

the basal activity level. The last regulated signaling step y5 is shown as the analog output A* in Figure 

1. We simulated protein expression variation of each of the 10 signaling pathway components using 

lognormal Monte Carlo noise simulations (we multiplied each of the 10 system parameters by 

randomly variable factors centered on 1). We followed the system over time using the ODE45 function 

until it reached equilibrium at t=15. 

We simulated binary pathways in Figure 5 by adding to the model an assumption that cells 

trigger a binary switch when the exceed a threshold level of 10 in the output y5*. Instead of plotting 

the distribution of the output level y5*, we plotted the fraction of cells that had an output level greater 

than 10 (fraction of cells in the active B* state). We used increasing fold-stimuli strength R and 

analyzed in the simulations the increasing fraction of cells that triggers the switch (plotted in the panels 

as a fraction of cells in a population activated versus strength of input stimulus R).  

We also compared uncorrelated variation versus correlated variation (covariation) between 

signaling components in the pathway. In Figure 1E, we made the assumption that the 5 positive 

elements and the 5 negative elements in the model (possibly reflecting protein kinases versus protein 

phosphatases) each have a correlated variation. We compare this to the case were all variations are 

independent of each other as we also do in all other Figure panels. This correlated variation leads to 

an increase of the overall variation of the signaling response of a cell.  

 

Linear model: 

The 10 lognormal stochastic values of a factorial parameter e(1-10) are calculated for each of typically 

5000 runs to generate the plots, e(i:10)=(exp(randn(10,1), Var) in Matlab. Var is the %variation 

parameter that changes in different panels in the plots. Calculating a coefficient of variation (CV) of 

the resulting random parameter distribution returns the value Var. 

A* corresponds to y5* and denote the final output signal. For each step, we assumed that the active 

y* states are generated from a relatively larger constant pool of precursors y1, y2, y3, y4 and y5 (the 

model is not saturated). 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2018. ; https://doi.org/10.1101/244236doi: bioRxiv preprint 

https://doi.org/10.1101/244236


 26 

dydt(1)=R*e(1)-e(2)*y(1);  Receptor Input R acts on intermediate signal y(1) 

dydt(2)=e(3)*y(1)-e(4)*y(2);  Each signaling step acts linearly on next intermediate step 

dydt(3)=e(5)*y(2)-e(6)*y(3);  

dydt(4)=e(7)*y(3)-e(8)*y(4); 

dydt(5)=e(9)*y(4)-e(10)*y(5);  y(5) is plotted in the model simulations as the E* Output function  

 

The calculations of fIDL and aHC were done analytically using the inverse normal distribution function 

to determine the fraction of cells in a population that extend past a given limit. In the case of the analog 

fold-Input Detection Limit, the value is half of the final signal output amplitude since both the 

unstimulated and stimulated distributions are symmetrical when they are plotted as a log scaled 

distribution see Figure 1C (black and green distributions). When assuming 95% accuracy for 

distinguishing stimulated and unstimulated cells from the output signal, this results in a fold-Input 

Detection Limit of:   

fIDL = exp(CV* sqrt(N)*norminv(0.95)*2).  

If the system has co-variation in components of the pathway, error propagation leads to a term sqrt(N-

Ncov + Ncov^2) instead of sqrt(N), with Ncov being the number of co-varying components and N being 

the number of total components. 

 

Figure EV1 compares fIDL values to the log2 Mutual Information content of the same system (bits), 

adding different levels of saturation to the last term of the equation (as an example, we used instead 

of y(4) the term 10*y(4)/(y(4)+9) for the system that imposes a saturation of a factor of 10 to the output 

signal). For the mutual information calculations, 10,000 simulations were made with R values spread 

out using a random number generator in log2 units. Output A* (log2 units) were simulated and the MI 

was derived from R and A* by using log2 in the MI equation and by using binning of 0.05 for R and A*.  

