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Abstract

HLA typing from sequencing data is considered as a classical proba-
bilistic inference problem and Profile Hidden Markov Models (PHMM) are
motivated for the likelihood calculation. Their generative property makes
them a natural and highly discernible method; at the cost of considerable
computation. We discuss ways to ameliorate this burden, and present an
implementation https://github.com/hammerlab/prohlatype.

1 Introduction

The major histocompatibility complex (MHC) is a set of genes found on the
short arm of chromosome 6[19] that determine how antigen is presented to
T-cells. In humans, this region has historically been referred to as the HLA
(human leukocyte antigen) region. The variants of these genes, alleles, have
various associations with disease as they modulate how our immune system
behaves. HLA typing is the process of deducing these alleles from data.

Aside from disease association, accurate HLA-typing is valuable to medical
procedures and future treatments. Matching compatible HLA types is impor-
tant to avoid transplant rejection or specific complications such as graft-versus-
host disease. Furthermore, precise HLA types are necessary for MHC binding
prediction which has direct implications for immunotherapy.
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1.1 Complexity

Accurate HLA typing is complicated by three main concerns; the genes of inter-
est are homologous, they are highly polymorphic, and we have limited sequence
knowledge of their variants.

Genes in this region are categorized into three classes: I, II, and III. Class
I genes encode MHC molecules that are generally used to present peptides of
non-self proteins to T-cells. Commonly, only three class I genes are considered:
A, B and C. Although there are three other genes (E, F, G) and 14 pseudogenes
(H, J1, K, L, N, P, S, T, U, V, W, X, Y and Z)[3] that complicate accurate
typing.

Class II genes encode similar MHC molecules that, generally, present self
peptides to different T-cells. These genes work in pairs to construct the final
MHC protein and consequently the names of the genes have an A or B to
determine the pairing: DMA, DMB, DOA, DOB, DPA, DPA, DPB, DQA, DQB,
DRA, and DRB. Finally, Class III genes encode components of the complement
system, and are sufficiently different to be excluded from analysis.

These genes exhibit strong sequence homology. An examination of the Lev-
enshtein distances for exons of the class I genes (Table 1) shows that the distance
across genes can be smaller than the distance within. For example, there are
no differences out of 270 bases that comprise the second exon B*:40:110 and
C*:16:85. Similarly consider that there are only 12 changes between A*30:02:05
and H*02:04 (a pseudogene) in exon 3, whereas the farthest alleles are 22 and
8 bases different within their respective genes. This poses a problem for tradi-
tional alignment techniques for short reads in this region. As the database of
reference sequences grows, the underlying indexing scheme in different aligners
associates more and more alleles with each substring[12]. Aligners do not use
the full, kilobase long, sequence as the target. Nor do common, short-read,
sequence technologies span the full gene.

The homology problem is compounded by HLA’s extreme allelic heterogene-
ity. The canonical repository (IMGT[17]) reports several thousand alleles for
multiple genes as of release 3.30 (Table 2).

These genes are on the order of several kilo-bases long, implying a SNP fre-
quency at least two orders of magnitude greater than the rest of the genome[5].
It is important to stress that our knowledge of this region is continuously chang-
ing as more alleles are ceaselessly reported to IMGT. This implies that any in-
ference method based on the current dataset will report the wrong allele for a
novel sample.

Finally, accurate typing is further complicated by our limited sequence knowl-
edge of these alleles. Table 2 details the sparse reality of reference data. For
over 50% of the Class I alleles we only have sequence information for exons
2 and 3 (out of 8)2. These may be the most relevant, as they determine the
binding grove of the MHC molecule that presents peptides to the TCR[2], but

1There is, thankfully, no HLA-“I” gene.
2HLA-B is missing the last 8th exon which is 5 bp long.
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Table 1: HLA Class I homology, comparing Levenshtein distance within and across genes.

Exon Allele 1 Allele 2 Minimum Farthest Maximum Farthest Maximum
distance to Allele 1 distance to Allele 2 distance

1 B*07:294 J*01:01:01:01 6 B*27:13 10 J*02:01 2
1 B*15:428 K*01:01:01:01 6 B*81:01 7 K*01:02 1
1 B*40:10:01:01 L*01:01:01:01 4 B*07:294 7 L*01:01:02 1
2 B*40:110 C*16:85 0 B*07:13 31 C*04:01:02 38
2 B*54:35 G*01:01:01:01 27 B*57:71 30 G*01:01:12 2
2 B*54:12 H*02:04 13 B*40:215 30 H*01:02 7
2 C*01:02:41 E*01:01:01:01 31 C*16:85 33 E*01:01:02 1
2 C*03:03:21 G*01:01:01:01 27 C*16:85 31 G*01:01:12 2
2 C*03:04:06 L*01:01:01:01 31 C*16:85 32 L*01:01:01:02 0
2 C*14:69 Y*01:01 24 C*16:85 33 Y*02:01 2
3 A*32:89 B*27:71 9 A*02:38 21 B*07:78 22
3 A*30:52 C*12:96 13 A*01:01:31 25 C*17:19 17
3 A*30:02:05 H*02:04 12 A*01:130 22 H*03:01 8
3 A*29:02:16 Y*01:01 7 A*02:38 18 Y*03:01 0
3 B*27:71 A*32:89 9 B*07:78 22 A*02:38 21
3 B*35:205 C*15:117 2 B*08:14 20 C*04:77 15
3 B*47:10 Y*01:01 15 B*08:84 22 Y*03:01 0
3 C*15:111 B*40:120 2 C*03:296 15 B*08:14 19
3 C*17:29 H*02:04 17 C*12:183 18 H*03:01 8
4 A*30:95 Y*02:01 4 A*02:411 14 Y*01:01 13

For all class I genes as reported by IMGT, alleles where the full exon sequence is known were compared for
minimum distance between genes. Subsequently, for both alleles of the minimum pair we looked for the maxi-
mum distance within their respective gene. The examples chosen maximal, atypical; they’re purposefully cho-
sen to demonstrate the parochial situations and to demonstrate the pervasive similarity amongst these genes.
Exon distances are usually 73, 270, 276 and 276 base pairs, for exons 1, 2, 3 and 4. The full account of these
distances is in Appendix A. Class II when compared against Class I does not have such similarities.

Table 2: Number of alleles and their sources.

Gene A B C DRB1 DQB1
Number of alleles 3996 4858 3604 2120 1149
GDNA derived 648 740 772 83 165
CDNA derived 3348 4128 2832 2037 984
Partial gDNA1 1 1 0 0 0
Partial cDNA 3273 4021 2777 1960 942
Relevant exon 23102 28672 21782 16753 6543

1 Allele has missing data with respect to gene’s reference
sequence. 2 Exon 2 and 3. 3 Exon 2.

3

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/244962doi: bioRxiv preprint 

https://doi.org/10.1101/244962
http://creativecommons.org/licenses/by-nd/4.0/


Table 3: Variations per 1001 bases in Exons.

