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Abstract

The connectivity pattern and function of the recurrent connections in the primary visual

cortex (V1) have been studied for a long time. But the underlying mechanism remains

elusive. We hypothesize that the recurrent connectivity is a result of performance

optimization in recognizing images. To test this idea, we added recurrent connections
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within the first convolutional layer in a standard convolutional neural network, mimicking

the recurrent connections in the V1, then trained the network for image classification

using the back-propagation algorithm. We found that the trained connectivity pattern was

similar to those discovered in biological experiments. According to their connectivity,

the neurons were categorized into simple and complex neurons. The recurrent synaptic

weight between two simple neurons is determined by the inner product of their receptive

fields, which is consistent with the Hebbian rule. Functionally, the recurrent connections

linearly amplify the feedforward inputs to simple neurons and determine the properties

of complex neurons. The agreement between the model results and biological findings

suggests that it is possible to use deep learning to further our understanding of the

connectome.

1 Introduction

The mono-synaptic excitatory recurrent (or lateral) circuit in layer 2/3 (Gilbert and

Wiesel, 1983) and layer 4 (Li et al., 2013) of V1 is one of the most well-studied circuit

in the cortex. In some species like ferret (Bosking et al., 1997) and cat (Schmidt et al.,

1997), it is found that neurons in different columns with collinearly located receptive

fields (RF) tend to have long-range connections. The short-range connections are harder

to be studied, and only a few studies were carried out in mice (Ko et al., 2011, 2013,

Cossell et al., 2015), which does not have the columnar organization in V1. It was found

that the neurons with similar orientation tuning and high RF correlation are more likely

to be connected (Ko et al., 2011, Lee et al., 2016), and tend to have strong synaptic
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weight (Cossell et al., 2015).

At the physiological level, based on the anatomical evidences described above,

it is widely accepted that the excitatory recurrent connections contribute to collinear

facilitation (Nelson and Frost, 1985, Kapadia et al., 1995, Chisum et al., 2003). They

are also hypothesized to linearly amplify the feedforward input, which is supported by

both theoretical analysis (Martin and Suarezt, 1995) and experimental evidence (Li et al.,

2013). The full recurrent circuit (excitatory and inhibitory) also take part in surround

suppression (Weliky et al., 1995, Adesnik et al., 2012). At the perceptual level, some

studies proposed that they take part in functions like contour integration (Li, 1998) and

saliency map (Li and Gilbert, 2002). Adini et al. (2002) used recurrent connections to

explain the improved contrast discriminating performance after practicing in the presence

of similar laterally placed stimuli. But it is unclear if it is these factors that entail the

recurrent connectivity pattern because these studies only show that recurrent connections

enable such computations. A computational model that explains the emergence of the

recurrent connectivity pattern is still lacked. In this study, we explore this problem by

assuming that the recurrent connectivity is a result of performance optimization in visual

recognition.

The recent rising of the artificial neural networks gives us an inspiration. The

convolutional neural network (CNN) shows many similarities with the biological visual

system. Structurally, both of them are composed of hierarchical layers, and each layer

is composed of many units (columns), different units process information in different

locations. Functionally, most kernels of the first convolutional layer are Gabor filters,

resembling the RF of V1 neurons (Krizhevsky et al., 2012), the feature representation in
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higher-level is correlated with that in area V4 and IT (inferior temporal) cortex (Yamins

et al., 2014). In k-categories image recognition task with N training samples, the

synaptic weights of CNN, denoted by w, are usually obtained by minimizing the cost

function:

E(w) = − 1

N

N∑
n=1

p(xn) · log(p̂w(xn)) +
1

2
α||w||2, (1)

where p(xn) is a k-dimensional one-hot vector and stands for the ground truth provided

for the sample xn, and p̂w(xn) is the predicted answer given by the CNN. The first term

measures on average how close the answer is to the ground truth. The second term

encourages small weights by using the l2 norm regularization, which imposes weight

decay to all connection weights during training. It is a standard method for preventing

overfitting. In other words, the goal of CNN is two-folded: “better fitting” and “simpler

structure”. The coefficient α controls the weights of these two goals.