 

A similar analysis can also be made to determine a Hill coefficient that fits the fraction of activated 

cells plotted as a function of the fold-input stimulus in Figure 5.  The Hill coefficient for a given binary 

threshold Thr, can be derived from aHC=log(Thr)/log(R0), with R0 derived from the equation 

R0=exp(CV*sqrt(N)*norminv(Thr/(Thr+1)). This results in an: 

HC = log(Thr)/(norminv(Thr/(Thr+1))*CV*sqrt(N)) 

For broad ranges of chosen Threshold values Thr for the binary switch, this equation is independent 

of the actual Threshold value used as long as it is significantly larger than the output distribution width 

for unstimulated cells. 
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In Figures 8B-F, we are combining these two curves by multiplying the logarithm of fIDL with HC to 

show they co-dependency: 

log(fIDL)*HC = log(Thr)/norminv(Thr/(1+Thr))*norminv(0.95) ~ 6.3 

 

Description of ERK-MEK model in Figure 6 

For numerical simulations, we used the ODE model of the ERK signaling network from (Sturm et al., 

2010) with negative feedback intact. The model incorporates dynamics from RasGTP through Raf and 

MEK down to ERK phosphorylation. We used the input concentration of RasGTP as a proxy for 

extracellular EGF. The output was defined as doubly-phosphorylated ERK (pERK), which serves as a 

proxy for ERK activity, as ERK activity is a monotonically increasing function with respect to pERK. All 

model and simulation files can be found at http://github.com/TeruelLab/ERKmodel_v1.0. 
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FIGURE LEGENDS 
 
Figure 1. Computational simulations using reported levels of expression variation show a 
dramatic loss of analog single-cell transmission accuracy. 
(A) Schematic of a 5-step analog signaling pathway where the asterix(*) represents the activated form 
which is assumed in this model to be a small fraction of the total. 
(B) The timecourse plots show how relative 3- (red) and 9- (blue) fold input changes in R result in 
analog output responses with different degrees of noise. Random log-normal expression variation was 
added simultaneously to each pathway component. The accuracy of analog signal transmission is 
dramatically reduced as the coefficient of variations (CVs) increase from 5% (top),10% (middle), to 
25% (bottom).  
(C) Top, Example of distributions of unstimulated (red) and stimulated (blue) cells at the fold-Input 
Detection Limit (fIDL). The fIDL represents the minimal stimulus needed to distinguish the output from 
stimulated from unstimulated cells with 95% accuracy, as marked by the vertical black dashed line. 
For the system in (A) with a 10% CV in each pathway component, the fIDL is 2.83.  
(D) Barplot comparing the fIDL values for the system in (A) with CVs of 5, 10 and 25%.  
(E) Simulation of the pathway model in (A) but now comparing the situation in which the pathway 
components are all uncorrelated with each other (top) with the situation in which the activating pathway 
components covary with each other and the de-activating pathway components covary with each other 
(bottom). The simulations in the right panel show that covariance of components of the same pathway 
would introduce a marked loss in signal transmission accuracy. 
 
Figure 2. Development of a method to quantitatively measure relative abundances of tens of 
endogenous proteins in parallel in single Xenopus eggs. 
(A) Comparison of protein abundance of a set of cell cycle, signaling and control proteins in Xenopus 
eggs. Abundance measurements are based on SRM-MS mass spectrometry measurements of the 
combined cell extracts from 10 eggs per timepoint.  Quantitation of relative protein abundance was 
carried out by adding heavy isotope-labelled reference peptides to the egg extracts.  
(B) Time course analysis of changes in Cyclin A and Cyclin B levels during the first Xenopus cell cycle. 
(C)  5 individual eggs were collected at 5 timepoints: 0, 20, 40, 60 and 80 minutes after the addition of 
calcium ionophore. To minimize variability due to sample handling and instrument sources, the 25 
individual eggs were prepared for mass spectrometry analysis at the same time and were then 
analyzed in sequential runs on the same mass spectrometer. Barplot shows relative abundance 
changes of the 26 proteins shown in (A) tracked through the first egg cell cycle. 
 
