1	
2	Oscillating bacterial expression states generate herd immunity to viral infection
3	
4	
5	Christopher J. R. Turkington ^{a,c} , Andrey Morozov ^b , Martha R. J. Clokie ^c ,
6	Christopher D. Bayliss ^a #
7	
8	Department of Genetics and Genome Biology, University of Leicester, Leicester, United
9	Kingdom ^a ; Department of Mathematics, University of Leicester, Leicester, United
10	Kingdom ^b ; Department of Infection, Immunity, and Inflammation, Leicester, United
11	Kingdom ^c
12	
13	Running Head: Bacterial herd immunity against viral infection
14	
15	#Address correspondence to Christopher D. Bayliss, cdb12@le.ac.uk
16	
17	Abstract word count = 184
18	
19	Main text word count = 4527
20	
21	
22	
23	

24 Abstract:

25 Hypermutable loci are widespread in bacteria as mechanisms for rapid generation of 26 phenotypic diversity, enabling individual populations to survive fluctuating, often 27 antagonistic, selection pressures. As observed for adaptive immunity, hypermutation may 28 facilitate survival of multiple, spatially-separated bacterial populations. We developed an 29 'oscillating prey assay' to examine bacteriophage (phage) spread through populations of 30 Haemophilus influenzae whose phage receptor gene, *lic2A*, is switched 'ON' and 'OFF' 31 by mutations in a hypermutable tetranucleotide repeat tract. Phage extinction was 32 frequently observed when the proportion of phage-resistant sub-populations exceeded 33 34%. In silico modelling indicated that phage extinction was interdependent on phage 34 loss during transfer between populations and the frequency of resistant populations. In a 35 fixed-area oscillating prey assay, heterogeneity in phage resistance was observed to 36 generate vast differences in phage densities across multiple bacterial populations 37 resulting in protective quarantining of some populations from phage attack. We conclude 38 that phase-variable hypermutable loci produce bacterial 'herd immunity' with resistant 39 intermediary-populations acting as a barricade to reduce the viral load faced by phage-40 sensitive sub-populations. This paradigm of meta-population protection is applicable to 41 evolution of hypermutable loci in multiple bacteria-phage and host-pathogen interactions.

42

43 **Importance**

Herd immunity is a survival strategy wherein populations are protected against invading
pathogens by resistant individuals within the population acting as a barrier to spread of
the infectious agent. Although, this concept is normally only applied to higher

47	eukaryotes, prokaryotic organisms also face invasion by infectious agents, such as
48	bacterial viruses, bacteriophage (phage). Here we use novel experimental approaches and
49	mathematical modelling, to show that bacteria exhibit a form of herd immunity through
50	stochastically generated resistant variants acting as barricades to phage predation of
51	sensitive cells. With hypermutable loci found in many prokaryotic systems, this
52	phenomenon may be widely applicable to phage-bacteria interactions and could even
53	impact phage-driven evolution in bacteria.
54	

55 Introduction

56 Hypermutable loci as mediators of survival against constantly fluctuating 57 selection pressures are a predictable outcome of the evolution of evolvability as stated in 58 the Red Queen hypothesis (1, 2). Fluctuating selection pressures are regularly faced by 59 bacteria during persistence in human hosts, where bacteria adhere to host surfaces while 60 contending with varying nutrient concentrations, frequent exposure to immune effectors 61 and predation by bacteriophages. These fluctuations often select for and against opposing 62 gene expression states of single loci leading to evolution of localised hypermutable 63 mechanisms that produce frequent switches in single-gene expression states.

One class of hypermutable loci facilitate survival of conflicting selective
pressures by pre-emptive, frequent, and reversible 'ON/OFF' generation of adaptive
variants, in a process known as 'phase variation' (PV; 2–5). A major mechanism of PV
involves increases and decreases in identical, tandemly-arranged DNA repeats
(microsatellites) by slipped strand mispairing during DNA replication (3, 5, 6). The
obligate human respiratory commensal and pathogen *H. influenzae* contains an expansive

70	array of repeat driven phase variable loci (7–13). Several of these loci are required for
71	addition of sugar molecules onto the surface-exposed outer-core of the
72	lipooligosaccharide (LOS) (5, 7). PV of the UDP-galactose-LOS-galactosyltransferase
73	encoding gene, <i>lic2A</i> , is mediated by a 5'CAAT repetitive tract present in the open-
74	reading frame (14). Phage HP1c1 attaches to an LOS epitope of <i>H. influenzae</i> strain Rd
75	that contains the galactose sugar added by <i>lic2A</i> (15). PV of <i>lic2A</i> causes switching
76	between phage sensitive (<i>lic2A</i> ON) and phage resistant states (<i>lic2A</i> OFF) (15, 16).
77	Partial resistance to phage HP1c1 in strain Rd is also mediated by PV of a Type I
78	restriction-modification (RM) system. PV of surface receptors and RM systems generates
79	resistance to phage infection in several bacterial species (17-22).
80	While phage-receptor PV prevents viral propagation in individual populations, the
81	frequency and distribution of resistant variants within larger meta-populations may also
82	impose inhibitory effects on phage spread through multiple spatially-linked sub-
83	populations. In order to explore this potential benefit, we examined how diversity in
84	phage resistance/sensitivity phenotypes generated by one hypermutable locus, <i>lic2A</i> ,
85	alters spread of phage HP1c1.
86	
87	RESULTS
88	Low numbers of resistant bacterial populations significantly restrict phage spread
89	and densities. PV can generate high levels of ON and OFF variants of single genes
90	within individual populations but also has the potential to generate population-to-
91	population variation within a meta-population. For example, <i>lic2A</i> -positive <i>H. influenzae</i>
92	colonies on agar plates will have most cells in a <i>lic2A</i> ON expression state but will also

93	contain small, but significant, numbers of <i>lic2A</i> OFF variants. Similarly, an <i>H. influenzae</i>
94	meta-population may consist of multiple sub-populations with one fraction being <i>lic2A</i> -
95	positive and another fraction being <i>lic2A</i> -negative. Such population-to-population
96	variation is observed for <i>H. influenzae</i> colonies on agar plates and for <i>H. influenzae</i>
97	populations isolated from artificially-inoculated animals and asymptomatic human
98	carriers (23–27). Proportions of ON and OFF sub-populations in a meta-population will
99	depend on levels of selection for each expression state and on 'founder' effects that
100	influence the starting state of each sub-population. Thus, any phage invading a bacterial
101	meta-population where there is PV of the receptor must contend with highly variable
102	distributions of resistance and sensitive sub-populations.
103	To simulate the effect of phage-receptor PV on spread of phage through bacterial
104	meta-populations we developed the 'oscillating prey assay' (Fig. 1). This assay involves
105	continual cycling of phage through <i>H. influenzae</i> strain Rd cultures with either a majority
106	<i>lic2A</i> ON or OFF phenotype. Each cycle allows for one round of phage replication after
107	which the phage-containing supernatant is recovered, filtered, and transferred to a new
108	culture of either lic2A ON or OFF H. influenzae cells. During transfer, the supernatant is
109	subject to a 10-fold dilution. This arbitrary dilution factor simulates loss of phage during
110	population-to-population transmission.
111	Six population structures were examined in the oscillating prey assay: [1] 100 %
112	ON (HP1c1 cycled only through <i>lic2A</i> ON populations; S100), [2] 66 % ON (2:1 <i>lic2A</i>
113	ON:OFF; S66), [3] 50 % ON (1:1 <i>lic2A</i> ON:OFF, starting with an ON culture; S50), [4]
114	50 % OFF (1:1 <i>lic2A</i> ON:OFF, starting with an OFF culture; R50), [5] 66 % OFF (1:2