We hypothesize that during millions of years of evolution, the brain also pursues

these two goals. Thus the functional similarity between the brain and CNN may root

in the similarity between their cost functions. Furthermore, if we introduce recurrent

connections in the CNN and optimize it for image classification, its connectivity might

also be similar to that of the brain. In this work, we adopted a CNN incorporated with

recurrent connections in the first layer, and trained it for image classification task. It

was found that both the resultant connectivity and the functional roles of the recurrent

connections in the first layer were very similar to that of V1.
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1.1 Related work

Neuroscience and deep learning can benefit each other (see Hassabis et al. (2017) for a

recent review). In particular, in recent years, deep neural networks have been used to

reveal functional mechanisms of the brain. Yamins et al. (2014) showed that the responses

of V4 and IT neurons can be linearly regressed with the responses of a performance-

optimized deep network. Khaligh-Razavi and Kriegeskorte (2014) compared tens of

computational models and found that supervised deep models better explain IT cortical

representation for natural images than unsupervised models. Based on experiments on

pretrained deep neural networks on large image datasets, Zhuang et al. (2017) predicted

the correlation of neural response sparseness and a functional signature of higher areas

in the visual pathway. These studies focus on the functional properties of neurons and

did not study the connectivity patterns among neurons.

Song et al. (2016) investigated the connectivity of a recurrent network that is opti-

mized in several cognitive tasks. But first, although they got a full connection matrix,

they did not find a clear connectivity pattern in the neuronal level; second, there is

no certain corresponding brain region for their model, so it is hard to confirm their

connectivity predictions in biological experiments.

Liang and Hu (2015) proposed the recurrent convolutional neural network (RCNN)

and showed that the extra recurrent connections can improve the classification accuracy

of the standard CNN. Spoerer et al. (2017) showed that RCNN performed significantly

better in object recognition task under occlusion. Liao and Poggio (2016) demonstrated

the relationship between recurrent circuits and the Residual network (He et al., 2016).

McIntosh et al. (2016) built a CNN to model retina response data, and found that the
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introduction of lateral connection in their model enabled it to capture contrast adaptation.

But the recurrent connectivity pattern in all of these works was not discussed.

2 Methods

2.1 Dataset

For the ease of training, we selected 50 classes of images from the Imagenet dataset

(Deng et al., 2009), resulting in a dataset with 64494 training samples and 2500 validation

samples. In addition, we resized images to 64×64 pixels and converted them to grayscale

because we did not intend to analyze the color information.

2.2 Network Design

First, we designed a feedforward network as the baseline. Its first convolutional layer

has 64 7× 7 kernels, and other details of the architecture are shown in Table 1. To model

the recurrent connection, we adopted a modified version of RCNN (Liang and Hu, 2015).

An extra 7 × 7 convolutional layer which receives input from the first layer and then

sends output back is designed to model the recurrent connections in the first layer. Since

the number of parameter of this recurrent convolution kernel is too large (7×7×64×64)

to be fully optimized, it is factorized as a channel-wise 7× 7 convolution and a cross-

channel 1× 1 convolution. The number of parameters of the recurrent layer is reduced to

7×7×64+64×64 via this simplification. The 1×1 convolution simulates intra-column

connection, and the channel-wise convolution simulates the inter-column connection

(Figure 1a). The simplification means that a neuron does not connect to another neuron
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with a different RF shape at a different location. According to biological finding (Gilbert

and Wiesel, 1989), this simplification is reasonable. The network architecture is shown

in Figure 1b.

The computation process in the first layer can be written as:

Zk = Rk ∗ I,

Yk = [Zk]+,

Za
k = Ca

k ∗ Yk,

Zb
k =

∑
j

Cb
jkYj,

Y ′k = [Zk + Za
k + Zb

k]+,

(2)

where ∗ denotes the convolution operation, k is the index of the feature map, [·]+ denotes

the rectify linear function, R ∈ R64×7×7 denotes the feedforward convolutional kernels

(also called feedforward RFs), Ca ∈ R64×7×7 denotes the inter-column connection,

Cb ∈ R64×64 denotes the intra-column connection.

For convenience, we name the feedforward model as FFM and the model with

recurrent connections as RCM.