A B C
Number of alleles2 772 847 895
Exon 1 30.14 32.88 28.77
Exon 2 67.04 51.48 68.15
Exon 3 71.01 55.43 81.52
Exon 4 25.36 20.29 27.90
Exon 5 18.80 23.08 27.50
Exon 6 21.21 9.09 18.18
Exon 7 6.25 15.91 12.50
1 Counting only SNV, not gaps, from the
reference sequence.
2 Selecting alleles where we have full se-
quence knowledge for exons 2 to 6.

unless our sequencing targets them specifically we have to take steps to impute
the missing data or incorporate our lack of knowledge into the inference.

1.2 Existing Approaches

Existing tools, that target next generation sequence products, usually start with
an alignment of reads to HLA reference sequences. Afterwards various proce-
dures are followed to infer the alleles. Some tools focus on read and alignment
quality and through multiple filters arrive at alleles (e.g. ATHLATES[13]).
Other tools recognize that there is a natural constraint on the number of al-
leles that could explain the data; one allele per chromosome per gene. They
formulate the inference as an optimization of which set of alleles account for
the largest amount of the read data (e.g. OptiType[18], xHLA[20]). Yet other
methods seek to creatively realign reads to a graph reference and deduce the
alleles based on a likelihood score (e.g. HLA-PRG[8]). While these methods
can be efficient and powerful, they have several limitations.

First, the scores that these models use for comparison or the constraints they
try to optimize make errors into model errors; they encode an assumption about
the distribution of read-data where the inference worked. If a user’s read data
doesn’t match that distribution (e.g. different sequencing technology or number
of reads), how does that tool’s model perform? This is a particularly pertinent
for HLA inference for the reasons previously described. For specific examples
consider that some tools make an arbitrary choice of selecting the second allele
(of a diploid pair) based upon numeric limits. This means that zygosity is not
modeled in the inference. Other tools will impose strict filters on which reads
to use. Consequently, if there are reads which do not align well, perhaps from
an unobserved allele, we would discard this evidence. Many tools focus on the
“core” exons of genes (2 & 3 for Class I), but this makes a biased choice about
the underlying distribution of read data that may be inappropriate.
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Second, arbitrary score functions are arbitrary; they are not interpretable
and do not have well understood semantics such as probability. Consequently,
these methods make no allowance for incomplete inference, it may be the case
that we do not have sequencing data at a specific position to differentiate be-
tween two alleles.

Lastly, there is limited or no description of the uncertainty in the inference.
Some tools make a limited attempt to model the alignment (e.g. Seq2HLA [7])
as a normal distribution and compute statistics, but that is a choice based on
modeling convenience and not necessarily a rigorous choice for a null-model.

2 Results

2.1 Desired framework for inference

For the purpose of this framework our source of patient data are reads from next
generation sequencing technologies. They provide a high throughput, but noisy
channel of a patients genome. The data may originate from different sources
(DNA, RNA) and may be targeted to specific parts of the genome, such as
exome sequencing.

We abstract a read, Rj , as an array of basesRj = b1b2 . . . bK , bi ∈ {A,C,G, T}
with an associated array of errors ε1ε2 . . . εK that represent the probability that
the reported base is wrong.

A simple way to perform HLA-typing is to compute the posterior distribution
of HLA types;

P (alleles|reads) =
P (reads|alleles)P (alleles)

P (reads)
.

We’ll use our background knowledge in order to have precise, computable, equa-
tions for these values.

For a given gene (e.g. HLA-A) let Ak denote the set of alleles. At the outset,
let us acknowledge that humans are diploid and our inference must provide a
posterior over pairs of alleles, (Ai, Aj), where i = j denotes a homozygous
phenotype3.

The prior probability (P (alleles) = P (Am, An)) should reflect a practition-
ers previous knowledge of allele distributions. We may lookup values from
allelefrequencies.net, and use the observed human population frequencies
or use knowledge of a patients ethnicity to provide a tighter set of values. But in
practice we can be agnostic about this value, and assume a uniform probability,
as we hope to have enough sequence information and consequently a discrim-
inative likelihood (P (reads|alleles)) to overwhelm the prior and determine a
posterior distriubtion with most probability mass in only one diploid.

The evidence (P (reads)), the probability of observing the reads that we have
for our analysis serves as a normalizing constant for the product, so that our
result is a probability.

3The methods described here are easily generalized to different ploidies.
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When we consider our data, the reads, are presented in a specific order
(R1, R2 . . . Rn), but for the joint read probability (P (reads) = P (R1, R2 . . . Rn)),
the order of the reads, Ri, should not matter, they are exchangeable[6]. Appeal-
ing to DeFinetti’s Theorem, they are identical, independently distributed, con-
ditioned on the parameters that generated them; alleles, Ak[15]. Consequently
we can compute the likelihood as a product over individual reads,

P (reads|Ai, Aj) =
n∏

k=1

P (Rk|Ai, Aj). (1)

Our likelihood is conditioned on pairs of alleles, but a read almost certainly4

originates with only one of the two alleles. Therefore, for our likelihood, it would
be principled to choose the higher probability

P (Rk|Ai, Aj) = max(P (Rk|Ai), P (Rk|Aj)). (2)

Lastly, to deal with the homology of this region we need to infer the types
for all of the class I genes at the same time. The previous across and within
gene distance survey (Table 1) should convince us that if Bj denotes the set of
alleles for HLA-B and Ck the alleles of HLA-C, it is possible to construct (and
encounter) a read where

P (R|Ai) > P (R|Bj) > P (R|Ck) > P (R|Al) . . .

Consequently, we’ll choose the gene origin of a read based on the same max
function

P (R|Ai, Bj , Ck) = max(P (R|Ai), P (R|Bj), P (R|Ck)).

In practice this evaluation is extended to all class-I genes.

2.2 A powerful likelihood

We have reduced the structure of our inference to one remaining function; the
conditional probability of observing a single read given an allele sequence. Part
of the art (and power) of Bayesian modeling is choosing an appropriate likelihood
function. Fortunately, a good candidate is already available in the bioinformatics
community, Profile Hidden Markov Models (PHMM)[9].

HMMs represent sequential observations as emissions of hidden states. Prob-
ability distributions are used to determine the chance of an observation at a
given hidden state, and transitions between the hidden states[16]. Tradition-
ally, a ”hidden” state models a condition that is difficult to determine precisely
from the observation sequence. But they can have interpretable semantics as
well, and an adroit choice of transition probabilities (ie. by assigning 0 to some)
can serve to precisely structure the data generating process. Such is the case
with our Profile HMM and reads from NGS.

4Chimeric reads are very rare and we will ignore them for the sake of this analysis.
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Profile HMM were first considered in the context of multiple sequence align-
ments to help determine phylogeny. In this case, individual alignment posi-
tions had a (“hidden”) match state with an emission probability distributions
to model conservation or alteration. In addition, insertion and deletion states
between positions to handle gaps in the alignment.

We can measure the quality of a sequence’s alignment against a specified
HMM model, by computing the probability that the model would output that
sequence. This is usually accomplished with a forward pass. The “forward”
comes from traversing the observations in the order that they appear. Com-
puting this pass is a traditional dynamic programming problem, similiar to the
traditional string matching algorithms such as Needleman-Wunsch. But with an
important caveat, as opposed to having different scoring options for matching,
opening or extending gaps; we have a probability distribution over transition-
ing to a match, insert or delete state. When we aggregate emission from, and
transitions between these states, we can assign a probability to the emission of
a full sequence from an HMM. This is the likelihood function we seek.