lic2A ON:OFF; R66), and [6] 100 % OFF (HP1c1 cycled only through *lic2A* OFF

116 populations; R100). Survival and propagation of phage was dependent on the proportion 117 of phage-resistant sub-populations in each series of 20 cycles (Fig. 2). Survival of phage 118 to the final cycle was only observed when the proportion of phage-resistance populations 119 was \leq 34% (i.e. the S66 and S100 populations; Fig. 2). Extinction events occurred within 120 5 to 16 cycles in all other heterogeneous and homogeneous populations at a rate that was 121 dependent on the proportion of resistant sub-populations. Despite survival of phage 122 through to cycle 20 in the S66 population series, phage densities were significantly decreased by this cycling regime (Fig. 2; paired *t*-test: t = 4.97, P < 0.05; mean \pm SEM 123 124 PFU/mL values for phage densities at cycle $0 = 7.16 \pm 0.26 \times 10^5$ and cycle 20 =125 $2.82 \pm 0.9 \times 10^4$), indicating that further passages with a similar pattern would have 126 resulted in phage extinction. Contrastingly, phage density increased when all sub-127 populations were phage sensitive (S100), with phage densities plateauing after ~ 11 128 cycles. Thus, both phage survival and density were limited by the frequency of 129 encounters with phage-resistant *lic2A* OFF phase variants during passage through a linear 130 series of sub-populations.

131 Detection of combinatorial effects of population structure and dilution rate 132 on phage extinction using an *in-silico* model of phage spread. Our experimental data 133 indicated that meta-population structure had a major impact on phage survival and 134 spread. In order to explore a wider range of linear and non-linear cycling patterns and the 135 effects of dilution rate, we developed a mathematical model of the oscillating prey assay. 136 This model utilized key phage parameters for adsorption rate, replication time, burst size 137 and stability of phage HP1c1 (see Fig. S1). The number of oscillations was extended to 138 105 phage replicative cycles, while cycling patterns were randomised for each specific

overall proportion of *lic2A* ON/OFF sub-populations. The mathematical model produced
comparable findings to the experimental setting (Fig. S2). Multiple runs of this model
exhibited stochastic variation in phage densities and extinction events as observed in the
experimental model but with extinction events occurring over a wider band of replication
cycles (Fig. 3A-B). This model demonstrates that random patterns of ON/OFF expression
states for a phage receptor can limit phage spread.

145 Multiple simulations (n = 200) were performed for each combination of R (the 146 percentage of phage-resistant *lic2A* OFF sub-populations) and C (the inverse of the dilution coefficient). Average phage densities were measured for all cycles and runs of 147 148 each combination of R and C, and phage extinction was defined to occur whenever the 149 density fell below 100 PFU/mL. Phage extinction was always observed when the number 150 of resistant states exceeded 70% of sub-populations, even at a low dilution rate of 1 in 2 151 (C=0.5; Fig. 3C). Similarly, when phage loss was \geq 98 % at each transfer (i.e. C=0.02), 152 phage extinction was observed for all meta-population structures except those consisting 153 of >95% phage-sensitive sub-populations (Fig. 3C). Between these extremes, there was 154 an accelerating trade-off between R and C with respect to phage extinction and average 155 phage density; decreases in dilution rate were countered by a high prevalence of resistant 156 sub-populations enabling bacterial populations to survive even when phage dispersal was 157 low (Fig. 3C). This observation suggests that on-going evolution of localised 158 hypermutability for a surface-exposed bacterial epitope could be tuned to the prevalence 159 and density of phages capable of using the phase-variable epitope as a receptor for 160 surface attachment.

Localised hypermutation-driven herd-immunity produces regional variations
in phage densities within bacterial meta-populations. Both our experimental and in
silico oscillating prey assays demonstrated that phage spread was influenced by the linear
pattern of phase-variant sub-populations. However, the distribution of phase variants
across a surface (e.g. microcolonies on upper respiratory tract surfaces for <i>H. influenzae</i>)
is anticipated to be random and hence to result in spatial effects on phage spread. Indeed,
spatially structured environments are known to restrict phage spread (28). Spatial
structuring was explored by examining phage transmission across meta-populations of
fixed dimensions but with varying proportions of each <i>lic2A</i> expression state (Fig. S3).
This fixed-area oscillating prey assay was initiated by inoculating phage into one well of
a 96-well plate and then expanding outward by seeding each subsequent replicative cycle
into neighbouring wells (see Fig. S4).
Passage of HP1c1 through heterogeneous populations of the fixed-area oscillating
prey assay resulted in uneven phage densities across the meta-populations consisting of
50-66% phage-sensitive populations (Fig. 4B-4D). Conversely, homogenous densities

176 were observed for high (Fig. 4A) or low (Fig. 4E and 4F) phage-sensitive distributions.

177 When 66% of populations were phage-sensitive (Fig. 4B), densities ranged from 10^3 to

178 10^{10} PFU/mL, whereas densities always exceeded 10^8 PFU/mL if all population were

179 sensitive (Fig. 4A). Phage densities in specific regions of heterogeneous populations were

180 dependent on the direction of propagation with passage through multiple resistant or

181 sensitive sub-populations resulting in low or high phage densities, respectively. This

182 model shows how spatial meta-population heterogeneity could prevent equal

183 dissemination of phage through host populations with phase-variable phage-receptors and

aid survival of phage-sensitive sub-populations whose phenotypes may be beneficial for
bacterial survival against other selective pressures.

186 **Observed PV rates generate populations with phase-variant proportions** 187 **capable of herd-immunity**. The fixed-area oscillating prev assay outputs showed how 188 phage extinction was dependent on the proportion of phage-resistant sub-populations. H. 189 *influenzae* normally resides in the upper respiratory tract where selection is likely to act 190 on both PV states of a locus. Thus, the proportion of resistant populations depends on 191 both selection strength for/against the phage-resistance phenotype, and the ON/OFF 192 switching rate. Switching rates of *H. influenzae* phase-variable genes are malleable due to 193 changes in repeat number and can evolve in response to alternating selection pressures 194 (28, 29).195 A mathematical model was developed to examine the impact of different

196 switching rates and immune selection on the proportions of *lic2A* expression states (Fig. 5 197 and Supplementary Data S1). Dixon *et al.* (30) found that the *lic2A* ON-to-OFF (S-to-R; 198 where R and S are the phage-resistant and phage-sensitive states, respectively) switching 199 rate was 1.7-fold higher than the *lic2A* OFF-to-ON (R-to-S) switching rate. The 200 mathematical model assumed that these proportions were maintained for three 10-fold 201 differences in overall mutation rate representing low, intermediate and high repeats 202 numbers (Fig. 5A-5C). In the absence of any selective difference between the S and R 203 states (*m*=1), a high, steady-state proportion (>63%) of R, was observed for all mutation 204 rates but with minor differences in the rate of approach to the steady state and absolute 205 amounts of R. The *lic2A* OFF state (i.e. R) is known to be more immune sensitive than 206 the ON state (i.e. S), we therefore imposed a selection against R. Even with strong

207	selection (m=0.99), high levels of R were maintained by medium to high switching rates		
208	(Fig. 5A and 5C, respectively). In contrast, when switching rates were low (Fig. 5B),		
209	even weak selection (m=0.999) drives resistant variants to $<1\%$ (Fig. 5B). Our other <i>in</i>		
210	silico models indicated that phage spread was inhibited when the probability of		
211	encountering R variants was between 10-70% for dilution rates of 0.02 to 0.6. Thus, the		
212	immune model shows that observed repeat numbers and switching rates for the <i>lic2A</i>		
213	gene of H. influenzae strains can maintain sufficient phage-resistant variants for		
214	restricting phage spread even when there is immune selection against this state.		
215			
216	DISCUSSION		
217	Hypermutable loci have well-documented roles in facilitating survival of		

Hypermutable loci have well-documented roles in facilitating survival of individual bacterial populations against phage predation through generation of phageresistant cells. An unexplored concept is that hypermutation driven heterogeneity in phage resistance across the wider population also facilitates bacterial survival of phage predation.