2.3 Optimization & Constraints

The gradients of parameters with respect to the loss function (1) are calculated with

back-propagation algorithm (Rumelhart et al., 1986), and the stochastic gradient descent

method was used to update the parameters. The initial learning rate was set to 0.01 for

the first 100 epochs and decayed by a factor 0.1 every 100 epochs. A total of 400 epochs

was used. The momentum was set to 0.9, and the coefficient α was set to 0.0005.
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Table 1: The architecture of the baseline model
Layer Data Conv1 Pool1 Conv2 Pool2 Conv3 Pool3 Conv4 Pool4 Conv5 Pool5 Classifier

Param
Mean

subtraction

7x7, Pad 3

St 1, ReLU

Max, 2x2

St 2

3x3, Pad 1

St 1, ReLU

Max, 2x2

St 2

3x3, Pad 1

St 1, ReLU

Max, 2x2

St 2

3x3, Pad 1

St 1, ReLU

Max, 2x2

St 2

3x3, Pad 0

St 1, ReLU

Ave, 2x2

St 2, Drop 0.5
Softmax

Size 64x64x1 64x64x64 32x32x64 32x32x64 16x16x64 16x16x128 8x8x128 4x4x256 4x4x256 2x2x384 1x1x384 1x1x50

St: stride, Drop: dropout ratio, Ave/Max: average/max pooling, Pad: padding

Our goal is to simulate the function of pyramid neurons and the connections between

them, so the recurrent connections (Ca, Cb) were constrained to be positive. In addition,

the self-connections (Ca
k44, C

b
kk) were set to zero. These constraints were achieved by

setting all negative weights and self-connections to zero after every updating iteration.

3 Results

3.1 Feedforward RFs

The RFs of all neurons in the first layer in the model are shown in Figure 2. There were

13 neurons with extremely low RF amplitudes and irregular RF shapes. They are called

“complex” cells, and the reason will be discussed later. The others are called “simple”

neurons.

We fitted the RFs of all simple neurons with the Gabor function. We found that

some 7× 7 kernels were over-fitted, so we padded all kernels to 11× 11 with 0 before

fitting. Based on the fitting error, orientation selectivity, spatial frequency limitation, we

selected 22 Gabor-like RFs, and named them Gabor neurons. The other 29 neurons are

called Non-Gabor neurons.
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(a)
(b)

Figure 1: The architecture of the model. (a) The diagram of the first convolutional layer.

Three large rectangles stand for three different feature maps. Note the columnar structure

and intra/inter-column connections. (b) Left panel: The structure of the whole network

which has 5 layers. Recurrent connections are introduced in the first layer. Right panel:

The designing details of the first layer. Conv: convolution; ReLU: rectified linear unit;

Pool: pooling.
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3.2 Connectivity among layer one neurons

3.1 Intra-column connections

We first extracted the preferred orientation of every Gabor neuron. It was found that

neurons with closer preferred orientation tend to have larger synaptic weights (Figure 3a).

Then we fitted the synaptic weights with RF correlation. Consistent with the biological

findings by Cossell et al. (2015), the latter fitting was better than the former (Figure 3b).

An even better fitting was obtained using the inner product of the two RFs as it explained

most variance (r2 = 0.86, Figure 3c). The fitting equation is

Cij = [v Inner(Ri,Rj)]+, (3)

where Ri denotes the RF of the i-th neuron, Cij denotes the synaptic weight from j-th

neuron to i-th neuron, Inner(x, y) stands for the inner product between x and y, and [ ]+

stands for the rectifier function max(0, x). Because the mean value of Ri was close to 0,

the equation can be equivalently written as:

Cij = [vAiAj Corr(Ri,Rj)]+, (4)

where Corr(x, y) denotes the correlation between x and y, and Ai denotes the amplitude

or the norm of Ri. It means that the neurons with higher average firing rate and more

similar receptive fields tend to have larger synaptic weight, which exactly reflects the

Hebbian rule.

3.2 Inter-column connections

Notice that because we factorized the convolution operation, each neuron only receives

inter-column signals from other neurons with the same RF shape. So each feedforward
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convolution kernel connecting the input image and a feature map corresponds to an

inter-column convolution kernel in that feature map. The corresponding feedforward

RFs and inter-column recurrent kernels are shown in the left panel of Figure 4a. Notice

that the orientations of recurrent connection kernels are very similar to those of their

corresponding feedforward convolution kernels, indicating that the neurons with collinear

RFs tend to excite each other, a phenomenon called collinear facilitation for V1 neurons

(Bosking et al., 1997). See the right panel of Figure 4a for an illustration.