We take inspiration from [11] for our formulation of the PHMM structure,
which we will quickly summarize here but save a full description of our modifi-
cations for the section below where we discuss the computational burden. There
is a start state (S), that initializes where a read may match the reference. For
each read position l (1 ≤ l ≤ L) and reference position k (1 ≤ k ≤ K) there
are three states: match (Mlk), insert (Ilk) and delete (Dlk). The match states
emits (eM ) the read’s base with the inverse probability of the error (1− εl) if it
matches the reference and (εl/3) it doesn’t.

eMlk
=

{
1− εl R[l] = A[k]
εl/3 otherwise

The insert states emits one of the four possible bases with equal probability,
while delete states do not emit any symbols. There is an end state (E) for
transitioning after the final read symbol. The start (end) state may emit a token
symbol to represent the start (end) of a read; but the transition probabilities
from (to) this state equally weigh the starting positions for possible paths that
the read may take through the reference. The likelihood that we seek is the
final probability of emission at the end state, equation 4. To obviate multiple
levels of subscripts, we will use the symbol of the state to stand for the forward
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probability at that state.

S = 1

M1k = eM1k
tSM

I1k =
1

4
tSI

Mlk = eMlk
(tMMMl−1,k−1 + tIMIl−1,k−1 + tDMDl−1,k−1) (3)

Ilk =
1

4
(tMIMl−1,k + tIIIl−1,k)

Dlk = tMDMl,k−1 + tDDDl,k−1

E =
∑
k

(tMEMLk + tDEDLk). (4)

We’ll use transition probabilities (they are indexed by the origin and then des-
tination states; e.g. tSM = (1− α)/L) similar to [11]



M I D E

S (1− α)/L α/L 0 0
Mk<K 1− 2α α α 0
Ik<K 1− β β 0 0
D 1− β 0 β 0
MK 0 0 0 (1− α)/L
IK 0 0 0 α/L


to further constrain the possible path through the HMM and to normalize the
final likelihood of alignment. We use constants α = 0.001, which corresponds
to probability of transitioning to the insert or delete state from the match state
(this is similar to a gap opening penalty), and β = 0.1, the probability of staying
in an insert or delete state (extending a gap)5.

We would like to note how this model closely resembles how one could gen-
erate a sequence from a reference. Suppose that some thing6 is at position k of
a reference sequence having already made i characters of the sequence. It could
proceed on to the next position and take the character from the reference, a
match with a correct emission. It could prcoeed to the next position and make
a mistake in the chosen character from the reference, a match with a incorrect
emission. It could pause at position k and emit a random character, an insert.
Or, lastly, it could skip that position entirely and move to k+ 1, a deletion. We
could think of other actions7, but until we observe those actions in our data,
we can assign them a tiny probability, or, for the sake of computation, exclude
them from our model. The point stands that if this process faithfully depicts
how our data is generated, we should give more credence that it is correct than
an arbitrary score.

5A full Bayesian framework would infer posterior probabilities for these values. We do not
do so because it would greatly complicate inference and knowing these values is (probably) of
limited importance to HLA typing.

6A polymerase for example.
7Go backwards. Move to a different reference position.
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2.3 Computational Cost

While performing the forward pass, for a read of length L and an allele of length8

K, we need to compute three values (Mlk, Ilk, Dlk) for each l and k position.
This can be accomplished recursively in O(KL).

Once we factor in that we have M reads per sample and N alleles, we’re
faced with a potential O(KLMN) total cost to type one patient. There is no
denying that any realistic assignment of these variables (L = 100, K = 4000,
M = 1000 and N = 3000) leads to an almost infeasible problem for ordinary
computers. Perhaps this is the reason why PHMMs despite their pervasive
use in bioinformatics have not been used to address this problem. Are there
techniques that would allow us to pare down the steps necessary to perform this
calculation? Yes, our main contribution is that we can replace N with a small
constant.

2.3.1 Embedding

To replace N consider the multiple sequence alignment of the alleles. Conve-
niently, IMGT provides such an alignment that we use as reference. At each
position of this alignment, each allele can be in one of 6 states; 4 nucleobases,
gap and missing. In the alignment, the first listed allele is the reference allele of
the gene (e.g. “A*01:01:01:01”). The gap character in the reference allele indi-
cates that some other alleles (listed below) have an insertion of bases. Whereas
a gap character for the non-reference alleles indicates a deletion of bases from
that allele, with respect to the reference. We’ll discuss later how we handle
missing positions, but for current purposes, assume that we will map these po-
sitions to a nucleobases from another allele (such as the reference). This leaves
us with only 5 states and consequently, for a specified base from the read, there
can be at most 5 possible emissions of the PHMM. Therefore, for one read, we
can calculate the probability of emission for all of the alleles with one pass if
during every calculation we maintain a mapping of alleles to state probabilities.
As long as the number of state probabilities that we track is smaller than the
number of alleles, we can be faster than O(LKN), per read.

There are a couple of modifications to naively computing the PHMM in order
to be able to calculate the emission for all of the alleles with one pass. The most
important is a representation of the states for all of the alleles simultaneously,
we will discuss an efficient structure for this momentarily, but for the moment
assume that we have some ordering of the alleles (A1, A2 . . . An . . . AN ) and that
we can extend each state to take a third index for the allele: (e.g. Mikn is the
probability of the nth allele being in the match state after seeing ith base of the
read and the kth alignment position. But notice that in the alignment, there
might not be such a base; the nth allele might be in a gap. Consequently, we
need to rewrite our forward equations such that they incorporate the gaps. Let

8In reality alleles have different lengths due to inserts and deletions. Let K represent some
summary statistic such as mean or max of all allele lengths in the analysis.
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us define an indicator variable

In(k) =

{
1 if allele n has a base in the alignment at position k
0 otherwise

and pn(k) be the first position < k in the alignment where allele n has a base
(for the majority of case this is just k − 1). This leads to the following forward
equations:

Sn = 1

M1kn = In(k)eM1kn
tSM

I1kn = In(k)
1

4
tSI

Mlkn = In(k)eMlkn
(tMMMl−1,pn(k),n + tIMIl−1,pn(k),n + tDMDl−1,pn(k),n)

Ilkn = In(k)
1

4
(tMIMl−1,k,n + tIIIl−1,k,n)

Dlkn = In(k)(tMDMl,pn(k),n + tDDDl,pn(k),n)

En =
∑

In(k)=1

(tMEMLkn + tDEDLk). (5)

Even though, for a given state and allele, we can define a zero forward probability
via the indicator In(k), that is not how we want the read to align against that
allele. The global alignment is a convenient construct, not how we want to
model the data generation of the reads, and hence we use pn(k) to index around
the gaps in the alignment An equivalent way of formulating these recursions
without needing to explicitly keep track of pn(k) is to pass the delete state
Dl−1,k−1 for alleles that do not have an emission at k.