222

Phase-variable loci can generate herd immunity in bacterial meta-

populations. The concept of herd immunity was derived to explain the protection of susceptible individuals in populations with high levels of immunity to an infectious agent as observed for measles in Baltimore (31). Ordinarily applied to naturally or vaccineacquired immunity to infectious agents in human populations (32), we show, herein, that repeat-mediated PV of a phage-receptor provides a form of 'bacterial herd-immunity' at the population level (Fig. 6). Thus, phage spread is retarded by resistant sub-populations creating barriers between the phage and phage-sensitive bacterial sub-populations as

230	shown in our one- and multidirectional experimental models (Fig. 2 and Fig. 5), and an in
231	silico model with randomized patterns of phage sensitivity (Fig. 3). Key features of these
232	models were that: the chance of phage survival was inversely proportional to the linear
233	pattern of resistance faced by the phage population; random distributions of phage-
234	resistant/sensitive populations result in large variations in viral numbers across a meta-
235	population with some regions being completely free of phage; and dilution during
236	transfer of phage between populations modulates the number of phage-resistant
237	populations required to retard phage spread. Thus, localised hypermutation of a phage-
238	receptor generates herd-immunity whereby phage-sensitive sub-populations can be
239	maintained at high levels within bacterial meta-populations.
240	PV of phage receptors or RM systems is an established phenomenon observed
241	across numerous species and occurring by multiple mechanism. Repeat-mediated
242	switching due to hypermutation of polyG tracts in phage receptor genes of C. jejuni strain
243	NCTC11168 abrogates infection by phage F336 (19). Similar polyG hypermutation
244	controls the phage growth limitation system of <i>Streptomyces coelicor</i> A3(2) and confers
245	resistance to infection with phage φ C31 (33). Epigenetic PV of Ag43 in <i>E. coli</i> or the
246	gtr ^{P22} operons that control O-antigen modification in Salmonella are known or proposed
247	to modulate phage infection (34, 35). High frequency, but not hypermutable, mutations in
248	short polyG or polyA tracts produce resistance to phages in both Bordetella pertussis (36)
249	and Vibrio cholerae (17). Although these mechanisms vary in the rates of generation of
250	phage resistant variants and in the strength of phage resistance (e.g. high for receptor PV
251	and low for RM PV), they all have the potential to generate spatially-structured
252	populations and hence herd immunity to phage infection.

Additionally, there is potential for evolution of the herd immunity state. PV rates can evolve through changes in the mutable mechanism. Thus repeat-mediated PV rates increase as a function of tract length. We anticipate that frequent exposure to phage would select for a greater capacity to form heterogeneous meta-populations through secondary selection for an increase in mutability of the phage receptor.

258 Evidence for immune-driven selection of lic2A ON expression states. One 259 rationale for the existence of PV-driven herd immunity is that protection of the phage-260 sensitive state is required because this state is advantageous under certain circumstances. 261 For *lic2A*, the ON state in *H. influenzae* strain Rd is phage-sensitive and this states leads 262 to extension of the LOS side-chain from the third heptose with a single galactose, a 263 digalactose or more complex sugars. In *in vitro* studies, *lic2A*-dependent epitopes aid in 264 survival against human immune responses (16), with the LOS extensions associated with 265 *lic2A* expression encoding epitopes also present on the human P blood group antigens 266 (37). Although human volunteer studies of colonisation with *H. influenzae* have found 267 that expression of *lic2A* was not essential for human nasopharyngeal colonisation (26), 268 the *lic2A* ON state has been associated with disease states, including non-typeable H. influenzae pneumonia (24). We performed an analysis of 104 H. influenzae genome 269 270 sequences and found that *lic2A* is in an ON state in $\sim 63\%$ of all isolates and is 271 predominantly in the ON state for multiple disease conditions, suggesting selection for 272 expression of *lic2A* occurs across a wide range of niches for *H. influenzae* (Fig. S5). 273 These observations are consistent with a scenario where phage drive evolution of 274 hypermutability rates as the *lic2A* gene oscillates between selection for/against the 275 immune-resistant/phage-sensitive and immune-sensitive/phage-resistant states. A caveat

to these conclusions is phage-specificity as phage HP1c1 may be specific to extension of
the third heptose of *H. influenzae* LOS whereas Lic2A can, in the appropriate genetic
context, generate extensions from any of the three heptoses of the LOS inner core.
Further work is required to determine whether HP1c1 is specific for extension from the
third heptose and if other phages can target this epitope in *H. influenzae* strains where
extension is from the first or second heptose.

282 Transmission and the 'phage loss' phenomenon. Our mathematical model of 283 herd immunity indicates that phage spread is interdependent on population structure and 284 the rate of phage loss from the environment by dilution. Thus, when dilution rates are 285 high, phage extinction events are frequent despite high levels of sensitivity within the 286 bacterial population. While natural rates of phage loss from respiratory environments is 287 unknown, a number of factors have the capacity to impact phage loss, such as humidity, 288 salinity and immune responses (38–41). For phage infections of human commensals or 289 pathogens, such as *H. influenzae*, more extreme environmental selection pressures will 290 apply as phages are transmitted between carriers of target bacterial species.

291 There are two potential extreme scenarios where the herd immunity model is 292 applicable and 'phage loss' is either low or high. These scenarios are elaborated for H. 293 influenzae but are relevant to other bacterial commensals/pathogenic bacteria. Firstly, 294 colonisation of asymptomatic carriers by *H. influenzae* is likely to involve a series of 295 microcolonies, a meta-population, distributed across the nasopharyngeal surface rather 296 than one continuous population. Phage will therefore have to transmit between 297 microcolonies thereby imposing a low potential for phage loss such that only high 298 numbers of phage-resistant populations will provide protection for any phage-sensitive

microcolonies. A second scenario is a population of *H. influenzae* carriers, in this case phage transmission between carriers is likely to result in significant phage loss and hence low numbers of carriers colonized by phage-resistant populations could prevent phage spread to all carriers. These scenarios illustrate the central role of transmission in shaping bacterial herd immunity and in the impact of this fitness trait on localised hypermutation of the phage receptor.

305

Bacterial herd immunity could impact on phage-driven evolution. We

306 observed that phage densities were highly variable across spatially-structured bacterial 307 populations with some regions exhibiting a complete absence of phage (Fig. 6). This 308 imposition of spatially-discrete levels of phage selection could select for alternative 309 adaptive traits within the bacterial host. In studies of *Caulobacter crescentus*, low phage 310 selection led to isolation of >200 phage resistance mechanisms, while only ~ 60 distinct 311 resistance forms were isolated during high phage selection (42). Thus, bacterial herd-312 immunity may prevent uniformity in phage selection pressures across bacterial meta-313 populations leading to evolution of distinct phage-resistance mechanisms within a single 314 clonal lineage.