 
Figure 3. Single cell variation in relative protein abundance is typically 5-10% in Xenopus eggs. 
(A) Variation analysis of the relative abundance data from Figure 2C. Each blue point represents the 
coefficient of variation (CV) of the relative abundance of a protein between 5 individual eggs in a batch 
collected at the same time point. Red boxes mark the mean CV of 5 batches collected either at 0, 20, 
40, 60 minutes after cell-cycle activation. (Right) A histogram of the measured CVs for all 26 proteins 
at 5 timepoints shows that CVs typically range from 5-10% with a mean CV of 7%. 
(B) Variation analysis of a second independent set of 120 eggs. 60 individual eggs were collected at 
60 (blue) and at 80 (red) minutes after the addition of calcium ionophore. The 60 eggs at each time 
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point were divided into 6 batches of 10 eggs analyzed sequentially on the mass spectrometer to 
minimize technical variation. The CV of the relative abundance of each protein between 10 individual 
eggs in a batch was calculated and plotted as filled blue and red ovals. The black boxes mark the 25th 
to 75th percentile of the 6 batch measurements for each protein at either the 60 or 80 minute timepoint. 
(Right) A histogram of the 12 CV measurements (6 CVs at 2 timepoints) for the 26 measured proteins 
shows the mean CV is 9%. 
(C) Control scatter plot of the CVs of the 26 measured proteins shows that measured protein 
expression variation is similar between  2 independent experiments, the 25-egg experiment shown in 
(A) and the 60-egg, 60-min experiment shown in (B). Red circles indicate proteins that have both high 
CV and change their abundance during the cell cycle.  
(D) CVs for a set of human homologs in HeLa cells. Immunocytochemistry was performed on cells 
plated in 96-well wells (representative images are shown in EV Figure 3). Each blue dot represents 
the CV calculated from the ~5000 cells in the respective well. Each barplot shows the mean CV of 3-
12 wells. Error bars show standard deviation of the wells for that condition. Data shown is 
representative of 3 independent experiments.  
 
Figure 4. MEK and ERK expression covary in Xenopus eggs and cultured human cells. 
(A) Heatmap of Pearson correlation values between the respective proteins in Xenopus eggs. Twenty-
six relative protein abundances were correlated pairwise in 120 single eggs. Only correlations with a 
p-value smaller than 0.05 are shown. P-values were validated by multiple comparison testing using 
Bonferoni corrections (Table EV2). 
(B) Two examples of pairwise correlations are shown between MCM5 and MCF7 and between MEK 
and ERK in Xenopus eggs. 
(C) Pairwise correlation analysis in HeLa cells, using MCM5 vs MCM7 as a positive control and MCM5 
vs GAPDH as an uncorrelated control. Correlations between MEK and ERK concentrations are shown. 
Each scatter plot shows values from ~15000 cells. The bar graphs on the right shows correlation 
coefficients for 3 separate wells, containing ~5000 cells each, for the same 3 correlation pairs. 
 