2.3.2 Partition map

If we keep track of all N states for each of the Mlk, Ilk, Dlk then we are back
into the troublesomeO(KLMN) total running time. But the previous equations
make it easier to observe that if allele n and n+ 1 have the same base at k (ie.
An[k] = An−1[k]), then they’ll have the same emission eMlkn

and consequently
the same first match state (M1kn). And their forward states will continue to be
equivalent up to the point where they may9 disagree.

This suggests the second necessary modification, rather than using a linear
data structure such as an array to store the forward values, per allele, we will
use a compressing structure similar to a run-length encoded list. We will save
the full description of this data structure for appendix B but it is important
to note two properties. First, the resulting data structure has size roughly
proportional to the number of unique values stored therein, u << N . We say
roughly because the keys used to index these values are compressed form of
representing the alleles, where similar alleles (based on values) are stored next
to each other. Combined, this accounts for the good performance.

9Depends upon where the read starts.

10

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/244962doi: bioRxiv preprint 

https://doi.org/10.1101/244962
http://creativecommons.org/licenses/by-nd/4.0/


2.3.3 Details

The order of the alleles matters a great deal. Randomly ordering alleles will slow
down the merging, whereas the order according to the HLA nomenclature[4] has
worked pretty well.

Our final improvement is to bind the precision of floats in the calculation. A
sensible implementation of HMMs will use 1 of 2 techniques to remain accurate.
The first would normalize the probabilities at fixed i to prevent the values from
overflowing. The second approach would use log-probabilities throughout the
calculation and only return to probabilities (and normalize), at the end. This
is doubly convenient as error probabilities in the FASTQ format are already
reported in log10 format. Since the smallest quality score is 6×10−6 we constrain
the resolution of the floats to 1 × 10−6. This prevents numerical inaccuracies
from creating values that are pointlessly different, which helps to constraint the
previously mentioned k.

2.4 Missing reference data

PHMMs provide an work-around solution to incomplete allele sequence data.
For an allele Am that is missing a region R, we can borrow it from an

allele with that region Ap. Notice that only equation 3 depends on an alleles
base position via the emission (eMlk

). Therefore when we borrow bases (or
gaps) from Ap for all k ∈ R, Mlk(Am) = Mlk(Ap). Consequently, P (R|Am)
will have the right relationship with respect to P (R|Ap). To the extent that
P (R|Am) 6= P (R|Ap) it will be determined by the sequence information we
have, outside the missing region R.

Unfortunately, this relationship does not extend cleanly to multiple alleles.
Consider without loss of generality a third allele Aq that is not missing data
from region R, but we will still borrow from Ap. We’re only interested in the
behavior in R. As described P (R|Am) = P (R|Ap), because Am is borrowing
Ap’s sequence information. Ap and Aq have data and by construction the more
likely allele will have the higher probability and so the likelihood of Am will
be in line with Ap. But what if, unbeknownst to us, Am’s real sequence is
more similar to Aq then Ap in R. Then reads aligned there will be incorrectly
aggregate in the results (equation 1).

In practice this limitation is not that troublesome. There is more variation in
regions where we’re not missing data (Table 3), and consequently the likelihoods
calculated in that region are more discerning. If we have fairly even distribution
of reads, these tend to out weight potentially bad choices for the imputation
allele. We’ll address this issue further in the implementation.

2.5 Splitting

Lastly, as we iterate down the read and fill in the matrix that keeps track of
the previous emission values, the variation in values between alleles increases
monotonically; each alignment position is a potential point of disagreement.
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Consequently, the time to process a row corresponding to one read position also
increases monotonically, and the last positions are the most costly to process.
Fortunately, we can split the read. For a read R let R 1

2
be the first half and R 2

2

the second half then
P (R|Aj) ≈ P (R 1

2
|Aj) · P (R 2

2
|R 1

2
Aj) and we have a natural divide-and-

conquer strategy to speed up the calculation. Perform the forward pass on the
first half, then on the second half and finally multiply the results.

The approximation comes from the in-exact modeling of the sequence gen-
eration. As opposed to constraining the transitions of the before mid-point
base directly to either a match, insert or delete state; we’re transitioning to
an end and then another start state first, which are averaged over all reference
positions. The averaging introduces a non-linear transition as we now consider
paths that are potentially backward!

3 Implementation

We’ve implemented the logic discussed in OCaml[10]. The source code is avail-
able at https://github.com/hammerlab/prohlatype. The project is a collec-
tion of tools that allows the user to calculate the HLA likelihoods of their read
data, collectively referred to as “prohlatype”.

3.1 Protocol

The workflow to arrive at these HLA types consists of:

1. Download the IMGT-HLA database. The canonical repository is now
easily available at https://github.com/ANHIG/IMGTHLA.

2. Create an imputed HLA reference sequences via the tool align2fasta
found in the prohlatype project. This tool uses various imputation logics
to extend allele sequences provided by IMGT to cover their locus.

3. Use the previously generated sequence database to filter one’s data via
an aligner such as razers3 or bwa. Reads that align poorly to the HLA
region will have a low likelihood for any gene or allele, they will act as a
background noise in the distribution. Unfortunately, per-read inference,
in prohlatype is still an expensive operation, and consequently it is more
effective to filter your data to a smaller set of data. One can use lax filter
parameters to form a more inclusive set of read data.

4. Export the reads from the filtered bam file to a FASTQ (via samtools)
file.

5. Finally, one can calculate the likelihood with multi par. This tool takes
as input the resulting read files from (step 4), and a specification of HLA
gene alignment from the previously downloaded IMGT-HLA database
(step 1).
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3.2 Output

multi par supports two main output modes, tab delimited and JSON. Regard-
less of format the output is divided into two main sections. At the beginning,
for each gene, there is a “Zygosity,” and “Likelihood,” section. Afterwards a
“Per Read” section gives individual per-read assignments.

3.2.1 Zygosity

This section gives the diploid log-likelihoods and normalized posterior probabil-
ity10, lower numbered alleles are chosen as “Allele 1”.

Allele 1 Allele 2 log10 P Prob
A*23:17 A*30:114 -7096.62 0.12396
A*23:17 A*30:01:01 -7096.62 0.12396
A*23:01:19 A*30:114 -7096.62 0.12396
A*23:01:19 A*30:01:01 -7096.62 0.12396
A*23:01:01:03 A*30:114 -7096.62 0.12396
A*23:01:01:03 A*30:01:01 -7096.62 0.12396
A*23:01:01:01 A*30:114 -7096.62 0.12396
A*23:01:01:01 A*30:01:01 -7096.62 0.12396
A*23:01:01:02 A*30:114 -7098.10 0.00412
A*23:01:01:02 A*30:01:01 -7098.10 0.00412
A*23:01:01:02 A*30:106 -6890.22 0.00000
A*23:17 A*30:106 -6893.32 0.00000
. . . . . . . . . . . .