In summary, our demonstration of a hypermutable locus retarding spread of an infectious agent within a prokaryotic meta-population suggests that the herd immunity phenomenon may be applicable to a wide variety of interacting biological organisms and have deep evolutionary roots. Our conceptual framework could be utilised to explore whether somatic hypermutation, a key example of localised hypermutation in eukaryotes, evolved through selection for sub-population heterogeneity linked to pathogen resistance.

321

322 MATERIALS AND METHODS

323	Phage and bacterial strains used in this study. Phage HP1c1, and the <i>lic2A</i> ON
324	(Rd 30S) and OFF (Rd 30R) phase variants of <i>H. influenzae</i> were obtained from A.
325	Piekarowicz (University of Warsaw, Poland). Phage HP1c1 is maintained in the
326	lysogenic state within H. influenzae RM118-L. H. influenzae strains were cultured
327	overnight at 37°C on 1% BHI agar supplemented with 10% Leventhal's supplement and
328	$2 \ \mu g/mL$ nicotinamide adenine dinucleotide (NAD) or in 10 mL BHI broth supplemented
329	with 2 μ g/mL NAD and 10 μ g/mL hemin (sBHI).
330	Phage HP1c1 stocks. Mitomycin C was added to a concentration of 300 ng/mL to
331	an OD_{600} 0.1 culture of RM118-L in 10 ml of sBHI. After incubation for 8 hours, the
332	culture was centrifuged (4,946xg, 4°C, 10 minutes) and then the supernatant was passed
333	through a 0.22 μ m syringe filter to obtain a phage suspension, which was stored at 4°C.
334	High titer phage stocks were propagated in <i>H. influenzae</i> Rd 30S by adding 100 μ L
335	of induced phage to mid-log phase cultures diluted to an OD_{600} of 0.01 in 10 ml sBHI and
336	incubating for 8 hours. Cultures were processed as described above.
337	Determination of phage titers. Phage titers were determined using the small-drop
338	plating assay (43). Briefly, 150 μ l of a mid-log phase Rd 30S culture, OD ₆₀₀ 0.1, was
339	added to 3 mL of 0.3 % BHI agar (supplemented with 2 $\mu g/mL$ NAD and 10 $\mu g/mL$
340	hemin), mixed by inversion, and poured onto 1% BHI agar plates supplemented with
341	10% Leventhal's media and 2 μ g/mL NAD. Ten-fold serial dilutions were spotted in
342	triplicate 10 μ l drops onto the soft agar (the minimum detection threshold is 33.3
343	PFU/mL).

344	Oscillating prey assay. Two phase variants, namely, Rd 30S (lic2A ON, phage
345	sensitive variant) and Rd 30R (lic2A OFF, phage resistant variant) were utilized to
346	generate the following three-repeat host population-cycling patterns: S100, ON-ON-ON;
347	S66, ON-ON-OFF; S50, ON-OFF-ON; R50, OFF-ON-OFF; R66, OFF-OFF-ON; R100,
348	OFF-OFF. H. influenzae Rd 30S and Rd 30R were sub-cultured as described above
349	in 20 mL of sBHI to an OD_{600} of 0.1. A 5 mL aliquot of the relevant strain was inoculated
350	with HP1c1 at MOI ~0.01. Cultures were adjusted to 6 mL, mixed by inversion and 1 mL
351	was removed for filtration and determination of the $T = 0$ phage titre. The remaining 5
352	mL was incubated for 50 minutes (i.e. one viral replication cycle) at 37°C with shaking
353	and then filtered for phage quantification. Subsequent cycles were initiated by
354	transferring 600 μ l of filtrate to a fresh 5 mL culture of relevant <i>lic2A</i> phase variant. Five
355	phage transfers were conducted per day with phage-containing filtrates being stored
356	overnight at 4°C.
357	Fixed-area oscillating prey assay. Six cycling frequencies were tested (Fig. 5).
358	Allocation of each phase variant (i.e. Rd 30S or Rd 30R) to specific wells was
359	determined by numbering wells from 1 to 631 followed by randomization of these
360	numbers into two sets using R (see Fig. S3). One phase variant was added to the first set
361	of numbered wells and the other phase variant to the second set.
362	Rd 30S and Rd 30R were sub-cultured to OD_{600} 0.1 and then 250 μL of appropriate
363	culture was added to the starter well. Phage HP1c1 was added at a final concentration of
364	${\sim}1~x~10^{6}$ PFU/mL to this well and the volume was adjusted to 300 μL with fresh sBHI
365	broth. After mixing by tituration, 100 μ L was removed for phage titration. The plate was
366	incubated at 37°C with shaking for 70 minutes (a longer incubation time was required in

367	this miniaturised oscillating prey assay for completion of one phage replication cycle
368	[data not shown]). Following incubation, the plate was centrifuged at 1500 x g for 4
369	minutes to pellet bacterial cells and then 20 μ l of supernatant was transferred to
370	surrounding wells (see Fig. S4). Remaining supernatant was harvested for phage titration.
371	Newly-inoculated wells received 167 μ l of a fresh OD ₆₀₀ 0.1 culture of either Rd 30S or
372	Rd 30R, depending on the cycling pattern, followed by repetition of all previously
373	described steps. Ten cycles were performed in the left, right, and downward directions,
374	and 20 cycles in the upward direction (see Fig. S3 and S4). Five transfers and cycles were
375	conducted each day with the 96-well plates being wrapped in paraffin film and stored at
376	4°C overnight. This assay was conducted once for each population structure.
377	Survey of Lic2A expression state in multiple <i>H. influenzae</i> genomes. A set of
378	126 genomes available in GenBank as of 06-09-2016 were screened with blast2seq for
379	the presence of genes homologous to the <i>lic2A</i> gene of <i>H. influenzae</i> strain Rd KW20.
380	Lic2A homologues were found in 121 of the 126 genomes but only 104 could be analysed
381	due to incomplete sequence coverage in 17 genomes. The ON state was identified by the
382	presence of a full length amino acid product (~300 amino acids). The 5'CAAT repeat
383	numbers were determined by visual inspection of aligned sequences. All metadata, where
384	available, was collated from the GenBank entry for each genome, or references
385	associated with each strain.
386	Mathematical model and simulations. We describe bacteria-phage interaction
387	using the conventional modelling approach (45, 46). Dynamics of bacteria and phage
388	densities in each experimental cycle (transfer) of number <i>n</i> within time T_0 =40min (i.e.

389 before the start of mass replication of phages) is given by

$$\frac{dB_0}{dt} = -KPB_0$$
390

$$\frac{dB_i}{dt} = KPB_{i-1} - KPB_i, \quad i = 1, \dots, N-1$$

391

$$\frac{dB_N}{dt} = KPB_{N-1}$$

393
$$\frac{dP}{dt} = -PK \sum_{i=0}^{N-1} B_i - mP, \quad nT < t < Tn + T_0,$$

where B_0 is the number/density of phage-free bacteria; B_i is the number/density of bacteria with *i* phage attachments; *P* is the number/density of free phages. The maximal number of phage attachments for an individual bacterial cell is given by *N*. In the model, we assume that the injection rate is very fast (i.e. instantaneous), so that attachment of one phage immediately results in an infection.