Figure 5. Using a general 5-step model to understand the effect of variation and co-variation 
on controlling the fraction of cells in the population that respond to input stimulus. 
(A) A binary output step was added to the model from Figure 1A. A threshold of 10 was used in each 
simulation to determine whether a cell was activated or not (y5*>10). 
(B) Plot of how increasing the CVs in expression of the pathway components in this binary model from 
0% to 60% increases the range over which changes in the input stimuli can change the fraction of cells 
in the population which trigger the binary switch and become activated.  
(C) Hill coefficients (HC) were fit to the data in (B) to quantify the steepness in the curves. The 
steepness is an inverse measure of how wide the input range is that controls the output. 
(D) Same plot as in (B) but now comparing the output of the binary model if the pathway components 
vary randomly or covary with each other. The population response when uncorrelated CVs of 10% 
were applied to the pathway components is shown in blue. The magenta curve shows the population 
response when covariation was added to the model. To obtain a maximal effect, the CVs of 10% were 
applied to all positive and all negative regulators, respectively, such that the positive regulators 
covaried together and the negative regulators covaried together.  
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Figure 6. Simulations using an established MEK-ERK signaling model show that covariation 
between MEK and ERK expression widens the window over which input stimuli can control the 
fraction of cells that are activated in the population. 
(A) Timecourse output from an established MEK-ERK model (Sturm et al, 2012) in response to high, 
medium, and low concentrations of input (RasGTP) stimulus. Random lognormal noise with 15% CV 
was applied to MEK and ERK and with 10% CV to all other protein variables. 
(B) Comparison of the effect of covarying MEK and ERK concentrations. The orange curve and 
histograms show the results of simulations in which random lognormal noise with 15% CV was applied 
independently to the MEK and ERK concentrations. The blue curve and histograms shown the results 
of simulations in which MEK and ERK concentrations were made to covary by applying the same 15% 
CV lognormal noise term to both MEK and ERK in each cell/simulation. The bottom panels show 
examples of the distributions of outputs for three input stimuli. The dashed black line shows the 
threshold used to distinguish active from inactive cells. The shallower slope of the blue curve show 
that the fraction of activated cells can be regulated over a wider range of input stimuli if there is 
covariance between MEK and ERK. 
(C) Scatter plot of cells colored by whether they had high (magenta) or low (green) ERK activity at the 
end of the timecourse. Cells shown were stimulated with input doses between 2^10.5 to 2^12, a range 
which results in both active and inactive cells in the population as shown in (B). 
 
Figure 7. Single cell imaging experiments also show that covariation between MEK and ERK 
expression facilitates control of bimodal ERK activation. 
(A) MCF10A cells stably expressing the EKAR-EV FRET sensor were activated with varying levels of 
EGF after being serum starved for at least 48 hours. Cells were imaged every 2 minutes throughout 
the time course. The plots at EGF doses of 0, 62.5, 125, 250, and 500 pg/mL show timecourses from 
approximately 800, 520, 1200, 1000, and 900 individual cells, respectively. 
(B) Histograms showing the integrated ERK activity of individual cells from the experiment shown in 
(A). Integrated ERK activity was calculated for each timecourse as the area under the curve after the 
addition of EGF. The dashed line shows the threshold used to distinguish cells with active versus 
inactive ERK.  
(C) Plot showing fraction of activated cells (cells to the right of the threshold plotted in (B)) in response 
to different EGF concentrations.  
(D) Box and whisker plot of MEK concentration in cells with high (top 15%, magenta) or low (bottom 
15%, green) integrated ERK activity. The high and low conditions represent 162 and 161 cells 
respectively, out of a total of 1073 cells.  
(E) Box and whisker plot of ERK concentration in cells with high (top 15%, magenta) or low (bottom 
15%, green) integrated ERK activity. The high and low conditions represent 198 and 197 cells 
respectively, out of a total of 1316 cells.  
(D, E) The box plots show the distributions of protein concentrations in single cells with high versus 
low integrated ERK activity, where the bold line in the center of the notch represents the median, the 
ends of the notched box represent the first and third quartiles, the length of the upper whisker shows 
the largest point no more than 1.5 times the inter-quartile range (IQR or length of the box), the lower 
whisker represents the smallest point no more than 1.5 times the inter-quartile range, and the notches 
represent 1.58 * IQR / sqrt(n), which approximates the 95% confidence interval of the median. The 
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non-overlapping notches between the high and low populations, as well as the low p-values, indicate 
that the differences between the two populations are significant. 
(F) Pairwise correlation analysis in MCF10A cells, using MCM5 vs MCM7 as a positive control and 
MCM5 vs GAPDH as an uncorrelated control. Correlations between MEK and ERK concentrations are 
shown. Each scatter plot shows values from ~15000 cells. The bar graphs on the right shows 
correlation coefficients for 3 separate wells, containing ~5000 cells each, for the same 3 correlation 
pairs. 
 