We interpret this to indicate that for one of the chromosomes there was al-
most equal evidence for 4 alleles (A*23:17, A*23:01:19, A*23:01:01:03, A*23:01:01:01)
and less evidence for another allele (A*23:01:01:01:02). While the evidence
for the other chromosome was evenly divided between 2 alleles: A*30:114 and
A*30:01:01. Note that because of the variation in the second set of digits (17
vs 01 and 114 vs 01), this implies that for both chromosomes we’re uncertain of
the final protein.

In this particular instance, subsequent analysis, by looking in the per-reads
section, can explain this distribution. If we inspect the reads aligned to the first
chromosome, we will find that there are only 5 reads aligned to the intronic
region where there is a SNP accounting for A*23:01:01:0211 and no reads at the
position inside of the 4th exon accounting for A*23:17. Similarly, for the second
chromosome, there no reads covering the SNP in the 4th exon accounting for
A*30:114.

Detailed analysis of why the distribution takes its shape requires further
tooling, but knowing that all of the probability mass is not concentrated in
one pair, or, more importantly, is distributed across alleles with different exonic
sequences should inform clinical decisions..

10Assuming a flat prior.
11Out of 149 total, this was an exome sequenced sample.
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3.2.2 Likelihood

This section is a table where each row corresponds to one of the alleles in the
locus that are considered for typing. For each allele we report the aggregate log10
likelihood of the read data12 and a description of the imputation steps taken
to construct the full sequence for that allele. By themselves, the log-likelihoods
can only serve as a comparison for the diploid likelihood in the zygosity section.

3.2.3 Per Read

Here we detail how each read was aligned against all the loci under consideration.
In particular, which orientation (regular or reverse complement) was chosen as
most likely and if any filters were used to expedite computation. Furthermore,
it describes the most likely emission position for the loci against which the
read was matched. This information can later be aggregated to explain some
non-descript zygosity descriptions.

4 Results and Discussions

Validation remains a considerable challenge for this work. While our obser-
vations of the world always form some empirical distributions, how we derive
that distribution from different data sources requires care. If an oracle were to
specify class I HLA types, we would expect 6 allele names, 2 for each of HLA-
A,B,C. We would interpret this as a probability distribution with 1 assigned to
this 6-tuple13 and 0 to all other allele combinations14.

The work in this project represents one framework for constructing such a
distribution. But for comparison, how would we evaluate against other HLA-
typers? Most tools do not provide measures of uncertainty with their assign-
ments, nor do the reported p-values constitute an easily interpretable null-model
that one could translate. We may treat them as oracles, but only to interpret
their output as assigning all of the empirical probability mass to their chosen
6 tuple, not as being a source of truth. Finally, it needs to be noted that met-
rics on distributions (such as KL-divergence) are not easily interpreted as they
require context.

Consequently, our analysis of concordance, between other HLA tools and
prohlatype, aims for simple interpretation. First, we divide the analysis by
loci. For each loci we will further divide the per sample interpretation into
three categories based upon how many of the two alleles have considerable15

probability mass according to prohlatype: “both match”, “one match” and
“both different.”

12For the reads where this locus had the maximum likelihood.
13Specifically, a triplet of pairs since we don’t consider non-diploid possibilities such as 6

HLA-A’s .
14As previously mentioned, we will leave aside the problem of detecting new HLA alleles.

Our oracle only specifies alleles within our known universe.
15Greater than 1−6.
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Versus Omixon HLA-A HLA-B HLA-C

Both Match 40 52 53
Average Unexplained P 40% 24% 55%
One Match 18 8 6
Both Different 2 0 1
Incorrect Homozygous 4 3 4

Versus OptiType HLA-A HLA-B HLA-C
Both Match 41 52 56
Average Unexplained P 39% 23% 55%
One Match 18 8 4
Both Different 1 0 0
Incorrect Homozygous 4 3 4

Table 4: Concordance with Omixon and OptiType validated data, n = 60.

4.1 Concordance with 60 patient UPenn dataset

For a sample 60 patients who were previously exome sequenced for study on
the genetic relationship of atopic dermatitis[14], we receiving HLA types deter-
mined via Omixon’s “Target” software. We typed these samples with OptiType
and there was high concordance with the Omixon results. We ran prohlatype
following the protocol specified in subsection 3.1 and compared the results. The
reported types were to 4-digit resolution (e.g. A*01:01), so we aggregated all of
the probability of alleles where those digits matched.

As we can see from table 4, usually more than two-thirds of the time Omixon
reported a diploid pair to which prohlatype assigned probability. Given that, we
can ask what probability mass is unexplained, and unfortunately observe that
between 20% to 55% is missing. For the other samples where either one or both
of the alleles are not present, the unexplained P is 100%. It is also important to
note that all cases of claimed homozygosity by Omixon or OptiType were not
substantiated by prohlatype.

4.2 Comparison against a commercial lab

For an independent personalized genomics vaccine trial, we obtained sequencing
on 5 patients and HLA types from a commercial lab specializing in this inference.
We used prohlatype and compared against the well regarded labs results. The
commercial lab performed independent sequencing targeting various exons of
the HLA genes and performed inference using their custom software. They
reported HLA ’G’ group annotations[1], which groups alleles that have the same
coding region. Our sequencing was 125bp long, untargeted. Out of 30 alleles,
prohlatype reported the same alleles in 28 cases. Prohlatype’s output has higher
resolution since it specifies the most likely allele within the G-group, but there
is no probability mass associated with a potentially different protein product.
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Because of the commercial lab’s high regard we investigated the differences, they
are informative and merit a detailed description.

4.2.1 Patient 5: C*05:01:01 vs C*05:111

The commercial lab reported C*05:01:01G, while prohlatype reported C*05:11116.
In trying to resolve this ambiguity we noticed that these two alleles (C*05:01:01:01
as the representative sequence for this group), differ only a single point; 25 base
pairs into the third exon (referred to as position p), C*05:01:01:01 has an A
while C*05:111 has a C. Ordinarily, small differences like this are what give
prohlatype its resolution, but in this case we wanted to investigate further given
the commercial labs report.

It turns out that Patient 5’s other HLA-C allele is C*08:02:01:01 (both
reports agree), which has a particularly interesting property: at p this allele
also has an A and 125 bases on either side of p (referred to as region r) it has
an identical sequence to C*05:01:01:01.

When we further inspected our read data, out of 60 reads that align r 1 read
actually had a C at p in favor of C*05:11117, while the other 59 reads all had
an A, in favor of either C*08:02:01:01 or C*05:01:01:01.

We know that C*08:02:01:01 is one of the patients correct alleles because we
have matching read data in other parts of the gene. But in this one region, this
second allele, acts as a mask on the inference. Consider three scenarios of what
might be occurring at r:

1. 59 reads with an A at p come from C*05:01:01:01 and 1 read with a C at
p from C*05:111.

2. 59 reads with an A at p come from C*08:02:01:01 and 1 read with a C at
p from C*05:111.

3. There is one read with an error, that mimics an existing allele, C*05:111.
Some proportion of these reads come from C*08:02:01:01 and the remain-
ing from C*05:01:01:01. Furthermore, we have no way of knowing from
which strand these reads originate.

