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Abstract 
Diffusion decision models (DDMs) are immensely successful models for decision-making under 

uncertainty and time pressure. In the context of perceptual decision making, these models 

typically start with two input units, organized in a neuron-antineutron pair. In contrast, in the brain, 

sensory inputs are encoded through the activity of large neuronal populations. Moreover, while 

DDMs are wired by hand, the nervous system must learn the weights of the network through trial 

and error. There is currently no normative theory of learning in DDMs and therefore no theory of 

how decision makers could learn to make optimal decisions in this context. Here, we derive the 

first such rule for learning a near-optimal linear combination of DDM inputs based on trial-by-trial 

feedback. The rule is Bayesian in the sense that it learns not only the mean of the weights but 

also the uncertainty around this mean in the form of a covariance matrix. In this rule, the rate of 

learning is proportional (resp. inversely proportional) to confidence for incorrect (resp. correct) 

decisions. Furthermore, we show that, in volatile environments, the rule predicts a bias towards 

repeating the same choice after correct decisions, with a bias strength that is modulated by the 

previous choice’s difficulty. Finally, we extend our learning rule to cases for which one of the 

choices is more likely a priori, which provides new insights into how such biases modulate the 

mechanisms leading to optimal decisions in diffusion models. 

 

Significance Statement 
Popular models for the tradeoff between speed and accuracy of everyday decisions usually 

assume fixed, low-dimensional sensory inputs. In contrast, in the brain, these inputs are 

distributed across larger populations of neurons, and their interpretation needs to be learned from 

feedback. We ask how such learning could occur and demonstrate that efficient learning is 

significantly modulated by decision confidence. This modulation predicts a particular dependency 

pattern between consecutive choices, and provides new insight into how a priori biases for 

particular choices modulate the mechanisms leading to efficient decisions in these models.  
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Introduction 
Decisions are a ubiquitous component of every-day behavior. To be efficient, they require 

handling the uncertainty arising from the noisy and ambiguous information that the environment 

provides (1). This is reflected in the trade-off between speed and accuracy of decisions. Fast 

choices rely on little information and may therefore sacrifice accuracy. In contrast, slow choices 

provide more opportunity to accumulate evidence and thus may be more likely to be correct, but 

are more costly in terms of attention or effort and lost time and opportunity. Therefore, efficient 

decisions require not only a mechanism to accumulate evidence, but also one to trigger a choice 

once enough evidence has been collected. Drift-diffusion models (or diffusion decision models; 

DDMs) is a widely-used model family (2) that provides both mechanisms. Not only do DDMs yield 

surprisingly good fits to human and animal behavior (3–5), but they are also known to achieve a 

Bayes-optimal decision strategy under a wide range of circumstances (4, 6–10). 

DDMs assume a particle that drifts and diffuses until it reaches one of two boundaries, 

each triggering a different choice (Fig. 1a). The particle’s drift reflects the net surplus of evidence 

towards one of two choices. This is exemplified by the random-dot motion task, in which the 

motion direction and coherence set the drift sign and magnitude. The particle’s stochastic diffusion 

reflects the uncertainty in the momentary evidence and is responsible for the variability in decision 

times and choices widely observed in human and animal decisions (3, 5). A standard assumption 

underlying DDMs is that the noisy momentary evidence that is accumulated over time is one-

dimensional — an abstraction of the momentary decision-related evidence of some stimulus. In 

reality, however, evidence would usually be distributed across a larger number of inputs, such as 

a neural population in the brain, rather than individual neurons (or neuron/anti-neuron pairs; Fig. 
1a). Furthermore, the brain would not know a priori how this distributed encoding provides 

information about the correctness of either choice. As a consequence, it needs to learn how to 

interpret neural population activity from the success and failure of previous choices. How such an 

interpretation can be efficiently learned over time is the focus of this work. 

The multiple existing computational models for how humans and animals might learn to 

improve their decisions from feedback (e.g., 11–14) do not address the question we are asking, 

as they all assume that all evidence for each choice is provided at once, without considering the 

temporal aspect of evidence accumulation. This is akin to fixed-duration experiments, in which 

the evidence accumulation time is determined by the environment rather than the decision maker. 

We, instead, address a more general and natural case in which decision times are under the 

decision maker’s control. In this setting, commonly studied using “reaction time” paradigms, the 

information carried by accumulated evidence changes over time spent accumulating it, which 
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impacts updating of the decision strategy after feedback. Some models for both choice and 

reaction times have addressed the presence of high-dimensional inputs (e.g., 15–17). However, 

they usually assumed as many choices as inputs, were mechanistic rather than normative, and 

did not consider how interpreting the input could be learned. We furthermore extend on previous 

work by considering the effect of a priori biases towards believing that one option is more correct 

than the other, and how such biases can be learned. This yields a new theoretical understanding 

of how choice biases impact optimal decision-making in diffusion models. Furthermore, it clarifies 

of how different implementations of this bias result in different diffusion model implementations, 

like the one proposed by Hanks et al. (18). 

 

Results 

 
Figure 1. Learning the input weights from feedback in diffusion models. In diffusion models, the input(s) provide at each point in 

time noisy evidence about the world’s true state, here given by the drift 𝜇. The decision maker accumulates this evidence over time 

(e.g., black example traces) to form a belief about 𝜇. Bayes-optimal decisions choose according to the sign of the accumulated 

evidence, justifying the two decision boundaries that trigger opposing choices. (a) In standard diffusion models, the momentary 

evidence either arises directly from noisy samples of 𝜇, or, as illustrated here, from a neuron/anti-neuron pair that codes for opposing 

directions of evidence. The illustrated example assumes a random dot task, in which the decision maker needs to identify if most of 

the dots that compose the stimulus are moving either to the left or to the right. The two neurons (or neural pools) are assumed to 

extract motion energy of this stimulus towards the right (top) and left (bottom), such that their difference forms the momentary evidence 

towards rightward motion. A decision is made once the accumulated momentary evidence reaches one of two decision boundaries, 

triggering opposing choices. (b) Our setup differs from that in (a) in that we assume the input information 𝛿𝒙(𝑡) to be encoded in a 

larger neural population whose activity is linearly combined with weights 𝒘 to yield the one-dimensional momentary evidence, and 

that the decision maker aims to learn these weights from feedback about the correctness of her choices. (c) Decision confidence (i.e., 

the belief that the made choice was correct) in this kind of diffusion model drop as a function of time (horizontal axis) and with increased 

uncertainty about the input weights (different shades of blue). (d) For near-optimal learning, the learning rate (the term 𝜉) in Eq. (6)) 

is modulated by decision confidence (top left). High-confidence decisions lead to little learning if correct (green, right), and strong 

learning if incorrect (red, left). Low-confidence decisions result in a moderate confidence-related learning rate term (top, center). The 

learning rate in 1000 simulated trials (bottom) shows that the overall learning rate preserves this trend, with an additional suppression 
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of learning for low-confidence decisions. Other learning heuristics (e.g., the delta rule, right) do not modulate their learning by 

confidence. 