Figure 8. Competing demands on variation and covariation in the control of analog single-cell 
versus binary population-level signaling outputs. 
(A) Schematic of a signaling pathway that splits into an analog or binary output. 
(B-D) Quantification of the competing constraints on expression variation for accurate control of single-
cell analog versus population-level binary signaling outputs. Plots showing the development of a metric 
that quantitatively relates expression variation, analog single-cell signaling accuracy, and binary 
signaling accuracy. (B) Relationship between expression variation and fIDL, highlighting the 
physiological range of 5, 10, and 20% expression variation.  (C) Same for expression variation versus 
HC, also including 40% expression variation which is required for accurate control of population-level 
binary outputs. (D) Integration of both relationships into a single co-dependency curve relating optimal 
analog single-cell and binary population-level signaling. Terms in equations: CV: expression variation; 
N: Total number of pathway components; Ncov: Number of covariant pathway components; a = 3.29; 
b = 1.72; g = 6.29. 
(E) Increasing or decreasing the number of regulators in a pathway increases or decreases the overall 
noise in the pathway, respectively, and thus can be used as a way to more accurately control either 
binary population-level or analog single-cell functions, respectively.  
(F) Covariation between pathway components such as MEK and ERK is an effective means to 
increases overall noise in the pathway and thereby improve the controllability of binary population-
level signaling responses while reducing single-cell analog signaling accuracy. A system with 
covariation can accurately control binary population level signaling without a need for 40% expression 
variation which is likely not common. 
(G) The analysis of (B)-(F) suggests that the same pathway components can only be shared between 
analog and binary signaling systems if the analog pathway branches off early after receptor 
stimulation. Covariance in a branch of a signaling pathway is an indication that the output is regulated 
by a binary output at the population-level. 
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LEGENDS FOR EXTENDED VIEW FIGURES 
 
Figure EV1.  Comparison of fIDL and Mutual Information (MI) analysis. MI analysis requires a 
fold-output range which we added to the model in Figure 1A by using a saturation term for y4 (see 
Methods). As shown for Expression Variations of 5 and 10 %, in contrast to MI analysis (top), fIDL 
analysis (bottom) is largely independent of the fold-output range. 
 
Figure EV2.  Bootstrap analysis of CVs of the relative abundance of 26 proteins using a 60-egg 
set collected at 60 minutes after egg activation. Bootstrapping of random samples was performed 
2000 times with replacement. We used the bootstrap analysis to determine CVs for the entire 60-egg 
data set (blue circles) or on 6 batches of 10 eggs that were sequentially analyzed on the mass 
spectrometer (red circles). The lower CVs for batches of sequentially analyzed cells (median CV of 
9% for the 26 proteins) argues that accurate concentration comparison using SRM analysis is optimally 
performed in batches of samples analyzed sequentially. 
 
Figure EV3. Comparison of technical and biological variation in the SRM mass spectrometry 
measurements. To measure technical variability, 30 individual eggs were lysed and mixed together 
to collapse any biological variability. The lysate mixture was then pipetted into 30 individual tubes and 
processed individually before SRM analysis to quantify sample handling variation. CVs were 
compared to CVs measured in Figure 3B. 
 
Figure EV4. Representative images of immunostaining of the proteins studied.  
(A) Images from HeLa cells. 
(B) Images from MCF10A cells. 
 