399 For simplicity, we assume that there is no bacterial growth. We also assume that all

400 phage attachments occurring within the first 10 minutes lead to replication (each phage

401 produces *b* new phages) whereas later attachments result in phage loss without

402 replication. We neglect binding of newly replicated phages within the last $\Delta = 10$ min of

403 each cycle. The other model parameters are: *K*-, phage adsorption constant (note that this

404 constant is assumed to be independent from the number of bound phages and that K=0 for

406 At the start of each experimental cycle (i.e. just after dilution) all bacteria are phage-407 free and their number is always equal to B_s , in other words,

408
$$B_0(=(Tn)^+) = B_s, \quad B_i(=(Tn)^+) = 0, \quad B_i(t = (Tn)^+) = 0, \quad i=1,...,N,$$

Here the symbol '+' denotes the time just after the n^{th} dilution, i.e. just prior to the cycle (*n*+1); the symbol '-' denotes the time prior to the n^{th} dilution, i.e. at the very end of cycle *n*.

412 The phage density is obtained from the final density in each cycle multiplied by the 413 dilution coefficient C_n in cycle #n (this value can vary between experiments).

414
$$P(t = (Tn)^+) = P(t = (Tn)^-)C_n$$

415 The density of phages just prior to dilution n (i.e. at the end of cycle #n) is

416 determined by

$$P(t = (Tn)^{-}) = \sum_{i=1}^{N} B_i (Tn - T_0) b + P_S (t = (Tn)^{-})$$

417

418 where P_s are non-attached phages that survived to the end of the cycle; i.e. the phage 419 number at the cycle end, prior to dilution, is given by the number of infected bacteria at

420 time $T-T_0$ multiplied by the burst size b plus the number of surviving phages P_s .

421 Susceptible bacteria are characterized by *K*>0, whereas for resistant bacteria we

422 have *K*=0. The value of *K* is kept constant across each cycle of 50 minutes.

423 Model parameters and verification were derived from experimental settings or

424 findings. Direct observations indicated that $B_S=1.75\pm0.25*10^8$ cell/ml, T=50 min, and

425 $T_0=40$ min. The adsorption constant of $K=7\pm3*10^{-10}$ mL/(cell min) was estimated from

426 an adsorption assay (Fig. S1). Other parameters were estimated directly from the

427 oscillating prey assay by model fitting (see Fig. S2): $b=42\pm5$ (burst size); and

428 $m=0.006\pm0.003$ 1/min. The parameter N had a minor effect in our computation and hence

429 we utilised N=20 in all subsequent models.

430	Further simulations (e.g. Fig. 3c) considered the phage-bacterial dynamics across
431	105 cycles. Variations in the dilution rate C were simulated by changing the value of C
432	according to $C=C^*(1+\varepsilon)$, where ε is a normally distributed random variable with a mean
433	of 0. and variance of 0.3^2 . In each cycle, <i>K</i> was randomly switched from $K = 7*10^{-10}$
434	(susceptible bacteria) to $K=0$ (resistant bacteria). The frequency of switching was
435	determined by the probability p , which gives the probability of encountering susceptible
436	bacteria. Examples simulations, shown in Fig. 3a and 3b, were constructed for C=0.1,
437	p=0.75 (A) $p=0.85$ (B). Fig. 3c was obtained by repeating simulations across 105 for
438	variable parameters C and p. Numerical simulation was based on the standard Runge-
439	Kutta integration method of order 4 using MATLAB software. When phage density
440	dropped to or below the low value threshold of $P_0=100$, we considered that this was
441	equivalent to $P=0$ and stopped further simulations. The initial density of phages at time
442	<i>t</i> =0 was 4.28*10 ⁷ PFU/mL.

443

444 FUNDING INFORMATION

445 C.J.R.T. was supported by the Biotechnology and Biological Sciences Research Council

446 (BBSRC) [BB/J014532/1] and the College of Life Sciences of the University of

447 Leicester.

448

449 **REFERENCES**

- 450 1. van Valen L. 1973. A new evolutionary law. Evol Theory 1:1–30.
- 451 2. Moxon ER, Rainey PB, Nowak MA, Lenski RE. 1994. Adaptive evolution of
- 452 highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33.

453	3.	Bayliss CD. 2009. Determinants of phase variation rate and the fitness
454		implications of differing rates for bacterial pathogens and commensals. FEMS
455		Microbiol Rev 33:504–20.
456	4.	Rainey PB, Beaumont HJE, Ferguson GC, Gallie J, Kost C, Libby E, Zhang X-X.
457		2011. The evolutionary emergence of stochastic phenotype switching in bacteria.
458		Microb Cell Fact 10 Suppl 1:S14.
459	5.	Moxon ER, Bayliss CD, Hood DW. 2006. Bacterial contingency loci: the role of
460		simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40:307–33.
461	6.	van der Woude MW, Bäumler AJ. 2004. Phase and antigenic variation in bacteria.
462		Clin Microbiol Rev 17:581–611, table of contents.
463	7.	Power PM, Sweetman W a, Gallacher NJ, Woodhall MR, Kumar G a, Moxon ER,
464		Hood DW. 2009. Simple sequence repeats in Haemophilus influenzae. Infect
465		Genet Evol 9:216–28.
466	8.	Bayliss CD, Field D, Moxon ER. 2001. The simple sequence contingency loci of
467		Haemophilus influenzae and Neisseria meningitidis. J Clin Invest 107:657–62.
468	9.	Kroll JS, Moxon ER. 1988. Capsulation and gene copy number at the cap locus of
469		Haemophilus influenzae type b. J Bacteriol 170:859-64.
470	10.	Ren Z, Jin H, Whitby PW, Morton DJ, Stull TL. 1999. Role of CCAA nucleotide
471		repeats in regulation of hemoglobin and hemoglobin-haptoglobin binding protein
472		genes of Haemophilus influenzae. J Bacteriol 181:5865-70.
473	11.	Dawid S, Barenkamp SJ, St Geme JW. 1999. Variation in expression of the
474		Haemophilus influenzae HMW adhesins: a prokaryotic system reminiscent of
475		eukaryotes. Proc Natl Acad Sci U S A 96:1077-82.

476	12.	Glover SW, Piekarowicz A. 1972. Host specificity of DNA in Haemophilus
477		influenzae: restriction and modification in strain Rd. Biochem Biophys Res
478		Commun 46:1610–7.
479	13.	De Bolle X, Bayliss CD, Field D, Van De Ven T, Saunders NJ, Hood DW, Moxon
480		ER. 2000. The length of a tetranucleotide repeat tract in Haemophilus influenzae
481		determines the phase variation rate of a gene with homology to type III DNA
482		methyltransferases. Mol Microbiol 35:211-222.
483	14.	High NJ, Deadman ME, Moxon ER. 1993. The role of a repetitive DNA motif (5'-
484		CAAT-3') in the variable expression of the Haemophilus influenzae
485		lipopolysaccharide epitope alpha Gal(1-4)beta Gal. Mol Microbiol 9:1275-82.
486	15.	Zaleski P, Wojciechowski M, Piekarowicz A. 2005. The role of Dam methylation
487		in phase variation of Haemophilus influenzae genes involved in defence against
488		phage infection. Microbiology 151:3361-9.
489	16.	Clark SE, Eichelberger KR, Weiser JN. 2013. Evasion of killing by human
490		antibody and complement through multiple variations in the surface
491		oligosaccharide of Haemophilus influenzae. Mol Microbiol 88:603-18.
492	17.	Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. 2012.
493		Phase variable O antigen biosynthetic genes control expression of the major
494		protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog
495		8:e1002917.
496	18.	Cota I, Blanc-Potard AB, Casadesús J. 2012. STM2209-STM2208 (opvAB): a
497		phase variation locus of Salmonella enterica involved in control of O-antigen
498		chain length. PLoS One 7:e36863.