 

Bayes-optimal decision-making with diffusion models 
A standard way (8, 10, 19) to interpret diffusion models as mechanistic implementations of Bayes-

optimal decision-making is to assume that, in each trial, a latent state 𝜇 (called drift rate in diffusion 

models) is drawn from a prior distribution, 𝜇 ∼ N(0, 𝜎/0), with zero mean and variance 𝜎/0. The 

decision maker’s aim is to infer whether this latent state is positive or negative (e.g., rightward vs. 

leftward motion in an the random dot motion task), irrespective of its magnitude (e.g., the dot 

coherence level). The latent state itself is unobserved, but the decision maker aims to infer its 

sign based on a stream of noisy, momentary evidence, 𝛿𝑧2, 𝛿𝑧0, …, which, in each small time step 

of size 𝛿𝑡, provides independent and identically distributed noisy information about 𝜇 through 

𝛿𝑧4|𝜇 ∼ N(𝜇𝛿𝑡, 𝛿𝑡). Here, we have chosen a unit variance, scaled by 𝛿𝑡. Any re-scaling of this 

variance by an additional parameter would result in a global re-scaling of the evidence that can 

be factored out (4, 8, 20), thus making such a re-scaling unnecessary. 

Having after some time 𝑡 ≡ 𝑛𝛿𝑡 observed 𝑛 pieces of such evidence, 𝛿𝑧2:9, the decision 

maker’s posterior belief about 𝜇, 𝑝(𝜇|𝛿𝑧2:9), turns out to be fully determined by the accumulated 

evidence, 𝑧(𝑡) = ∑ 𝛿𝑧49
4=2 , and time 𝑡 (see Methods). Then, the posterior belief about 𝜇 being 

positive (e.g., leftward motion) results in 

 

 𝑝(𝜇 ≥ 0|𝑧(𝑡), 𝑡) = ? 𝑝(𝜇|𝛿𝑧2:9)d𝜇
A

B
= 𝛷

⎝

⎛ 𝑧(𝑡)

F𝑡 + 𝜎/H0⎠

⎞, (1) 

 

where 𝛷(⋅) is the cumulative function of a standard Gaussian. The opposite belief about 𝜇 being 

negative is simply 𝑝(𝜇 < 0|𝑧(𝑡), 𝑡) = 1 − 𝑝(𝜇 ≥ 0|𝑧(𝑡), 𝑡) (Fig. 3a). The accumulated evidence 

follows a diffusion process, 𝑧(𝑡)|𝜇 ∼ 𝑁(𝜇𝑡, 𝑡), and thus can be interpreted as the location of a 

drifting and diffusing particle with drift 𝜇 and unit diffusion variance (Fig. 1a). By Eq. (1), the 

posterior belief about 𝜇 ≥ 0 is > 1/2	for positive 𝑧(𝑡), and < 1/2 for negative 𝑧(𝑡), such that 

(possibly time-varying) boundaries ±𝜃(𝑡) on 𝑧(𝑡), associated with different choices 𝑦 =

sign[𝑧(𝑡)\ ∈ {−1,1}, are Bayes-optimal. At these boundaries, the posterior belief about having 

made the correct choice, or decision confidence (21), is then given by Eq. (1) with 𝑧(𝑡) replaced 

by 𝜃(𝑡). Thus, under the above assumptions of prior and evidence, diffusion models implement 

the Bayes-optimal decision strategy (Fig. 3b). 
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Note that |𝜇| (i.e., the momentary evidence’s signal-to-noise ratio) controls the amount of 

information provided about the sign of 𝜇, and thus the difficulty of individual decisions. Thus, the 

used prior 𝜇 ∼ N(0, 𝜎/0), which has more mass on small |𝜇|, reflects that the difficulty of decisions 

varies across trials, and that harder decisions are more frequent than easier ones. The prior width, 

𝜎/0 determines the spread of 𝜇’s across trials, and therefore the overall difficulty of the task (larger 

𝜎/0 = overall easier task). In general, the important assumption is that the difficulty varies across 

trials, but not exactly how it does so, which is to say that the shape of the prior distribution is not 

critical (8). Different prior choice will not qualitatively change our results. Model predictions would 

change qualitatively if we assume the difficulty to be known a-priori (see 8), but we will not 

consider this case, as it rarely if ever occurs in the real world. 

 

Using high-dimensional diffusion model inputs 
To extend diffusion models to multi-dimensional momentary evidence, we assume it to be given 

the a 𝑘-dimensional vector 𝛿𝒙4. This evidence might represent inputs from multiple sensors, or 

the (abstract) activity of a neuronal population (Fig. 1b). As the activity of neurons in a population 

that encodes limited information about the latent state 𝜇 is likely correlated across neurons (22, 

23), we chose the momentary evidence statistics to also feature such correlations (see Methods). 