Figure EV5. siRNA-mediated depletion experiments to validate specificity of the respective 
antibodies and to test for co-regulation of protein expression of (A) MCM5/MC7M7 and (B) 
MEK/ERK. HeLa cells were transfected with the respective siRNA. Forty-eight hours later, the cells 
were fixed, stained, and imaged to quantify expression of the respective proteins. Approximately 1000 
cells were quantified in each histogram and barplot. Error bars show s.e.m. Results shown are 
representative of 3 independent experiments.   
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Figure 1. Computational simulations using reported levels of expression variation show a dramatic loss of analog single-cell 
transmission accuracy.
(A) Schematic of a 5-step analog signaling pathway where the asterix(*) represents the activated form which is assumed in this model to 
be a small fraction of the total.
(B) The timecourse plots show how relative 3- (red) and 9- (blue) fold input changes in R result in analog output responses with different
degrees of noise. Random log-normal expression variation was added simultaneously to each pathway component. The accuracy of 
analog signal transmission is dramatically reduced as the coefficient of variations (CVs) increase from 5% (top),10% (middle), to 25% (bottom). 
(C) Top, Example of distributions of unstimulated (red) and stimulated (blue) cells at the fold-Input Detection Limit (fIDL). The fIDL represents 
the minimal stimulus needed to distinguish the output from stimulated from unstimulated cells with 95% accuracy, as marked by the vertical 
black dashed line. For the system in (A) with a 10% CV in each pathway component, the fIDL is 2.83. 
(D) Barplot comparing the fIDL values for the system in (A) with CVs of 5, 10 and 25%. 
(E) Simulation of the pathway model in (A) but now comparing the situation in which the pathway components are all uncorrelated with 
each other (top) with the situation in which the activating pathway components covary with each other and the de-activating pathway 
components covary with each other (bottom). The simulations in the right panel show that covariance of components of the same 
pathway would introduce a marked loss in signal transmission accuracy.
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Figure 2. Development of a method to quantitatively measure relative abundances of tens of endogenous proteins in parallel 
in single Xenopus eggs.
(A) Comparison of protein abundance of a set of cell cycle, signaling and control proteins in Xenopus eggs. Abundance measurements are 
based on SRM-MS mass spectrometry measurements of the combined cell extracts from 10 eggs per timepoint.  Quantitation of relative
protein abundance was carried out by adding heavy isotope-labelled reference peptides to the egg extracts. 
(B) Time course analysis of changes in Cyclin A and Cyclin B levels during the first Xenopus cell cycle.
(C)  5 individual eggs were collected at 5 timepoints: 0, 20, 40, 60 and 80 minutes after the addition of calcium ionophore. To minimize 
variability due to sample handling and instrument sources, the 25 individual eggs were prepared for mass spectrometry analysis at the 
same time and were then analyzed in sequential runs on the same mass spectrometer. Barplot shows relative abundance changes of the 
26 proteins shown in (A) tracked through the first egg cell cycle.
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A