We then investigated the quantitative relationship between the inter-column connec-

tion weights and the corresponding pairs of RFs. Note that the RF shapes of all neurons

in the same feature map are the same but their locations are different. So to make a

pair of RFs match each other in spatial location, they are shifted and padded with zeros.

Using these RFs, it was found that the inter-column connections also satisfied Equation

(4) (Figure 3d). Even the fitting coefficients are close to that of intra-column connections.

3.3 Emergence of “complex” neurons

The full connection matrix of intra-column connections is shown in Figure 4b. Most

neurons had quite symmetric intra-column synaptic weights. But some neurons only

received intra-column recurrent inputs but did not send output. In addition, the amplitudes

of their feedforward RFs were very low, so the feedforward activation was almost zero.

In other words, the properties of this kind of neuron are solely determined by other

neurons connected to it by intra-column connections. This connection pattern is similar
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Figure 2: The feedforward RFs of all neurons.
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Figure 3: The statistical connectivity pattern of the Gabor neurons in the model. (a-c)

Fitting intra-column connection weights of Gabor neurons with preferred orientation

difference (a), RF correlation (b), and RF inner product (c). (d) The same as (c) for

inter-column connections of the Gabor neurons.
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Figure 4: The illustration of the recurrent connection pattern. (a) The illustration of the

inter-column connection. Left panel: the colorful images show the RF of Gabor neurons,

and the gray scale images show the inter-column connection matrix of its corresponding

RF. Right panel: Enlarged illustration for the inter-column connection matrix highlighted

in the left panel. Each grid block corresponds to an entry of recurrent connection matrix

and stands for the connection strength between a neuron pair. The distance between a

grid block and the central grid block stands for the displacement between the RFs of

pre- and post-synaptic neurons. In each grid, the dashed line RF and filled RF stand for

the pre- and post-synaptic neurons, respectively. Only the strong connections (stronger

than 0.2 times the strongest connection) are shown. (b) The intra-column connection

matrix of all neurons. Each row stands for the output connections of a neuron, and each

column stands for the input connections of a neuron. The Gabor neurons are sorted by

their preferred orientations, while non-Gabor and complex neurons are clustered based

on their connectivity similarity.
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to that of complex neurons in V1, so we call them “complex” neurons 1.

For other non-Gabor neurons, most of them had similar properties with Gabor

neurons: symmetric connections, clustering with similar neurons, and satisfying Equation

3. in other words, they are simple cells without perfect Gabor RFs.

3.4 Non-random connectivity pattern

Song et al. (2005) found that one notable feature of the recurrent connections in the

cortex is their non-random motifs. That is to say, the frequency of some two-neuron and

three-neuron connectivity patterns (motifs) is higher than that of a randomly connected

network. We conducted the same analysis in our model using the whole intra-column

connection matrix.

First, to model the binary connection in the original study (Song et al., 2005), we

binarized the connection matrix. The basic idea of binarizing is that the connections

with larger weights are more likely to be kept:

w′ =


1, P = cw,

0, P = 1− cw,

where w is the synaptic weight, w′ is the binarized weight, and c is a probability

normalization factor. c was adjusted so that the overall connection probability was

11.6%, which is consistent with the original research (Song et al., 2005). The distribution

of the initial weights (w) and chosen weights (w′w) are shown in Figure 5a. Then we

counted the frequency of all two-neuron and three-neuron patterns in this network relative

1Usually the max-pooling neuron is considered to act as complex neuron because they have translation

invariance. Not all of the “complex” neurons in this study have this property. We use the term “complex”

just because these neurons cannot be described by simple linear filter.
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to those in a random network. The ratio between the two frequencies for each motif

reflects “non-randomness” of the motif in our network. The results of the two-neuron

motifs were very similar to physiological data, and the results of several three-neuron

motifs (such as #14, 15, 16), but not all (such as #5, 11, 12), were similar to physiological

data.