499	19.	Sørensen MCH, van Alphen LB, Harboe A, Li J, Christensen BB, Szymanski CM,
500		Brøndsted L. 2011. Bacteriophage F336 recognizes the capsular phosphoramidate
501		modification of Campylobacter jejuni NCTC11168. J Bacteriol 193:6742-6749.
502	20.	Anjum A, Brathwaite KJ, Aidley J, Connerton PL, Cummings NJ, Parkhill J,
503		Connerton I, Bayliss CD. 2016. Phase variation of a Type IIG restriction-
504		modification enzyme alters site-specific methylation patterns and gene expression
505		in Campylobacter jejuni strain NCTC11168. Nucleic Acids Res gkw019.
506	21.	Sekulovic O, Ospina Bedoya M, Fivian-Hughes AS, Fairweather NF, Fortier L-C.
507		2015. The Clostridium difficile cell wall protein CwpV confers phase-variable
508		phage resistance. Mol Microbiol 98:329-342.
509	22.	Latino L, Midoux C, Hauck Y, Vergnaud G, Pourcel C. 2016. Pseudolysogeny and
510		sequential mutations build multiresistance to virulent bacteriophages in
511		Pseudomonas aeruginosa. Microbiology 162:748-63.
512	23.	High NJ, Jennings MP, Moxon ER. 1996. Tandem repeats of the tetramer 5'-
513		CAAT-3' present in <i>lic2A</i> are required for phase variation but not
514		lipopolysaccharide biosynthesis in Haemophilus influenzae. Mol Microbiol
515		20:165–74.
516	24.	Weiser JN, Pan N. 1998. Adaptation of Haemophilus influenzae to acquired and
517		innate humoral immunity based on phase variation of lipopolysaccharide. Mol
518		Microbiol 30:767–75.
519	25.	Hosking SL, Craig JE, High NJ. 1999. Phase variation of <i>lic1A</i> , <i>lic2A</i> and <i>lic3A</i> in
520		colonization of the nasopharynx, bloodstream and cerebrospinal fluid by
521		Haemophilus influenzae type b. Microbiology 145 (Pt 1:3005-11.

522	26.	Poole J, Foster E, Chaloner K, Hunt J, Jennings MP, Bair T, Knudtson K,
523		Christensen E, Munson RS, Winokur PL, Apicella MA. 2013. Analysis of
524		nontypeable Haemophilus influenzae phase-variable genes during experimental
525		human nasopharyngeal colonization. J Infect Dis 208:720-7.
526	27.	Fox KL, Atack JM, Srikhanta YN, Eckert A, Novotny L a, Bakaletz LO, Jennings
527		MP. 2014. Selection for phase variation of LOS biosynthetic genes frequently
528		occurs in progression of non-typeable Haemophilus influenzae infection from the
529		nasopharynx to the middle ear of human patients. PLoS One 9:e90505.
530	28.	Brockhurst M, Buckling A, Rainey PB. 2006. Spatial heterogeneity and the
531		stability of host-parasite coexistence. J Evol Biol 19:374-9.
532	29.	Palmer M, Lipsitch M, Moxon ER, Bayliss CD. 2013. Broad conditions favor the
533		evolution of phase-variable loci. MBio.
534	30.	Dixon K, Bayliss CD, Makepeace K, Moxon ER, Hood DW. 2007. Identification
535		of the functional initiation codons of a phase-variable gene of Haemophilus
536		influenzae, lic2A, with the potential for differential expression. J Bacteriol
537		189:511–21.
538	31.	Hedrich AW. 1930. The corrected average attack rate from measles among city
539		children. Am J Epidemiol 11:576–600.
540	32.	Brisson M, Bénard É, Drolet M, Bogaards JA, Baussano I, Vänskä S, Jit M, Boily
541		M-C, Smith MA, Berkhof J, Canfell K, Chesson HW, Burger EA, Choi YH, De
542		Blasio BF, De Vlas SJ, Guzzetta G, Hontelez JAC, Horn J, Jepsen MR, Kim JJ,
543		Lazzarato F, Matthijsse SM, Mikolajczyk R, Pavelyev A, Pillsbury M, Shafer LA,
544		Tully SP, Turner HC, Usher C, Walsh C. 2016. Population-level impact, herd

545		immunity, and elimination after human papillomavirus vaccination: a systematic
546		review and meta-analysis of predictions from transmission-dynamic models.
547		Lancet Public Heal 1:e8–e17.
548	33.	Sumby P, Smith MCM. 2003. Phase variation in the phage growth limitation
549		system of Streptomyces coelicolor A3 (2). J Bacteriol 185:4558-4563.
550	34.	Gabig M, Herman-Antosiewicz A, Kwiatkowska M, Los M, Thomas MS,
551		Wegrzyn G. 2002. The cell surface protein Ag43 facilitates phage infection of
552		Escherichia coli in the presence of bile salts and carbohydrates. Microbiology
553		148:1533–42.
554	35.	Broadbent SE, Davies MR, van der Woude MW. 2010. Phase variation controls
555		expression of Salmonella lipopolysaccharide modification genes by a DNA
556		methylation-dependent mechanism. Mol Microbiol 77:337-53.
557	36.	Liu M. 2002. Reverse Transcriptase-Mediated Tropism Switching in Bordetella
558		Bacteriophage. Science (80-) 295:2091-2094.
559	37.	Virji M, Weiser JN, Lindberg AA, Moxon ER. 1990. Antigenic similarities in
560		lipopolysaccharides of Haemophilus and Neisseria and expression of a
561		digalactoside structure also present on human cells. Microb Pathog 9:441-50.
562	38.	Ehrlich R, Miller S, Idoine LS. 1964. Effects of environmental factors on the
563		survival of airborn T-3 coliphage. Appl Microbiol 12:479–82.
564	39.	Dubovi EJ, Akers TG. 1970. Airborne stability of tailless bacterial viruses S-13
565		and MS-2. Appl Microbiol 19:624-628.
566	40.	Trouwborst T, de Jong JC. 1973. Interaction of some factors in the mechanism of
567		inactivation of bacteriophage MS2 in aerosols. Appl Microbiol 26:252-7.