In general, we choose these statistics such that 𝒘a𝛿𝒙4 = 𝛿𝑧4, where the vector 𝒘 denote the 𝑘 

input weights (for now assumed known). Defining the high-dimensional accumulated evidence by 

𝒙(𝑡) = ∑ 𝛿𝒙49
4=2 , this implies 𝑧(𝑡) = 𝒘a𝒙(𝑡), such that it is again Bayes-optimal to trigger decisions 

as soon as 𝒘a𝒙(𝑡) equals one of two decision boundaries ±𝜃(𝑡). Furthermore, the posterior belief 

about 𝜇 ≥ 0 is, similar to Eq. (1), given by  

 

 𝑝(𝜇 ≥ 0|𝒘, 𝒙(𝑡), 𝑡) = 𝛷(𝒘a𝒙b(𝑡)), (2) 

 

where we have defined the time-attenuated accumulated evidence 𝒙b(𝑡) = 𝒙(𝑡)/F𝑡 + 𝜎/H0. As a 

consequence, the decision-confidence for either choice, is, as before, given by Eq. (2), with 

𝒘a𝒙b(𝑡) replaced by 𝜃(𝑡)/F𝑡 + 𝜎/H0. For time-independent decision bounds, 𝜃(𝑡) = 𝜃, this 

confidence decreases over time (Fig. 1c), reflecting the uncertainty about 𝜇, and that late choices 

are likely due to a low 𝜇, which is associated with a hard trial, and thus low decision confidence. 
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Using feedback to find the posterior weights 
So far we have assumed the decision maker knows the linear input weights 𝒘 to make Bayes-

optimal choices. If they were not known, how could they be learned? To address this question, 

consider the following scenario. Before having observed any evidence, the decision maker has 

some belief, 𝑝(𝒘), about these weights, either as a prior or formed through previous experience. 

They now observe new evidence, 𝛿𝒙2, 𝛿𝒙0, … and use the mean of the belief over weights, 〈𝒘〉 (or 

any other statistics), to combine this evidence and to trigger a choice 𝑦 once the combined 

evidence reaches one of the decision boundaries. Upon this choice, they receive feedback 𝑦∗ 

about which choice was the correct one. Then, the best way to update the belief about 𝒘 in light 

of this feedback is by Bayes’ rule, 

 

 𝑝(𝒘|𝒙(𝑡), 𝑡, 𝑦∗) ∝ 𝑝(𝑦∗|𝒘, 𝑥(𝑡), 𝑡)𝑝(𝒘), (3) 

 

where we have replaced the stream of evidence 𝛿𝒙2, 𝛿𝒙0, … by the previously established 

sufficient statistics 𝒙(𝑡) and 𝑡. 

The likelihood 𝑝(𝑦∗|𝒘, 𝒙(𝑡), 𝑡) expresses for any hypothetical weight vector 𝒘 the 

probability that the observed evidence makes 𝑦∗ the correct choice. To find its functional form, 

consider that, for a known weight vector, we have shown that 𝑝(𝜇 ≥ 0|𝒘, 𝒙(𝑡), 𝑡), given by Eq. (2), 

expresses the probability that 𝑦 = 1 (associated with 𝜇 ≥ 0) is the correct choice. Therefore, 1 −

𝑝(𝜇 ≥ 0|𝒘, 𝒙(𝑡), 𝑡) corresponds to the probability that 𝑦 = −1 (associated with 𝜇 < 0) is the correct 

choice. Therefore, it can act as the above likelihood function, which, by Eq.(2), is given by 

𝑝(𝑦∗|𝒘, 𝑥(𝑡), 𝑡)=	𝛷(𝑦∗𝒘a𝒙b(𝑡)), where we have used 1 − 𝛷(𝑎) = 𝛷(−𝑎). In summary, the decision 

maker’s belief is optimally updated after each choice by 

 

 𝑝(𝒘|𝒙(𝑡), 𝑡, 𝑦∗) ∝ 𝛷[𝑦∗𝒘a𝒙b(𝑡)\𝑝(𝒘). (4) 

 

This update equation only requires knowing the accumulated evidence 𝒙(𝑡), decision time 𝑡, and 

feedback 𝑦∗, but is independent of the chosen option 𝑦, and how the decision maker came to this 

choice. 

As the likelihood parameters, 𝒘, are linear within a cumulative Gaussian function, such 

problems are known as Probit Regression and don’t have a closed-form expression for the 

posterior. We could proceed by sampling from the posterior by Markov Chain Monte Carlo 
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methods, but that would not provide much insight into the different factors that modulate learning 

the posterior weights. Instead, we proceed by deriving a closed-form approximation to this 

posterior to provide such insight. 

 

Confidence controls the learning rate 
To find an approximation to the posterior in Eq. (4), let us assume the prior to be given by the 

Gaussian distribution, 𝑝(𝒘) = 𝑁(𝒘|𝝁), 𝜮)), with mean 𝝁) and covariance 𝚺), which is the 

maximum entropy distribution that specifies the mean and covariance (24). First, we investigated 

how knowing 𝒘 with limited certainty, as specified by 𝚺), impacts the decision confidence. 

Marginalizing over all possible 𝒘’s (see Methods) resulted in the choice confidence to be given 

by  

 

 𝑝(𝑦|𝑥(𝑡), 𝑡) = 𝛷 m
𝑦𝝁)a 𝒙b(𝑡)

n1 + 𝒙ba𝜮)𝒙b
o. (5) 

 

Compared to Eq. (2), the choice confidence is additionally attenuated by 𝚺). Specifically, higher 

weight uncertainty (i.e., an overall larger covariance 𝚺)) results in a lower decision confidence, 

as one would intuitively expect (Fig. 1c). 

Next, we found a closed-form approximation to the posterior, Eq. (4). For repeated 

learning across consecutive decisions, the posterior over the weights after the previous decision 

becomes the prior for the new decision. Unfortunately, a direct application of this principle would 

lead to a posterior that changes its functional form after each update, making it intractable. We 

instead used Assumed Density Filtering (ADF) (25, 26) that posits a fixed functional form 

𝑞(𝒘|𝑦∗, 𝒙(𝑡), 𝑡) = N(𝒘|𝝁)∗ , 𝜮)∗ ) of the posterior density – in our case Gaussian for consistency with 

the prior – and then finds the posterior parameters 𝝁)∗  and 𝜮)∗  that make this approximate 

posterior best match the “true” posterior 𝑝(𝒘|𝑦∗, 𝒙(𝑡), 𝑡), Eq. (4). Performing this match by 

minimizing the Kullback-Leiber divergence KL(𝑝|𝑞) results in the posterior mean (27, 28) 

 

 𝝁)∗ = 𝝁) +
𝜉)

n1 + 𝒙ba𝜮)𝒙b
𝑦∗𝜮)𝒙b, (6) 

 

and a similar expression for the posterior covariance (see Methods). Here, the factor 𝜉) 

modulates how strongly this mean is updated towards 𝑦∗𝜮)𝒙b, and turns out to be a monotonically 
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decreasing function of decision confidence (Fig. 1d, top; see Methods for mathematical 

expression). For incorrect choices, for which the decision confidence is 𝑝(𝑦∗|𝒙(𝑡), 𝑡) < 1/2, 𝜉) is 

largest for choices made with high confidence, promoting significant weight adjustments. For low-

confidence choices it only promotes moderate adjustments, notably irrespective of whether the 

choice was correct or incorrect. High-confidence, correct choices yield a low 𝜉), and thus an 

intuitively minor strategy update. The update of the posterior covariance follows a similar 

confidence-weighted learning rate modulation (Fig. S1; Methods). 