B

Figure 3. Single cell variation in relative protein abundance is typically 5-10% in Xenopus eggs.
(A) Variation analysis of the relative abundance data from Figure 2C. Each blue point represents the coefficient of variation (CV) of the 
relative abundance of a protein between 5 individual eggs in a batch collected at the same time point. Red boxes mark the mean CV of 
5 batches collected either at 0, 20, 40, 60 minutes after cell-cycle activation. (Right) A histogram of the measured CVs for all 26 proteins 
at 5 timepoints shows that CVs typically range from 5-10% with a mean CV of 7%.
(B) Variation analysis of a second independent set of 120 eggs. 60 individual eggs were collected at 60 (blue) and at 80 (red) minutes 
after the addition of calcium ionophore. The 60 eggs at each time point were divided into 6 batches of 10 eggs analyzed sequentially on 
the mass spectrometer to minimize technical variation. The CV of the relative abundance of each protein between 10 individual eggs in 
a batch was calculated and plotted as filled blue and red ovals. The black boxes mark the 25th to 75th percentile of the 6 batch 
measurements for each protein at either the 60 or 80 minute timepoint. (Right) A histogram of the 12 CV measurements (6 CVs at 2 
timepoints) for the 26 measured proteins shows the mean CV is 9%.
(C) Control scatter plot of the CVs of the 26 measured proteins shows that measured protein expression variation is similar between  2 
independent experiments, the 25-egg experiment shown in (A) and the 60-egg, 60-min experiment shown in (B). Red circles indicate 
proteins that have both high CV and change their abundance during the cell cycle. 
(D) CVs for a set of human homologs in HeLa cells. Immunocytochemistry was performed on cells plated in 96-well wells (representative 
images are shown in EV Figure 3). Each blue dot represents the CV calculated from the ~5000 cells in the respective well. Each barplot 
shows the mean CV of 3-12 wells. Error bars show standard deviation of the wells for that condition. Data shown is representative of 3 
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Figure 4. MEK and ERK expression covary in Xenopus eggs and cultured human cells.
(A) Heatmap of Pearson correlation values between the respective proteins in Xenopus eggs. Twenty-six relative protein abundances were 
correlated pairwise in 120 single eggs. Only correlations with a p-value smaller than 0.05 are shown. P-values were validated by multiple 
comparison testing using Bonferoni corrections (Table EV2).
(B) Two examples of pairwise correlations are shown between MCM5 and MCF7 and between MEK and ERK in Xenopus eggs.
(C) Pairwise correlation analysis in HeLa cells, using MCM5 vs MCM7 as a positive control and MCM5 vs GAPDH as an uncorrelated control. 
Correlations between MEK and ERK concentrations are shown. Each scatter plot shows values from ~15000 cells. The bar graphs on the 
right shows correlation coefficients for 3 separate wells, containing ~5000 cells each, for the same 3 correlation pairs.
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Figure 5. Using a general 5-step model to understand the effect of variation and co-variation on controlling the fraction of cells 
in the population that respond to input stimulus.
(A) A binary output step was added to the model from Figure 1A. A threshold of 10 was used in each simulation to determine whether a 
cell was activated or not (y5*>10).
(B) Plot of how increasing the CVs in expression of the pathway components in this binary model from 0% to 60% increases the range 
over which changes in the input stimuli can change the fraction of cells in the population which trigger the binary switch and become 
activated. 
(C) Hill coefficients (HC) were fit to the data in (B) to quantify the steepness in the curves. The steepness is an inverse measure of how
wide the input range is that controls the output.
(D) Same plot as in (B) but now comparing the output of the binary model if the pathway components vary randomly or covary with each 
other. The The population response when uncorrelated CVs of 10% are applied to the pathway components is shown in blue. The magenta 
curve shows the population response when covariation was added to the model. To obtain a maximal effect, the CVs of 10% were applied 
to all positive and all negative regulators, respectively, such that the positive regulators covaried together and the negative regulators 
covaried together. 
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Figure 6. Simulations using an established MEK-ERK signaling model show that covariation between MEK and ERK expression
widens the window over which input stimuli can control the fraction of cells that are activated in the population.
(A) Timecourse output from an established MEK-ERK model (Sturm et al, 2012) in response to high, medium, and low concentrations of 
input (RasGTP) stimulus. Random lognormal noise with 15% CV was applied to MEK and ERK and with 10% CV to all other protein 
variables.
(B) Comparison of the effect of covarying MEK and ERK concentrations. The orange curve and histograms show the results of simulations
in which random lognormal noise with 15% CV was applied independently to the MEK and ERK concentrations.The blue curve and 
histograms shown the results of simulations in which MEK and ERK concentrations were made to covary by applying the same 15% CV
lognormal noise term to both MEK and ERK in each cell/simulation. The bottom panels show examples of the distributions of 