3.3 Functional roles of recurrent connections

To investigate the effect of recurrent computation, we compared the activation of a

typical Gabor neuron before and after recurrent computation (Figure 6a). It was found

that the total activation was basically a linear amplification of the feedforward activation

for Gabor neurons except for one outlier, and the amplifying ratio was around 3.5 (Figure

6b). This phenomenon was also observed in the layer 4 neurons in V1 (Li et al., 2013).

Another well-known function of recurrent connections is collinear facilitation. We

examined the response of each Gabor neuron when it was presented with a bar stimulus

with the neuron’s preferred orientation and location. The relationship between the activity

and the bar length relative to the RF length are plotted in (Figure 6c). The activation of

the Gabor neuron after recurrent computation still grows when the length of the bar goes

beyond the RF length. The length of summation field was about 2 times as the RF length,

and the response magnitude could be improved by around 20% by collinear facilitation.

The magnitude of collinear facilitation in our model was slightly weaker than that

found in experiments (Chisum et al., 2003, Angelucci and Bressloff, 2006). The reason

for this discrepancy might be that RF mapped in the biological experiments tend to be

smaller than true RF due to high noise in biological experiments.
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Figure 5: Emergence of nonrandom connectivity patterns. (a) The distribution of the

weights in intra-column recurrent connection matrix and the weights chosen to be

connected for motif analysis. The x-axis is in log-scale. (b) The reciprocal connection

probability is higher than random probability. (c) The three-neuron patterns probability

relative to the random network. The results in (b) and (c) are averaged from four

independent experiments, the error bars indicate the standard deviation.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2018. ; https://doi.org/10.1101/244350doi: bioRxiv preprint 

https://doi.org/10.1101/244350
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0 1.5 3.0 4.5
Y

0

5

10

15

Y′
Slope=3.31
r2=0.89

100

101

102

103

(a)

3 4 5 6 7 8
Slope

5

10

Co
un

t

0.4 0.6 0.8
r2

0

5

10

Co
un

t

(b)

0.0 0.5 1.0 1.5 2.0 2.5
Relative length of bar

20

40

60

80

100

%
 M

a
x
 r

e
sp

o
n
se

(c)

Figure 6: Functional roles of the recurrent connections. (a) The activity of a typical

Gabor neuron before (Y ) and after (Y ′) the recurrent computation. The color stands for

data density. (b) The summary of results of linearly fitting the activation before and after

recurrent computation for all Gabor neurons. Upper panel: the histogram of amplifying

ratio (slope). Lower panel: the histogram of the correlation coefficient. The outlier in the

upper panel corresponds to that in the lower panel. (c) The collinear facilitation effect.

The x-axis indicates the bar length relative to the length of the RF. The y-axis indicates

the response relative to the response to the longest bar. The data is averaged across all

Gabor neurons, the error bars indicate the standard deviation.

To visualize the collinear facilitation directly, we feed a dashed line image to the

network, and choose a neuron whose preferred orientation is the same as the dashed

line. The representation of the chosen neuron (its feature map) is shown in Figure 7.

Before recurrent computation, the neurons whose RF located between two dashes has

nearly 0 activation. But after recurrent computation, the activations of these neurons

are strengthened so that the representation of the whole dashed line becomes more

continuous. This effect is called contour completion.
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I R Y Y ′

Figure 7: Contour completion effect. Left to right: the input image; the RF of the

inspecting neuron; the representation (feature map) of the inspecting neuron before

recurrent computation; the same as the last one, but after recurrent computation.

3.1 Effect of regularization level

We tried different α levels (α = 0, α = 0.0005, α = 0.005) in both FFM and RCM, and

found that the performance and resultant connectivity strongly depended on α. When

α = 0, FFM showed better performance than RCM. In addition, the relationship between

RF inner product and connection weights becomes noisy (Figure 8b). The functional role

of recurrent connections was no longer linear amplifying, either. These results suggest

that the l2 regularization term is necessary for the emergence of the recurrent connectivity

pattern described above. When α = 0.0005, the RCM slightly outperformed FFM. When

α = 0.005, RCM performed significantly better than FFM (Figure 8a). That is to say,

recurrent connection plays more important role in models with higher α. We provide a

more detailed explanation in the next section.
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Figure 8: The influence of the regularization factor. (a) The recognition performance

of FFM and RCM under different regularization level (α). The error bars indicate the

standard deviation. N=4 for each condition. (b) The recurrent connection pattern found

in RCM without the regularization term. The analysis is the same as that for Figure 3c

and 3d.