568	41.	Łusiak-Szelachowska M, Zaczek M, Weber-Dąbrowska B, Międzybrodzki R, Kłak
569		M, Fortuna W, Letkiewicz S, Rogóż P, Szufnarowski K, Jończyk-Matysiak E,
570		Owczarek B, Górski A. 2014. Phage neutralization by sera of patients receiving
571		phage therapy. Viral Immunol 27:295–304.
572	42.	Christen M, Beusch C, Bösch Y, Cerletti D, Flores-Tinoco CE, Del Medico L,
573		Tschan F, Christen B. 2016. Quantitative Selection Analysis of Bacteriophage
574		φCbK Susceptibility in Caulobacter crescentus. J Mol Biol 428:419–430.
575	43.	Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2009. Enumeration of
576		bacteriophages using the small drop plaque assay system. Methods Mol Biol
577		501:81-85.
578	44.	Kropinski AM. 2009. Measurement of the rate of attachment of bacteriophage to
579		cells, p. 151-155. In Methods in molecular biology (Clifton, N.J.).
580	45.	Cairns BJ, Timms AR, Jansen V a a, Connerton IF, Payne RJH. 2009. Quantitative
581		models of in vitro bacteriophage-host dynamics and their application to phage
582		therapy. PLoS Pathog 5:e1000253.
583	46.	Krysiak-Baltyn K, Martin GJO, Stickland AD, Scales PJ, Gras SL. 2016.
584		Computational models of populations of bacteria and lytic phage. Crit Rev
585		Microbiol 42:942–68.
586		
587	FIG	URE LEGENDS

FIG 1. Graphic representation of the oscillating prey assay. This diagram illustrates the
methodology for experimental simulation of phage HP1c1 transmission through a 50 %
ON meta-population structure. Green circles represent a phage-sensitive Rd 30S culture

591	(<i>lic2A</i> ON) while pink circles represent a phage-resistant Rd 30R culture (<i>lic2A</i> OFF).
592	(A) Phage are added to an exponential phase culture of the bacterial phase variant with an
593	OD_{600} of 0.01 to a final MOI of 0.01 (i.e. ~1 x 10 ⁶ PFU/mL). (B) Incubation of phage
594	with host at 37°C for 50 minutes to allow for one viral replicative cycle. (C) Filtration of
595	the phage-bacteria mix through a 0.22 μ m filter and titration to determine the phage
596	density at the end of the cycle. (D) Transfer of 600 μ L of filtered culture-suspension to
597	5.4 mL of fresh culture of the appropriate phase variant (in this example Rd 30R). (E)
598	Incubation of this new culture at 37°C for 50 minutes beyond which the process is
599	repeated until a total of 20 cycles have been completed.
600	

601 FIG. 2. Oscillating prey assay for phage HP1c1 infections of H. influenzae strain Rd 602 populations with varying population structures for *lic2A* expression. Each line represents 603 cycling of the phage through a defined series of cultures of two H. influenzae strain Rd 604 phase variants, namely Rd30S (S; *lic2A* ON; phage sensitive) and Rd 30R (R; *lic2* OFF; 605 phage resistant). The population structures are indicated in the legend (e.g. S100, all S; 606 S66, S-S-R-S-S-R; S50, S-R-S-R; etc.). The phage HP1c1 concentration was determined 607 at the end of each cycle. Circles represent the phage titre observed from each of five 608 biological replicates, with the line showing the mean of these replicates. 609

610 FIG. 3. Mathematical model of the impact of sub-population phage resistance/sensitivity

611 composition and dilution rate on phage extinction events. This model simulates

- 612 transmission of phage HP1c1 through meta-populations of *H. influenzae* strain Rd
- 613 comprising either phage-sensitive (S, *lic2A* ON) or phage-resistant (R, *lic2A* ON)

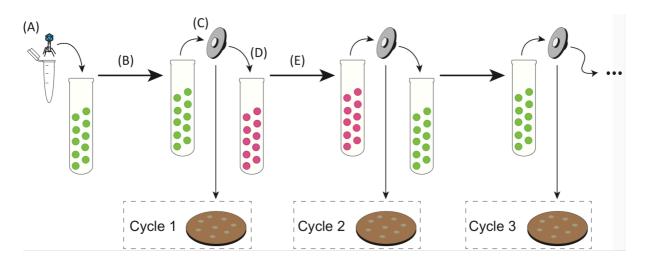
614	populations for 105 cycles. In these simulations, the order with which phage met either S
615	or R populations was random but dependent on the probability of encountering a resistant
616	population (R). Note that the phage population is classified as extinct if the phage titre
617	falls below the extinction threshold ($P_{\theta} = 100$) with the density being set to 0 for all
618	remaining subsequent cycles. Panels A and B show examples of model outputs, which
619	are quantified as phage densities log(P). These graphs show six iterations of meta-
620	populations comprising either 75% (i.e. $R = 0.25$; panel A) or 85 % (i.e. $R = 0.15$; panel
621	B) phage-sensitive populations. Panel (C) shows the mean proportion of phage extinction
622	events occurring in 200 lineages for 200 combinations of probabilities to encounter R
623	(i.e. $1 = 100$ % resistant, $0 = 0$ % resistant) and rates of phage loss during transmission
624	after each cycle (inverse dilution rate, C; $0.02 = 2$ % of phage carried through in each
625	transfer). Colour correlations are shown on the bar to the right of the graph with 1
626	representing no extinction events while 0 is extinction in all lineages.
627	
628	FIG. 4. Illustration of phage survival in spatially-structured sub-populations of <i>lic2A</i>
629	phase variants of <i>H. influenzae</i> . Phage HP1c1 was passaged through a two-dimensional
630	array of phage-resistant (R) and phage-sensitive (S) populations. The proportion of phage
631	sensitive sub-populations (<i>lic2A</i> ON) in each fixed area structure were as follows: (A)
632	100 % <i>lic2A</i> ON (S100); (B) 66 % <i>lic2A</i> ON (S66); (C) 50 % <i>lic2A</i> ON (S50); (D) 50 %
633	<i>lic2A</i> ON (R50); (E) 33 % <i>lic2A</i> ON (R66); and (F) 0 % <i>lic2A</i> ON (R100). Each node

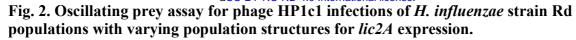
634 represents a well in which phage density was measured. The colour of each node

635 indicates the concentration of bacteriophage detected in a specific well. Lines indicate the

636 route taken starting from a central initiator well with line length being proportional to the

637	number of cycles between each node. All central initiator wells were inoculated with 10^6
638	PFU/mL. (G) shows a box-plot of the distribution of phage densities for each tested well
639	of the fixed-area oscillating prey assays. Densities of phage (PFU/mL) obtained from
640	each test well are represented by a dot for the six distributions of <i>lic2A</i> phase variants (x-
641	axis). The boxed area indicates the first to third quartile, the line is the median of all
642	points, and whiskers represent 1.5x the interquartile range. Due to the nature of the small-
643	drop plating methodology employed for phage enumeration the minimum detection
644	threshold at any time point is 3.3×10^1 PFU/mL.
645	
646	FIG. 5 Model of the temporal fluctuations in the relative amounts of phage-sensitive and
647	phage-resistant phase variants for a range of PV rates and selection pressures. PV of the
648	<i>lic2A</i> gene results in switching between phage-sensitive (S, <i>lic2A</i> ON) and phage-
649	resistant (R, <i>lic2A</i> OFF) phase variants. The <i>lic2A</i> ON state is however known to mediate
650	serum resistance (see text). This model examines how the rate of <i>lic2A</i> PV (β , ON-to-
651	OFF switching; α , OFF-to-ON switching; note that switching rates were obtained from
652	Dixon et al. [30]) and the degree of selection (m) against the lic2A OFF (i.e. R, the
653	phage-resistant state) expression state influences the relative amounts of the R and S
654	states in a population. All panels show changes in the proportion of R. Three different
655	switching rates were examined: $\beta = 1.89 \times 10^{-4}$, $\alpha = 1.13 \times 10^{-4}$ (A); $\beta = 1.89 \times 10^{-5}$, $\alpha =$
656	1.13x10 ⁻⁵ (B); $\beta = 1.89x10^{-3}$, $\alpha = 1.13x10^{-3}$ (C).
657	
67 0	


FIG 6. Phase variation of phage resistance genes generates 'bacterial herd-immunity' inbacterial meta-populations. Phase variation of a phage-receptor can generate


660 heterogeneous bacterial meta-populations containing a mix of sub-populations that are 661 either susceptible or resistant to phage infection. High proportions of resistant sub-662 populations can both hinder phage spread and protect susceptible populations from phage 663 attack. In this figure, we show the routes of phage dissemination through four different 664 bacterial meta-populations. Green circles represent phage-sensitive populations while pink 665 circles are phage-resistant populations i.e. *lic2A* ON and OFF populations in our 666 experimental system. Lines with arrowheads show infection events leading to successful 667 phage replication, while lines with barheads represent directions where phage-resistant populations act as a barricade blocking phage spread. Regions free of arrows are those free 668 669 of phage. Phage spread is shown for: (A) a 100% phage-sensitive (lic2A ON) sub-670 population; (B) 66% phage-sensitive (*lic2A* ON) sub-populations; (C) 66% phage-resistant 671 (*lic2A* OFF) sub-populations; and (D) 100% phage-resistant (*lic2A* OFF) sub-populations.