outputs for three input stimuli. The dashed black line shows the threshold used to distinguish active from inactive cells. The shallower slope
of the blue curve show that the fraction of activated cells can be regulated over a wider range of input stimuli if there is covariance
between MEK and ERK.
(C) Scatter plot of cells colored by whether they had high (magenta) or low (green) ERK activity at the end of the timecourse. Cells 
shown were stimulated with input doses between 2^10.5 to 2^12, a range which results in both active and inactive cells in the population 
as shown in (B).
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Figure 7. Single cell imaging experiments also show that covariation between MEK and ERK expression facilitates control 
of bimodal ERK activation.
(A) MCF10A cells stably expressing the EKAR-EV FRET sensor were activated with varying levels of EGF after being serum starved 
for at least 48 hours. Cells were imaged every 2 minutes throughout the time course. The plots at EGF doses of 0, 62.5, 125, 250,
and 500 pg/mL show timecourses from approximately 800, 520, 1200, 1000, and 900 individual cells, respectively.
(B) Histograms showing the integrated ERK activity of individual cells from the experiment shown in (A). Integrated ERK activity was 
calculated for each timecourse as the area under the curve after the addition of EGF. The dashed line shows the threshold used 
distinguish cells with active versus inactive ERK. 
(C) Plot showing fraction of activated cells (cells to the right of the threshold plotted in (B)) in response to different EGF concentrations. 
(D) Box and whisker plot of MEK concentration in cells with high (top 15%, magenta) or low (bottom 15%, green) integrated ERK activity.
The high and low conditions represent 162 and 161 cells respectively, out of a total of 1073 cells. 
(E) Box and whisker plot of ERK concentration in cells with high (top 15%, magenta) or low (bottom 15%, green) integrated ERK activity..
The high and low conditions represent 198 and 197 cells respectively, out of a total of 1316 cells. 
(D, E) The box plots show the distributions of protein concentrations in single cells with high versus low integrated ERK activity, where the
bold line in the center of the notch represents the median, the ends of the notched box represent the first and third quartiles, the length 
of the upper whisker shows the largest point no more than 1.5 times the inter-quartile range (IQR or length of the box), the lower whisker 
represents the smallest point no more than 1.5 times the inter-quartile range, and the notches represent 1.58 * IQR / sqrt(n), which 
approximates the 95% confidence interval of the median. The non-overlapping notches between the high and low populations, as well
as the low p-values, indicate that the differences between the two populations are significant.
(F) Pairwise correlation analysis in MCF10A cells, using MCM5 vs MCM7 as a positive control and MCM5 vs GAPDH as an uncorrelated 
control. Correlations between MEK and ERK concentrations are shown. Each scatter plot shows values from ~15000 cells. The bar graphs 
on the right shows correlation coefficients for 3 separate wells, containing ~5000 cells each, for the same 3 correlation pairs.
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Figure 8. Competing demands on variation and covariation in the control of analog single-cell versus binary population-level 
signaling outputs.
(A) Schematic of a signaling pathway that splits into an analog or binary output.
(B-D) Quantification of the competing constraints on expression variation for accurate control of single-cell analog versus population-level 
binary signaling outputs. Plots showing the development of a metric that quantitatively relates expression variation, analog single-cell 
signaling accuracy, and binary signaling accuracy. (B) Relationship between expression variation and fIDL, highlighting the physiological 
range of 5, 10, and 20% expresion variation.  (C) Same for expression variation versus HC, also including 40% expression variation which 
is required for accurate control of population-level binary outputs. (D) Integration of both relationships into a single co-dependency curve 
relating optimal analog single-cell and binary population-level signaling. Terms in equations: CV: expression variation; N: Total number of 
pathway components; Ncov: Number of covariant pathway components; α = 3.29; β = 1.72; γ = 6.29.
(E) Increasing or decreasing the number of regulators in a pathway increases or decreases the overall noise in the pathway, respectively, 
and thus can be used as a way to more accurately control either binary population-level or analog single-cell functions, respectively. 
(F) Covariation between pathway components such as MEK and ERK is an effective means to increases overall noise in the pathway and 
thereby improve the controllability of binary population-level signaling responses while reducing single-cell analog signaling accuracy. A 
system with covariation can accurately control binary population level signaling without a need for 40% expression variation which is likely 
not common.
(G) The analysis of (B)-(F) suggests that the same pathway components can only be shared between analog and binary signaling systems 
if the analog pathway branches off early after receptor stimulation. Covariance in a branch of a signaling pathway is an indication that the 
output is regulated by a binary output at the population-level.
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