4 Discussion

In this work, we optimized a CNN equipped with monosynaptic excitatory recurrent

connections by purely supervised learning and found that the recurrent connection pattern

is similar to which discovered in the brain. And the resultant synaptic weights can be

explained by Hebbian rule, which improves the biological plausibility of our results.

4.1 The existence of AiAj

Cossell et al. (2015) have revealed that synaptic weight between a pair of V1 neurons

is related to the correlation of their RFs. We introduce new factors: the amplitudes of

RFs, Ai and Aj in Equation (4). So a natural question is whether these two factors are

reasonable. Due to technical difficulties, this hypothesis can not be tested directly by

experiment. Fortunately, we still have two pieces of indirect supporting evidence in
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biological experiments. First, the fitting in the original report (Cossell et al., 2015) was

not good enough—the weights between some neuron pairs with high RF correlation were

very low. This can be explained by introducing a low amplitude to one of these neurons in

our model. Second, if V1 neurons are categorized into “responsive” and “unresponsive”

neurons according to their responsiveness to visual stimuli, the connection probability

among the “responsive” neurons is found to be higher than that among “unresponsive”

neurons (Mrsic-Flogel, 2012). This is consistent with Equation (4) because Ai and Aj

reflect the responsiveness.

4.2 Recurrent connections can reduce l2 cost

In the FFM, we added an l2 regularization term to the loss function. The parameter α

controls the trade-off between fitting variance and bias. A proper α value can reduce the

fitting variance and thus improve generalization ability, but when α grows too big, the

fitting is biased and the weights after training are discounted (left panel of Figure 9).

In the RCM, a layer 1 neuron connects to neurons with similar RFs. In effect, these

connections act as extra feedforward paths, compensate the weight decay effect and

remedy the fitting bias (right panel of Figure 9). The recurrent connections also suffer

from weight decay, but the total l2 cost of RCM can be smaller than that of FFM. Because

the l2 term punishes the large synapses more, breaking a large synapse into several smaller

synapse can be economical. To see this, consider a feedforward system composed of

two neurons with the same RF w. An equivalent recurrent system is composed of two

neurons with 1
2
w and reciprocal connection 1. The total l2 terms for these two systems

are 2||w||2 and 1
2
||w||2 + 2 respectively. So when ||w||2 is large enough, the recurrent
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Figure 9: An illustration of the effect of recurrent connections. Left panel: in FFM, the

presence of large l2 regularization makes the trained parameter strongly discounted. Right

panel: in RCM, the recurrent connections act as a linear amplifier of the feedforward

connections, and the weights can be less discounted with the same total l2 cost as in the

FFM.

connections are economical. This effect is even more significant in a large system,

and that is why the amplification ratio in our model is so high (Figure 6b). There is

another factor that favors recurrent connections: in the brain, feedforward connections

are much longer than recurrent connections, thus the maintaining and transferring cost

on feedforward connections may be larger than that on recurrent connections.

4.3 Limitations

As a preliminary exploration, this study has many limitations. First, only supervised

learning is considered but it is well-known that unsupervised learning is also very

important for the survival of animals. We could only argue that supervised learning can

lead to the experimentally found recurrent connectivity pattern in V1, but do not exclude

the contribution of unsupervised learning in shaping this pattern.

Second, biological plausibility of the back-propagation algorithm used in training
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the model is controversial. But the point we want to emphasize in this study is the loss

function, not the specific optimizing algorithm. Biological system may use another

algorithm to achieve the same solution.

Finally, for technical reasons (training a deep model on a large number of images as

in this study is not an easy task), we have made some simplifications in modeling. For

example, inhibitory neurons were not incorporated in the model, recurrent connections

were factorized into inter-column and intra-column part, and the number of recurrent

steps was only one. So some important roles of recurrent connections, such as surround

suppression and normalization, can not be explained by this model.
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