We have read data from outside r that makes us favor C*08:02:01:01 as one
of the two alleles and consequently we can disregard scenario 1. Prohlatype
considers all possible assignments and as a consequence of equation 2 scenario
2 is more likely. But does that match our intuition?

Ultimately, we have to answer in the negative. We believe that scenario
3 is more likely than scenario 2, because we have a prior belief that our read
distributions will be balanced. Specifically, we think that the strand bias in our
data won’t be too great, or at least it will be consistent across our gene. We
have other information that we want to incorporate into our inference.

16Not part of this G group.
17This base had a Q16 score.
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4.2.2 Patient 5: A*26:01:01:01 vs A*26:08

The commercial lab reported A*26:01:01G while prohaltype reported A*26:0818.
We describe this difference second because after exhaustive investigation, there
does not seem to a good explanation of incorrect inference, or defects within
the framework.

What is interesting about this example (why we chose to write about it) is
that A*26:01:01:01 happened to be the second most likely allele for this strand
according to prohlatype. Furthermore, the evidence for these two alleles seems
to be very close. In our data, 120 reads provided evidence that favor A*26:08,
while 111 reads provided evidence that favor A*26:01:01:01. Consequently, the
inference may not be as sharp in log-probabilities as we desire, but when nor-
malized the probability is decisively19 in favor of A*26:08.

Again, were it not for having independent validation of the HLA types from
a highly reputable commercial lab we would not provide detailed investigation
of per allele and per read assignments. We can only surmise that the vagaries
of next-generation sequencing lead to these to disparate results.

4.3 Do we need to type all of class I?

To highlight the need to type all of the class I genes at the same time, consider
that for the previously described UPenn data set, 15% of all reads, that were
previously aligned for only HLA-A,B,C with razers3 were actually for HLA-H.

18Not part of this G group, even though at the time of writing IMGT does not acknowledge
a A*26:01:01G group. A*26:08 differs by 2 consecutive bases within the third exon with
respect to any allele starting with A*26:01:01.

19Greater than 106 times.
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Table 5: Percentages of reads
aligned to genes.

Gene Pct aligned reads
A 23.5%
B 23.7%
C 22.5%
E 3.3%
F 1.7%
G 3.5%
H 15.2%
J 4.9%
K 0.7%
L 1.1%
P 0.0%
T 0.0%
V 0.0%
W 0.0%

The reads were first
aligned to HLA-A,B,C
exclusively via razers3.
The final destination was
chosen by the highest
alignment via prohlatype.

4.4 Performance

To document the improvements in performance we compare the time of one para-
metric PHMM pass versus the projected time to calculate the forward passes
individually, one allele at a time. For HLA-A, B, and C we randomly chose 50
alleles and 30 reads, that were previously aligned to those genes. For each allele
we timed (average of 10 times) how long it would take to perform a regular
PHMM forward pass for each read. We compute the average time across the
alleles, per read, for comparison. For each read we timed (average of 10 times)
how long it would take to perform one parametric PHMM’s forward pass.
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Table 6: Parametric PHMM per read timing
comparison.

Gene Parametric1 Projected2 Pct
HLA-A 9.41 168.94 5.57 %
HLA-A 8.08 168.00 4.81 %
HLA-A 9.22 169.89 5.43 %
HLA-A 7.69 169.97 4.52 %
HLA-A 9.13 169.94 5.37 %
Average 4.83 %
HLA-B 9.51 218.12 4.36 %
HLA-B 9.60 217.65 4.41 %
HLA-B 9.14 217.19 4.21 %
HLA-B 11.54 218.21 5.29 %
HLA-B 9.52 217.28 4.38 %
Average 4.50 %
HLA-C 11.39 236.39 4.82 %
HLA-C 7.16 236.10 3.03 %
HLA-C 11.33 237.46 4.77 %
HLA-C 10.72 237.70 4.51 %
HLA-C 9.61 237.28 4.05 %
Average 4.48 %

Displaying 5 of 30 reads (per gene) used for
analysis, average is over all 30. 1 Time, in
seconds, to perform parametric PHMM for-
ward pass. 2 Projected time, in seconds to
perform PHMM forward pass for all alleles.

There are several factors that impact performance of parametric PHMMs
and complicate an algebraic run-time analysis of the parametric maps.

1. The number of alleles.

2. The order of the alleles. We want similar alleles to be next to each other
for better compression.

3. The position of the read. In area’s of lower allele variance the partition
maps are smaller.

4.4.1 Splitting

For the UPenn dataset splitting into 2 halfs reduces the average user CPU time
by 30%, while splitting it into quarters reduces the time by 37%. It seems like
there are diminishing returns to splitting further.
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4.5 Choice of imputation allele

We investigated three strategies for choosing which allele to borrow from when
we have limited sequence information.

Reference: Always choose the reference allele, which has sequence knowledge
spanning the full alignment.

Trie: Choose the allele with the closest lexicographic name with available se-
quence knowledge. The allele name form a four level tree based upon their
nomenclature[4], where each subsequent field in the names forms a node
of the tree. For an allele missing data we would walk up the tree, start-
ing with the last named field looking for an allele which has the missing
region.

Segments: Group alleles by the segments, regions of their gene, where we
have sequence knowledge. Then measure allele similarity with Levenshtein
distance over those segments. Choose the imputation allele that is closest
over these distances.

We’ve tested all three methods for the UPenn dataset. In practice they
give almost identical results; they ascribe almost identical probability mass to
the same alleles. The discrepancies occur when there is a paucity of data such
that the final distribution is broad. In this case, numerical instability assigns
insignificantly different final probability values. The trie method is slightly
(10%) faster and consequently is the default method.

5 Conclusions

We have presented a framework for Bayesian inference of HLA-types and dis-
cussed an implementation that makes the computation feasible.

5.1 Class II

This project started as an investigation of HLA-typing for class II genes based
on exome sequencing. But finding reliable models for class I motivated and
presented new challenges sufficient for this body of work. Class II presents
a couple of novel additional challenges. First the total alignment sequence is
more than 10 times longer, this will make the total required computation time
infeasible for all but the most patient of researchers. It merits new techniques
to improve performance

Second, there are bigger structural gaps between different alleles that might
complicate inference. Although, they might provide clearer resolution as well.
This uncertainty introduces issues of how to correctly structure the computa-
tion. Akin to how the use of alternative class I genes (E, F . . . ) improved the
accuracy of typing, for class II there is a similarly large group of non-common
genes (DRB3,DRB4, and DRB5) and pseudogene (DRB2, DRB6, DRB7, DRB8,
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DRB9), which provide variations for DRB1. This presents a challenge to figure
out the right way to measure alignment against all of these loci.

5.2 Future work

There are three main thrusts of future work for this project. The first task is to
develop an appropriate “regularization” framework to address issues where the
dominance of equation 2 is mitigated. Equation 2 is a good choice for discerning
an individual read’s likelihood given a diploid pair, but it sometimes leads to
sub-optimal inferences in aggregate. We need to add our intuitions about strand
balance into the framework to act as the regularizer.