 Decision confidence is not the only factor that impacts the learning rate in Eq. (6). For 

instance, 𝒙b shrinks for longer, less confidence choices (because it is inversely proportional to 

time) and results in overall less learning. Less certain weights, associated with larger magnitudes 

of 𝚺), have a similar effect. To investigate the overall impact of all of these factors combined on 

the learning rate, we simulated a long sequence of consecutive choices and plotted the learning 

rate for a random subset of these trials against the decision confidence (Fig. 1d, bottom). This 

plot revealed a slight down-weighting of the learning rate for low-confidence choices when 

compared to 𝜉), but left the overall dependency on 𝜉) otherwise unchanged. 

 

Performance comparison to optimal inference and to simpler heuristics 
The intuitions provided by near-optimal ADF learning are only informative if its approximations do 

not cause a significant performance drop. We quantified this drop by comparing ADF performance 

to that of the Bayes-optimal rule, as found by Gibbs sampling (see Methods). Gibbs sampling is 

biologically implausible as it requires a complete memory of inputs and feedbacks for past 

decisions and is intractable for longer decision sequences, but nonetheless provides an optimal 

baseline to compare against. We furthermore tested the performance of two additional 

approximations. One was an ADF variant that assumes a diagonal covariance matrix 𝚺), yielding 

a local learning rule that could be implemented by the nervous system. The second was a second-

order Taylor expansion of the log-posterior, resulting in a learning rule similar to ADF, but with a 

lower impact of weight uncertainty on the learning rate (see Methods). 

Furthermore, we tested if simpler learning heuristics can match ADF performance. We 

focused on three rules of increasing complexity. The delta rule updates its weight estimate after 

the 𝑛th decision by 

 

 𝒘9s2 = 𝒘9 +
𝛼

2𝜃(0)
(𝑦9∗𝜃(𝑡) − 𝒙9(𝑡)a𝒘9)𝒙9(𝑡), (7) 
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where 𝑦9∗ ∈ {−1,1} is the feedback about the correct choice provided after this decision, and we 

have chosen to normalize the learning rate 𝛼 by the initial bound height 𝜃(0) to make it less 

sensitive to this chosen height. As decisions are triggered at one of the two boundaries, 

𝒙9(𝑡)a𝒘9 ∈ {−𝜃(𝑡), 𝜃(𝑡)}, the residual in brackets is zero for correct choices, and ±2𝜃(𝑡) for 

incorrect choices. As a result, and in contrast to ADF, weight adjustments are only performed 

after incorrect choices, and with a fixed learning rate 𝛼 rather than one modulated by confidence 

(Fig. 1d; right). Our simulations revealed that the delta rule excessively and suboptimally 

decrease in the weight size ‖𝒘‖ over time, leading to unrealistically long reaction times and 

equally unrealistic near-zero weights. To counteract this problem, we designed a normalized delta 

rule, that updates the weight estimates as the delta rule, but thereafter normalizes them by 𝒘 ←

𝒘	‖𝒘∗‖/‖𝒘‖ to ensure that its size matches that of the true weights 𝒘∗. Access to these true 

weights, 𝒘∗, makes it an omniscient learning rule that can’t be implemented by a decision maker 

in practice. Lastly, we tested a learning rule that performs stochastic gradient ascent on the 

feedback log-likelihood, 

 

 𝒘9s2 = 𝒘9 + 𝛼𝛻) log 𝑝(𝑦9∗|𝒘9, 𝒙9(𝑡), 𝑡) = 𝒘9 + 𝛼𝑦9∗𝜉)𝒙b9(𝑡). (8) 

 

This rule introduces decision confidence weighting through 𝜉), but differs from ADF in that it does 

not take the weight uncertainty (𝜮) in ADF) into account, and requires tuning of the learning rate 

parameter 𝛼. 

We evaluated the performance of these learning rules by simulating weight learning 

across 1,000 consecutive decisions (called trials; see Methods for details) in a task in which use 

of the optimal weight vector maximizes the reward rate. This reward rate was the average reward 

for correct choices minus some small cost for accumulating evidence over the average time 

across consecutive trials and is a measure we would expect rational decision makers to optimize. 

For each learning rule we found its reward rate relative to random behavior and optimal choices. 
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Figure 2. Input weight learning and tracking performance of different learning rules. All plots show the relative reward rate (0 = 

immediate, random choices, 1 = optimal) averaged over 5,000 simulations with different true, underlying weights, and for 2 (top) and 

50 (bottom) inputs. (a) The relative reward rate for probabilistic and heuristic learning rules. The probabilistic learning rules include 

the optimal rule (Gibbs sampling), assumed density filtering (ADF), ADF with a diagonal covariance matrix (ADF (diag)), and a learning 

rule based on a second-order Taylor expansion of the log-posterior (Taylor exp.). For both 2 and 50 inputs, all rules perform roughly 

equally. For the heuristic rules, different color shadings indicate different learning rates. The initial performance shown is that after the 

first application of the learning rule, such that initial performances can differ across learning rule. (b) The steady-state performance 

across different heuristic rule learning rates. Steady state performance was measured as an average across 5,000 simulations, 

averaging over the last 100 of 1000 simulated trials in which the true weights slowly change across consecutive trials. An optimal 

relative reward rate of one corresponds to knowing the true weight in each trial, which, due to the changing weight, is not achievable 

in this setup. The color scheme is the same as in (a), but the vertical axis has a different scale. The delta rule did not converge and 

was not included in (b). 