672

673 Supplemental material

- Fig. S1 Parameter setting experiments for mathematical modelling.
- Fig. S2 Fit of mathematical model to experimental data.
- 676 Fig. S3 Distribution of wells receiving a *lic2A* ON or *lic2A* OFF phase variant of *H*.
- 677 *influenzae* strain Rd for the 50 % ON (panel A) and 66 % ON (panel B) population
- 678 structures.
- Fig. S4 Sampling and transfer regimes for testing phage expansion over a fixed area.
- 680 Text S1. Modelling the dynamics of PV of the *lic2A* gene of *H. influenzae*
- Fig. S5 Putative ON/OFF state of the *lic2A* gene from 104 *H. influenzae* strains.

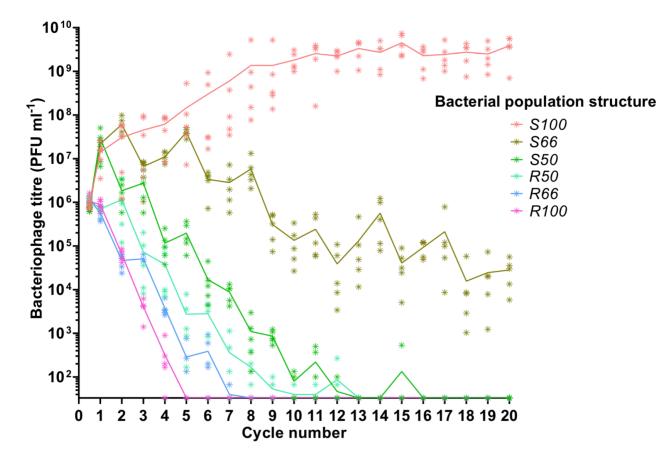


Fig. 3. Mathematical model of the impact of sub-population phage resistance/sensitivity composition and dilution rate on phage extinction events.

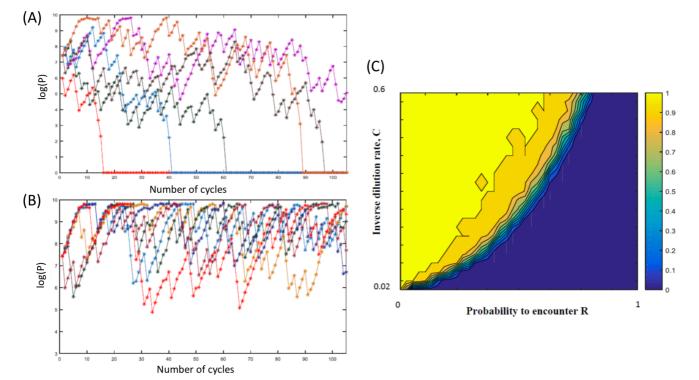


Fig. 4. Illustration of bacteriopflage survival in spatially-structured sub-populations of *lic2A* phase variants of *H. influenzae*.

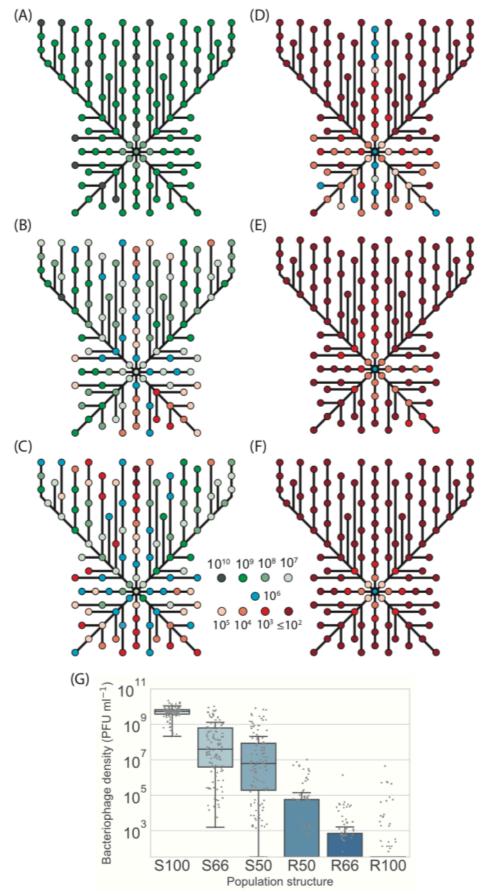


Fig. 5 Model of the temporal fluctuations in the relative amounts of phage-sensitive and phage-resistant phase variants for a range of PV rates and selection pressures.

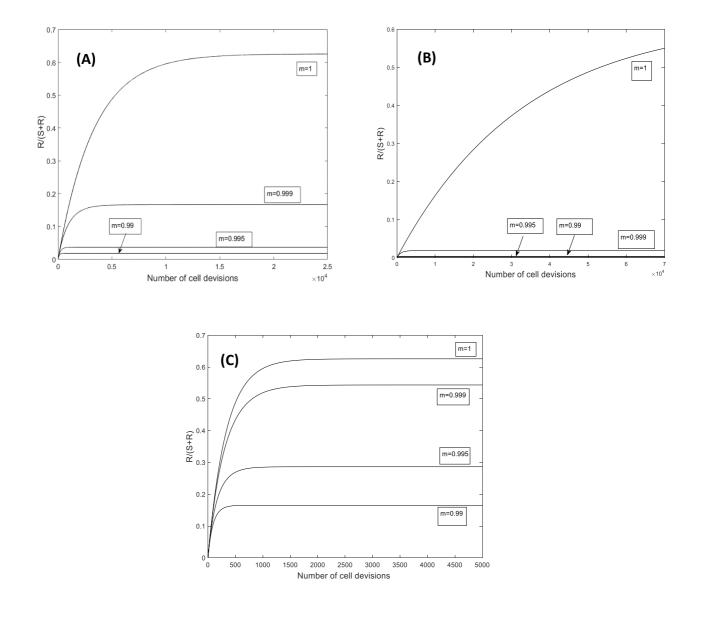
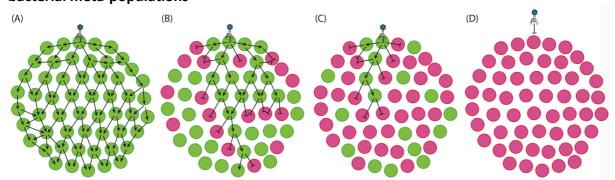



Fig 6. Phase variation of phage resistance genes generates bacterial herd-immunity' in bacterial meta-populations