The next step is to address novel allele discovery. All inference up to this
point chooses the most likely alleles from those in the database. But, as we have
acknowledged before, the set of alleles grows with time and as new and diverse
human populations are sequenced it is not unlikely that we will attempt to infer
a previously unobserved HLA-type.

We believe that PHMMs actually give an elegant algorithm for this discovery.
Start with the alleles inferred using the methodology. For each read, compute
the Viterbi pass, and inspect it to see if it has novel mutations, with respect
to this most-likely. Add these mutations to a set of pseudo-alleles. Repeat
this for all reads, and again using Bayes rule see if one of these pseudo-alleles
has a higher posterior probability. We can use something like the Turing-Good
approximation as a starting prior on these pseudo-alleles.

The remaining area of work, as previously mentioned, is to extend this to
class-II genes.
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A Extended Homology Search

Allele 1 Allele 2 Minimum Farthest Maximum Farthest Maximum
distance to Allele 1 distance to Allele 2 distance

A*03:01:58 B*08:01:20 6 A*02:01:132 4 B*27:13 10
A*03:01:58 C*02:02:01 7 A*02:01:132 4 C*17:03:01:01 5
A*01:01:01:01 E*01:01:01:01 17 A*02:01:132 3 E*01:01:01:02 0
A*01:01:01:01 F*01:01:01:01 15 A*02:01:132 3 F*01:01:02:01 1
A*03:01:58 G*01:01:01:01 5 A*02:01:132 4 G*01:01:02:01 2
A*03:01:58 H*01:01:01:01 5 A*02:01:132 4 H*02:02 6
A*03:01:58 J*01:01:01:01 5 A*02:01:132 4 J*02:01 2
A*03:01:58 K*01:01:01:01 5 A*02:01:132 4 K*01:02 1
A*03:01:58 L*01:01:01:01 6 A*02:01:132 4 L*01:01:02 1
A*01:237 Y*01:01 1 A*02:01:132 4 Y*02:01 0
B*08:01:20 A*03:01:58 6 B*27:13 10 A*02:01:132 4
B*15:428 C*02:02:01 2 B*81:01 7 C*17:03:01:01 5
B*40:01:01 E*01:01:01:01 19 B*27:13 8 E*01:01:01:02 0
B*15:428 F*01:01:01:01 15 B*81:01 7 F*01:01:02:01 1
B*07:02:01:01 G*01:01:01:01 6 B*27:13 9 G*01:01:02:01 2
B*07:02:01:01 H*01:01:01:01 8 B*27:13 9 H*02:02 6
B*07:294 J*01:01:01:01 6 B*27:13 10 J*02:01 2
B*15:428 K*01:01:01:01 6 B*81:01 7 K*01:02 1
B*40:10:01:01 L*01:01:01:01 4 B*07:294 7 L*01:01:02 1
B*08:01:20 Y*01:01 7 B*27:13 10 Y*02:01 0
C*02:02:01 A*03:01:58 7 C*17:03:01:01 5 A*02:01:132 4
C*02:02:01 B*15:428 2 C*17:03:01:01 5 B*81:01 7
C*03:03:36 E*01:01:01:01 20 C*07:02:80 6 E*01:01:01:02 0
C*02:02:01 F*01:01:01:01 16 C*17:03:01:01 5 F*01:01:02:01 1
C*03:02:01 G*01:01:01:01 6 C*07:02:80 5 G*01:01:02:01 2
C*02:02:01 H*01:01:01:01 8 C*17:03:01:01 5 H*02:02 6
C*02:02:01 J*01:01:01:01 6 C*17:03:01:01 5 J*02:01 2
C*02:02:01 K*01:01:01:01 6 C*17:03:01:01 5 K*01:02 1
C*02:02:01 L*01:01:01:01 5 C*17:03:01:01 5 L*01:01:02 1
C*02:02:01 Y*01:01 8 C*17:03:01:01 5 Y*02:01 0

HLA Class I homology for exon 1, Levenshtein distance within and across genes. Exon 1 is usually
73 base pairs long. Distances within genes that are greater than potential distances across genes are
highlighted. The full table is symmetric, and for the sake of brevity we exclude the rows where the
non-common class I genes (ex. HLA-E) are listed first. There are no interesting cases between these
non-common class I genes. Distances calculated from alleles where the full exon sequence is known ac-
cording to IMGT[17], release 3.30.
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Allele 1 Allele 2 Minimum Farthest Maximum Farthest Maximum
distance to Allele 1 distance to Allele 2 distance

A*11:178 B*27:77 15 A*02:115 19 B*57:12 28
A*03:01:10 C*14:39 18 A*25:01:02 18 C*16:85 33
A*68:13:02 E*01:01:01:01 30 A*02:124 17 E*01:01:02 1
A*33:01:06 F*01:01:01:01 38 A*02:129 21 F*01:04 1
A*03:107 G*01:01:01:01 25 A*25:01:02 16 G*01:01:12 2
A*25:02 H*01:01:01:01 15 A*02:115 23 H*02:06 10
A*68:130:01 J*01:01:01:01 31 A*02:124 19 J*01:01:01:07 3
A*11:178 K*01:01:01:04 38 A*02:115 19 K*01:01:01:02 4
A*11:250 L*01:01:01:01 29 A*02:124 18 L*01:01:01:02 0
A*23:09 Y*01:01 19 A*02:05:04 20 Y*02:01 2
B*07:36 A*68:36 15 B*40:215 28 A*02:115 21
B*40:110 C*16:85 0 B*07:13 31 C*04:01:02 38
B*37:01:04 E*01:01:01:01 28 B*57:69 27 E*01:01:02 1
B*54:01:07 F*01:01:01:01 39 B*57:71 31 F*01:04 1
B*54:35 G*01:01:01:01 27 B*57:71 30 G*01:01:12 2
B*54:12 H*02:04 13 B*40:215 30 H*01:02 7
B*27:05:18 J*01:01:01:01 33 B*57:01:04 28 J*01:01:01:07 3
B*54:12 K*01:01:01:04 37 B*40:215 30 K*01:01:01:02 4
B*37:52 L*01:01:01:01 31 B*57:69 28 L*01:01:01:02 0
B*48:18 Y*01:01 19 B*40:166 24 Y*02:01 2
C*14:39 A*03:01:10 18 C*16:85 33 A*25:01:02 18
C*16:85 B*40:110 0 C*04:01:02 38 B*07:13 31
C*01:02:41 E*01:01:01:01 31 C*16:85 33 E*01:01:02 1
C*03:04:38 F*01:01:01:01 39 C*16:85 32 F*01:04 1
C*03:03:21 G*01:01:01:01 27 C*16:85 31 G*01:01:12 2
C*16:85 H*01:01:01:01 25 C*04:01:02 38 H*02:06 10
C*12:188 J*01:01:01:01 34 C*16:85 29 J*01:01:01:07 3
C*05:29:02 K*01:01:01:04 39 C*16:85 30 K*01:01:01:02 4
C*03:04:06 L*01:01:01:01 31 C*16:85 32 L*01:01:01:02 0
C*14:69 Y*01:01 24 C*16:85 33 Y*02:01 2