 

Figure 2a shows this relative reward rate for all learning rules and different numbers of 

inputs. As can be seen, the performance of ADF and the other probabilistic learning rules is 

indistinguishable from Bayes-optimal weight learning for all tested numbers of inputs. Surprisingly, 

the ADF variant that ignores off-diagonal covariance entries even outperformed Bayes-optimal 

learning for a large number of inputs (Fig. 2a, yellow line for 50 inputs). This counterintuitive 

finding was due to the lower number of parameters that this ADF variant needed to learn, resulting 

in more efficient use of feedback while providing a good enough approximation to learning the full 

covariance matrix. 

 All other learning heuristics performed significantly worse. For low-dimensional input, the 

delta rule initially improved its reward rate but worsens it again at a later stage across all learning 

rates. The normalized delta rule avoided such performance drops for low-dimensional input, but 

both delta rule variants were unable to cope with high-dimensional inputs. Only stochastic 

gradient ascent on the log-likelihood provided a stable learning heuristic for high dimensional 

inputs, but with the downside of having to choose a learning rate. Small learning rates lead to 

slow learning, and an associated slower drop in angular error. Overall, the probabilistic learning 

rules significantly outperformed all tested heuristic learning rules and matched (and in one case 

even exceeded) the weight learning performance of the Bayes-optimal estimator. 

 

Tracking non-stationary input weights 
So far, we have tested how well our weight learning rule is able to learn the true, underlying 

weights from binary feedback about the correctness of the decision maker’s choices. For this we 

assumed that the true weights remained constant across decisions. What would happen if these 

weights change slowly over time? Such a scenario could occur if, for example, the world around 

us changes slowly, or if the neural representation of this world changes slowly through neural 
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plasticity or similar. In this case, the true weights would become a moving target that we would 

never be able to learn perfectly. Instead, we would after some initial transient expect to reach 

steady-state performance that remains roughly constant across consecutive decisions. We 

compared this steady-state performance of Bayes-optimal learning (now implemented by a 

particle filter) to that of the probabilistic and heuristic learning rules introduced in the previous 

section. The probabilistic rules were updated to take into account such a trial-by-trial weight 

change, as modeled by a first-order autoregressive process (see Methods). The heuristic rules 

remained unmodified, as their use of a constant learning rate already encapsulates the 

assumption that the true weights change across decisions. 

 Figure 2b illustrates the performance of the different learning rules. First, it shows that, 

for low-dimensional inputs the various probabilistic models yield comparable performances, but 

for high-dimensional inputs the approximate probabilistic learning rules outperform Bayes-optimal 

learning. In case of the latter, these approximations weren’t actually harmful, but instead 

beneficial. In particular, the more neurally-realistic ADF variant that only tracked the diagonal of 

the covariance matrix again outperformed all other probabilistic models. Second, only the heuristic 

learning rule that performed gradient ascent on the log-likelihood achieved steady-state 

performance comparable to the approximate probabilistic rules, and then only for high input 

dimensionality and a specific choice of learning rate. This should come as no surprise, as its use 

of the likelihood function introduces more task structure information than the other heuristics use. 

The delta rule did not converge and therefore never achieved steady-state performance. Overall, 

the ADF variant that focused only on the diagonal covariance matrix achieved the best overall 

performance. 

 

Learning both weights and a latent state prior bias 
Our learning rule can be generalized to learn prior biases in addition to the input weights. The 

prior we have used so far, 𝜇 ∼ N[0, 𝜎/0\, is unbiased, as both 𝜇 ≥ 0 and 𝜇 < 0 are equally likely. 

To introduce a prior bias, we instead used 𝜇 ∼ N[𝑚, 𝜎/0\, where 𝑚 controls the bias through 𝑃s ≡

𝑝(𝜇 ≥ 0) = 𝛷[𝑚/𝜎/\. A positive (or negative) 𝑚 causes 𝑃s > 1/2 (or < 1/2), thus making 𝑦 = 1 

(or 𝑦 = −1) the more likely correct choice even before evidence is accumulated. After evidence 

accumulation, such a prior results in the posterior  
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 𝑝(𝜇 ≥ 0|𝒘, 𝒙(𝑡), 𝑡) = 𝛷

⎝

⎛𝒘
a𝒙(𝑡) + 𝜎/H0𝑚

F𝑡 + 𝜎/H0 ⎠

⎞. (9) 

 

Comparing this to the unbiased posterior Eq. (2) reveals the additional term 𝜎/H0𝑚 whose relative 

influence wanes over time. 

 

 
Figure 3. Decision confidence, prior biases, and the relation between decision boundary and choice. (a) For an unbiased prior 

(i.e., 𝑃s ≡ 𝑝(𝜇 ≥ 0) = 1/2), the decision confidence (color gradient) is symmetric around 𝑧 = 0 for each fixed time 𝑡. The associated 

posterior belief 𝑝(𝜇 ≥ 0|𝑧(𝑡), 𝑡) (numbers above/below “time” axis label; constant along white lines; ½ along light blue line) promote 

choosing 𝑦 = 1 and 𝑦 = −1 above (blue area in (b)) and below (red area in (b)) 𝑧 = 0. (b) As a result, different choices are Bayes-

optimal at the blue/red decision boundaries, as long as they are separated by 𝑧 = 0, irrespective of the boundary separation (solid vs. 

dashed blue red lines). (c) If the prior is biased by an overall shift, the decision confidence is counter-shifted by the same constant 

across all 𝑡. In this case, both decision boundaries might promote them same choice, which can be counter-acted by a time-invariant 

shift of 𝑧 by 𝐶2(𝑃s). (d) If the prior is biased by boosting one side while suppressing the other, the decision confidence shift becomes 

time-dependent, such that the optimal choice at a time-invariant boundary might change over time. Counteracting this effect requires 

a time-dependent shift of 𝑧 by 𝐶0(𝑃s, 𝑡). In both (c) and (b) we have chosen 𝑃s = 0.6, for illustration. 

 

This additional term has two consequences. First, appending the elements 𝑚 and 𝜎/H0 to 

the vectors 𝒘 and 𝒙(𝑡), respectively, shows that 𝒘 and 𝑚 can be learned jointly by the same 

learning rule we have derived before (Methods). Second, the term requires us to rethink the 

association between decision boundaries and choices. As Fig. 3c illustrates, such a prior causes 

a time-invariant shift in the the association between the accumulated evidence, 𝑧(𝑡) = 𝒘a𝒙(𝑡), 

and the posterior belief of 𝜇 ≥ 0 and corresponding decision confidence. This shift makes it 
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possible to have the same Bayes-optimal choice at both decision boundaries (Fig. 3c, blue/red 

decision areas). Hence, we have lost the mechanistically convenient unique association between 

decision boundaries and choices. We recover this association by a boundary counter-shift, such 

that these boundaries come to lie at the same decision confidence levels for opposite choices, 

making them asymmetric around 𝑧 = 0. Mathematically, this is equivalent to shifting the evidence 

accumulation starting point, 𝑧̃(0) away from zero in the opposite direction (Fig. 3c, shift by 

𝐶2(𝑃s) = 𝜎/H0𝑚; SI). Therefore, a prior bias is implemented by a bias-dependent simple shift of 

the accumulation starting point, leading to a mechanistically straight-forward implementation of 

Bayes-optimal decision-making with biased priors. 

A consequence of the shifted accumulation starting point is that, for some fixed decision 

time 𝑡, the decision confidence at both boundaries is the same (Fig. 3c right). This seems at odds 

with the intuition that a biased prior ought to bias the decision confidence in favor of the more 

likely option. However, this mechanism does end up assigning higher average confidence to the 

more likely option because of reactions times. As the starting point is now further away from the 

less likely correct boundary, it will on average take longer to reach this boundary, which lowers 

the decision confidence since confidence decreases with elapsed time. Therefore, even though 

the decision confidence at both boundaries is the same for the same decision time, it will on 

average across decision times be lower for the a-priori non-preferred boundary, faithfully 

implementing this prior (see SI for a mathematical demonstration). 

Our finding that a simple shift in the accumulation starting point is the Bayes-optimal 

strategy appears at odds with previous work that suggested that the optimal shift of the 

accumulator variable 𝑧(𝑡) varies with time (18). This difference stems from a different 

implementation of the bias. While we have chosen an overall shift in the prior by its mean (Fig. 
3c), an alternative implementation is to multiply 𝑝(𝜇 ≥ 0) by 𝑃s, and 𝑝(𝜇 < 0) by 1 − 𝑃s (Fig. 3d), 

again resulting in 𝑃s = 𝑝(𝜇 ≥ 0). A consequence of this difference is that the associated shift of 

the posterior belief of 𝜇 ≥ 0 in the evidence accumulation space becomes time-dependent. Then, 

the optimal choice at a time-invariant boundary in that space might change over time (Fig. 3d). 

Furthermore, un-doing this shift to regain a unique association between boundaries and choices 

not only requires a shifted accumulation starting point, but additionally a time-dependent additive 

signal (𝐶0(𝑃s, 𝑡) in Fig. 3d; SI), as was proposed in (18). Which of the two approaches is more 

adequate depends on how well it matches the prior implicit in the task design. Our approach has 

the advantage of a simpler mechanistic implementation, as well as yielding a simple extension to 

the previously derived learning rule. How learning prior biases in the framework of (18) could be 

achieved remains unclear (but see (29)). 
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Sequential choice dependencies due to continuous weight tracking 

 
Figure 4. Sequential choice dependencies due to continuous learning, and effects of noisy feedback. Bayes-optimal learning 

in a slowly changing environment predicts sequential choice dependencies with the following pattern. (a) After hard, correct choices 

(low prev. |𝜇|; light colors), the psychometric curve is shifted towards repeating the same choice (blue/red = choice 𝑦 = 1/−1). This 

shift decreases after easier, correct choices (high prev. |𝜇|; dark colors). (b) We summarize these tuning curve shifts in the repetition 

bias, which is the probability of repeating the same choice to a 𝜇 = 0 stimulus (example green arrow for 𝜇 = −0.38 in (a)). After 

correct/incorrect choices (green/red curve), this leads to a win-stay/lose-switch strategy. Only the win-stay strategy is shown in (a). 

(c) If choice feedback is noisy (inverted with probability 𝛽), the learning rate becomes overall lower. In particular for high-confidence 

choices with “incorrect” feedback, the learning rate becomes zero, as the learner trusts her choice more than the feedback. 

 

In every-day situations, no two decisions are made under the exact same circumstances. 

Nonetheless, we need to be able to learn from the outcome of past choices to improve future 

ones. A common assumption is that past choices become increasingly less informative about 

future choices over time. One way to express this formally is to assume that the world changes 

slowly over time – and that our aim is to track these changes. By ‘slow’ we mean that we can 

consider it constant over a single trial but that it is unstable over the course of an hour-long 

session. We implemented this tracking of the moving world, as in Fig. 2b, by slowly allowing the 

weights mapping evidence to decisions to change. With such continuously changing weights, 

weight learning never ends. Rather, the input weights are continuously adjusted to make correct 

choices more likely in the close future. After correct choices, this means that weights will be 

adjusted to repeat the same choice upon observing a similar input in the future. After incorrect 

choices, the aim is to adjust the weights to perform the opposite choice, instead. Our model 

predicts that, after an easy correct choice, in which confidence can be expected to be high, the 

weight adjustments are lower than after hard correct choices (see Fig. 1d top, green line). As a 

consequence, we would expect the model to be more likely to repeat the same choices after 

correct and hard, than after correct and easy trials. 

To test this prediction, we relied on the same simulation to generate Fig. 2b to measured 

how likely the model repeated the same choice after correct decisions. Figure 4a illustrates that 

this repetition bias manifests itself in a shift of the psychometric curve that makes it more likely to 

repeat the previous choice. Furthermore, and as predicted, this shift is modulated by the difficulty 
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of the previous choice and is stronger if the previous choice was easy (i.e., associated with a large 

|𝜇|; Fig. 4b). Therefore, if the decisionmaker expects to operate in a volatile, slowly changing 

world, our model predicts a repetition bias to repeat the same choices after correct decisions, and 

that this bias is stronger if the previous choice was easy. 

 

Unreliable feedback reduces learning 
What would occur if choice feedback is less-than-perfectly reliable? For example, the feedback 

itself might not be completely trustworthy, or hard to interpret. We simulated this situation by 

assuming that the feedback is inverted with probability 𝛽. Here, 𝛽 = 0 implies the so far assumed 

perfectly reliable feedback, and 𝛽 = 1/2 makes the feedback completely uninformative. This 

change impacts how decision confidence modulates the learning rate (Fig. 4c) as follows. First, 

it reduces the overall magnitude of the correction, with weaker learning for higher feedback noise. 

Second, it results in no learning for highly confident choices that we are told are incorrect. In this 

case, one’s decision confidence overrules the unreliable feedback. This stands in stark contrast 

to the optimal learning rule for perfectly reliable feedback, in which case the strongest change to 

the current strategy ought to occur. 

 

Discussion 
Diffusion models are applicable to model decisions that require some accumulation of evidence 

over time, which is almost always the case in natural decisions. We extended previous work on 

the normative foundations of these models to more realistic situations in which the sensory 

evidence is encoded by a population of neurons, as opposed to just two neurons, as has been 

typically assumed in previous studies.  We have focused on learning the weights from the sensory 

neurons to the decision integrator without additionally adjusting the decision boundaries, as 

weight learning is a problem that needs to be solved even if the decision boundaries are optimized 

at the same time. We have addressed how to best tune these boundaries elsewhere (8, 30). 

From the Bayesian perspective, weight learning corresponds to finding the weight 

posterior given the provided feedback, and resulted in an approximate learning rule whose 

learning rate was strongly modulated by decision confidence. It suppressed learning after high-

confidence correct decisions, supported learning for uncertain decisions irrespective of their 

correctness, and promoted strong change of the combination weights after wrong decisions that 

were made with high confidence (Fig. 1d). As we have previously shown (21), such a modulation 

by decision confidence should arise in all scenarios of Bayesian learning in N-AFC tasks in which 
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the decision maker only receives feedback about the correctness of their choices, rather than 

being told which choice would have been correct. In the 2-AFC task we have considered, being 

told that one’s choice was incorrect automatically reveals that the other choice was correct, 

making the two cases coincide. Moving from one-dimensional to higher-dimensional inputs 

requires performing the accumulation of evidence for each input dimension separately (Fig. 1b; 

Eqs. (6) &  (12) require 𝒙(𝑡) rather than only 𝒘a𝒙(𝑡)), even if triggering choices only requires a 

linear combination of 𝒙(𝑡). This is because uncertain input weights require keeping track of how 

each input dimension contributed to the particle crossing the decision boundary in order to 

correctly improve these weights upon feedback (i.e., proper credit assignment). Multi-dimensional 

evidence accumulation arises naturally if inputs encode full distributions across the task-relevant 

variables, such as in linear probabilistic population codes (31) that trigger decisions by bounding 

the pooled activity of all units that represent the accumulated evidence (32). 

Continual weight learning predicts sequential choice dependencies that make the 

repetition of a previous, correct choice more likely, in particular if this choice was difficult (Fig. 4). 

Thus, based on assuming a volatile environment that promotes a continual adjustment of the 

decision-making strategy, we provide a rational explanation for sequential choice dependencies 

that are frequently observed in both humans and animals (e.g., 33, 34). In rodents making 

decisions in response to olfactory cues we have furthermore confirmed that these sequential 

dependencies are modulated by choice difficulty, and that the exact pattern of this modulation 

depends on the stimulus statistics, as predicted by our theory (35) (but consistency with (36) 

unclear).  

Lastly, we have clarified how prior biases ought to impact Bayes-optimal decision-making 

in diffusion models. Extending the work of Hanks et al. (18), we have demonstrated that the exact 

mechanisms to handle these biases depend on the specifics of how these biases are introduced 

through the task design. Specifically, we have suggested a variant that simplifies these 

mechanisms and the learning of this bias. This variant should make the evidence accumulation 

offset, that has previously been suggested to be time-dependent, independent of time, and it 

would be interesting to see if LIP activity of monkeys performing the random-dot motion task, as 

recorded by Hanks et al., would change accordingly. 

 

Materials and Methods 
We here provide an outline of the framework and its results. Detailed derivations are provided in 

the SI. 
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Bayesian decision-making with one and multi-dimensional diffusion models 

We assume the latent state to be drawn from 𝜇 ∼ N[𝑚, 𝜎/0\, and the momentary evidence in each 

time step 𝛿𝑡 to provide information about this latent state by 𝛿𝑧4|𝜇 ∼ N(𝜇𝛿𝑡, 𝛿𝑡). The aim is to infer 

the sign of 𝜇, and choose 𝑦 = 1 if 𝜇 ≥ 0, and 𝑦 = −1 otherwise. After having observed this 

evidence for some time 𝑡 ≡ 𝑛𝛿𝑡, the posterior 𝜇 given all observed evidence 𝛿𝑧2:9 is by Bayes’ 

rule given by 

 

 𝑝(𝜇|𝛿𝑧2:9) ∝ N[𝜇|𝑚, 𝜎/0\� N(𝛿𝑧4|𝜇𝛿𝑡, 𝛿𝑡)
9

4=2
∝ Nm𝜇|

𝜎/H0𝑚 + 𝑧(𝑡)
𝜎/H0 + 𝑡

,
1

𝜎/H0 + 𝑡
o. (11) 

 

In the above, all proportionalities are with respect to 𝜇, and we have defined 𝑧(𝑡) = ∑ 𝛿𝑧49
4=2  and 

have used 𝑡 = ∑ 𝛿𝑡9
4=2 . How to find the posterior belief for about 𝜇’s sign with 𝑚 = 0 is described 

around Eq. (1). 

We extend diffusion models to multi-dimensional inputs with momentary evidence 

δ𝒙4|𝜇,𝒘 ∼ 𝑁[(𝒂𝜇 + 𝒃)𝛿𝑡, 𝚺𝛿𝑡\, with 𝒂, 𝒃 and 𝚺 chosen such that 𝒘a𝒙(𝑡)|𝜇 = 𝑧(𝑡)|𝜇 ∼ 𝑁(𝜇𝑡, 𝑡), as 

before. The posterior over 𝜇 and 𝜇 ≥ 0 is the same as for the one-dimensional case, with 𝑧(𝑡) 

replaced by 𝒘a𝒙(𝑡). Definining 𝒙b(𝑡) = 𝒙(𝑡)/F𝜎/H0 + 𝑡, we find 𝑝(𝜇 ≥ 0|𝒘, 𝒙(𝑡), 𝑡) = 𝛷(𝒘a𝒙b(𝑡)). As 

𝑦 = 1 and 𝑦 = −1 correspond to 𝜇 ≥ 0 and 𝜇 < 0, and 𝑦 = 1 is only chosen if 𝑝(𝜇 ≥ 0|𝒘, 𝒙(𝑡), 𝑡) ≥

1/2, the decision confidence for 𝑚 = 0 at some boundary 𝒘a𝒙(𝑡) = ±𝜃(𝑡) is given by 

𝛷 �𝜃(𝑡)/F𝜎/H0 + 𝑡�. If input weights are unknown, and the decision maker holds belief 𝒘 ∼

N(𝝁), 𝜮)) about these weights, the decision confidence needs to additionally account for weight 

uncertainty by marginalizing over 𝒘, resulting in Eq. (5). 

Probabilistic and heuristic learning rules 

We find the approximate posterior 𝑞(𝒘) = 	𝑁(𝒘|𝝁)∗ , 𝜮)∗ ) that approximates the target posterior 𝑝 

Eq. (4) by Assumed Density Filter (ADF). This requires minimizing the Kullback-Leiber divergence 

𝐾𝐿(𝑝|𝑞) (25, 26), resulting in Eq. (6) for the posterior mean, and  

 

 𝜮)∗ = 𝜮) + 𝜉���(𝛾)((𝜮)H2 + 𝒙b𝒙ba)H2 − 𝜮)), (12) 

 

with learning rate modulators 𝜉)(𝛾) = N(𝛾|0,1)/Φ(𝛾) and 𝜉���(𝛾) = 𝜉)(𝛾)0 + 𝜉)(𝛾)𝛾, and where 

we have defined 𝛾 ≡ 𝑦∗𝝁)a 𝒙b/n1 + 𝒙ba𝜮)𝒙b, which is monotonic in the decision confidence, Eq. (5). 
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Noisy choice feedback (Fig. 4c) changes the likelihood to assume reversed feedback with 

probability 𝛽, and follow the same procedure as above to derive the posterior moments (see SI). 

The ADF variant that only tracks the diagonal covariance elements assumes 𝚺) to be diagonal, 

and only computes the diagonal elements of 𝚺)∗ . A second-order Taylor expansion of the log of 

Eq. (4) leads to update equations similar to Eqs. (6) and (12), but without the normalization by 

weight uncertainty (see SI for details). All heuristic learning rules are described in the main text. 

 We modeled non-stationary input weights by 𝒘9|𝒘9H2 ∼ N(𝑨𝒘9H2 + 𝒃, 𝚺�)  after a 

decision in trial 𝑛 − 1. This weight transition is taken into account by the probabilistic learning 

rules by setting the parameter priors to 𝝁),9 = 𝑨𝝁),9H2∗ + 𝒃 and 𝚺),9 = 𝑨𝚺),9H2∗ 𝑨a + 𝚺�. For 

stationary weights we have 𝑨 = 𝑰, 𝒃 = 0, and 𝚺� = 𝟎. 

Bayes-optimal weight inference was for stationary weights performed by Gibbs sampling 

for Probit models, and for non-stationary weights by particle filtering (see SI). 

Simulation details 

We used parameters 𝒂 = 𝒘/‖𝒘‖0 and 𝒃 = 𝟎 for the momentary evidence 𝛿𝒙. Its covariance 𝚺 

was generated to feature eigenvalues that drop exponentially from 𝜎�0 = 2/‖𝒘‖0 to zero until it 

reaches a constant 𝜎B0 = 0.001/‖𝒘‖0 noise baseline, as qualitatively observed in neural 

populations. It additionally contains an eigenvector 𝒘 with eigenvalue set to guarantee 𝒘a𝚺𝒘 =

1, limiting the information that 𝛿𝒙 provides about 𝜇. For non-stationary weights, all momentary 

evidence parameters are adjusted after each weight change (see SI). The diffusion model bounds 

±𝜃 were time-invariant and tuned to maximize the reward rate when using the correct weights. 

The reward rate is given by (𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡) − 𝑐�����〈𝑡〉)/(𝑡4�4 + 〈𝑡〉), where averages where across 

trials, and we used evidence accumulation cost 𝑐����� = 0.01 and inter-trial interval 𝑡4�4 = 2𝑠. We 

used 𝜎/0 = 30 to draw 𝜇 in each trial, and drew 𝒘 from 𝒘~N(𝟏, 𝑰) before each trial sequence. For 

non-stationary weights, we re-sampled weight after each trial according to 𝒘9|𝒘9H2~N[𝜆𝒘9H2 +

(1 − 𝜆), 𝜎�0𝑰\, with decay factor 𝜆 = 1 − 0.01 and 𝜎�0 = 1 − 𝜆0 to achieve steady-state mean 𝟏 and 

identity covariance. 

To compare the weight learning performance of ADF to alternative models (Fig. 2a), we 

simulated 1,000 learning trials 5,000 times, and reported the reward rate per trial averaged across 

these 5,000 repetitions. To assess steady-state performance (Fig. 2b), we performed the same 

procedure with non-stationary weights, and reported reward rate averaged over the last 100 trials, 

and over 5,000 repetitions. The same 100 trials were used to compute the sequential choice 

dependencies in Fig. 4a/b. To simulate decision-making with diffusion models and uncertain 

weights, we used the current mean estimate 〈𝒘〉	of the input weights to linearly combine the 
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momentary evidence. The probabilistic learning rules were all independent of the specific choice 

of this estimate. The learning rate in Fig. 1d shows the pre-factor to 𝑦∗𝜮)𝒙b in Eq. (6) over decision 

confidence for a subsample of the last 10,000 trials of a single 15,000 trial simulation with non-

stationary weights. For the Gibbs sampler, we drew 10 burn-in samples, followed by 200 samples 

in each trial. For the particle filter we simulated 1,000 particles. 
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