HLA Class I homology for exon 2, Levenshtein distance within and across genes. Exon 2 is usually
270 base pairs long. Distances within genes that are greater than potential distances across genes
are highlighted. The full table is symmetric, and for the sake of brevity we exclude the rows where
the non-common class I genes (ex. HLA-E) are listed first. There are no interesting cases between
these non-common class I genes. Distances calculated from alleles where the full exon sequence is
known according to IMGT[17], release 3.30.
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Allele 1 Allele 2 Minimum Farthest Maximum Farthest Maximum
distance to Allele 1 distance to Allele 2 distance

A*32:89 B*27:71 9 A*02:38 21 B*07:78 22
A*30:52 C*12:96 13 A*01:01:31 25 C*17:19 17
A*02:594 E*01:03:01:01 44 A*01:01:31 26 E*01:07 2
A*03:186 F*01:01:01:01 44 A*01:130 21 F*01:01:01:02 0
A*24:333 G*01:20 26 A*26:68 24 G*01:17 5
A*30:02:05 H*02:04 12 A*01:130 22 H*03:01 8
A*30:04:01 J*01:01:01:01 31 A*01:130 20 J*01:01:01:07 1
A*30:01:07 K*01:01:01:01 30 A*01:130 24 K*01:01:01:02 3
A*03:186 L*01:01:01:01 38 A*01:130 21 L*01:02 3
A*29:02:16 Y*01:01 7 A*02:38 18 Y*03:01 0
B*27:71 A*32:89 9 B*07:78 22 A*02:38 21
B*35:205 C*15:117 2 B*08:14 20 C*04:77 15
B*14:22 E*01:03:01:01 40 B*40:298:02 23 E*01:07 2
B*27:90:01 F*01:01:01:01 37 B*07:78 21 F*01:01:01:02 0
B*14:33 G*01:17 26 B*07:78 23 G*01:15 5
B*07:225 H*02:04 13 B*45:14 28 H*03:01 8
B*14:33 J*01:01:01:01 24 B*07:78 23 J*01:01:01:07 1
B*15:323 K*01:01:01:01 35 B*45:03 21 K*01:01:01:02 3
B*14:02:10 L*01:01:01:01 34 B*40:298:02 23 L*01:02 3
B*47:10 Y*01:01 15 B*08:84 22 Y*03:01 0
C*12:96 A*30:52 13 C*17:19 17 A*01:01:31 25
C*15:111 B*40:120 2 C*03:296 15 B*08:14 19
C*16:02:05 E*01:03:01:01 36 C*17:19 16 E*01:07 2
C*07:140 F*01:01:01:01 37 C*03:04:18 18 F*01:01:01:02 0
C*01:02:32 G*01:20 21 C*03:234 16 G*01:17 5
C*17:29 H*02:04 17 C*12:183 18 H*03:01 8
C*06:103 J*01:01:01:01 19 C*17:19 18 J*01:01:01:07 1
C*06:153 K*01:01:01:01 36 C*03:287 14 K*01:01:01:02 3
C*07:12 L*01:01:01:01 32 C*03:04:18 17 L*01:02 3
C*02:07 Y*01:01 18 C*03:234 18 Y*03:01 0

HLA Class I homology for exon 3, Levenshtein distance within and across genes. Exon 3 is usually
276 base pairs long. Distances within genes that are greater than potential distances across genes
are highlighted. The full table is symmetric, and for the sake of brevity we exclude the rows where
the non-common class I genes (ex. HLA-E) are listed first. There are no interesting cases between
these non-common class I genes. Distances calculated from alleles where the full exon sequence is
known according to IMGT[17], release 3.30.
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Allele 1 Allele 2 Minimum Farthest Maximum Farthest Maximum
distance to Allele 1 distance to Allele 2 distance

A*01:01:51 B*15:11:05 15 A*02:411 14 B*73:01 14
A*01:01:51 C*07:348 15 A*02:411 14 C*17:37 12
A*03:26 E*01:01:01:01 14 A*02:411 14 E*01:03:04 1
A*01:01:51 F*01:01:01:01 18 A*02:411 14 F*01:03:01:01 1
A*01:37 G*01:01:06 15 A*02:411 14 G*01:14 3
A*03:26 H*02:06 0 A*02:411 14 H*01:01:01:01 4
A*01:37 J*01:01:01:07 23 A*02:411 14 J*02:01 6
A*01:01:51 K*01:01:01:02 23 A*02:411 14 K*01:01:01:01 11
A*01:81 L*01:01:01:01 15 A*02:411 15 L*01:02 2
A*30:95 Y*02:01 4 A*02:411 14 Y*01:01 13
B*15:11:05 A*01:01:51 15 B*73:01 14 A*02:411 14
B*15:284 C*05:03 4 B*48:01:03 10 C*17:37 15
B*15:284 E*01:01:01:01 18 B*48:01:03 10 E*01:03:04 1
B*13:01:12 F*01:01:01:01 22 B*73:01 14 F*01:03:01:01 1
B*15:284 G*01:01:06 20 B*48:01:03 10 G*01:14 3
B*15:284 H*02:06 15 B*48:01:03 10 H*01:01:01:01 4
B*35:01:47 J*01:01:01:07 31 B*73:01 15 J*02:01 6
B*15:284 K*01:01:01:02 28 B*48:01:03 10 K*01:01:01:01 11
B*15:284 L*01:01:01:01 20 B*48:01:03 10 L*01:02 2
B*15:11:05 Y*02:01 21 B*73:01 14 Y*01:01 13
C*05:03 A*01:81 15 C*17:37 15 A*02:411 15
C*05:03 B*15:284 4 C*17:37 15 B*48:01:03 10
C*07:348 E*01:01:01:01 16 C*17:37 12 E*01:03:04 1
C*07:348 F*01:01:01:01 18 C*17:37 12 F*01:03:01:01 1
C*07:348 G*01:01:01:01 18 C*17:37 12 G*01:14 2
C*07:348 H*02:06 15 C*17:37 12 H*01:01:01:01 4
C*07:348 J*01:01:01:07 29 C*17:37 12 J*02:01 6
C*05:03 K*01:01:01:02 29 C*17:37 15 K*01:01:01:01 11
C*07:348 L*01:01:01:01 19 C*17:37 12 L*01:02 2
C*07:348 Y*02:01 21 C*17:37 12 Y*01:01 13

HLA Class I homology for exon 4, Levenshtein distance within and across genes. Exon 4 is usu-
ally 276 base pairs long. Distances within genes that are greater than potential distances across
genes are highlighted. The full table is symmetric, and for the sake of brevity we exclude the rows
where the non-common class I genes (ex. HLA-E) are listed first. There are no interesting cases
between these non-common class I genes. Distances calculated from alleles where the full exon
sequence is known according to IMGT[17], release 3.30.
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B Partition Maps

In order to achieve an efficient forward pass we need to make the recursive calls

Mlkn = eMlkn
(tMMMl−1,pn(k),n + tIMIl−1,pn(k),n + tDMDl−1,pn(k),n)

Ilkn =
1

4
(tMIMl−1,k,n + tIIIl−1,k,n)

Dlkn = (tMDMl,pn(k),n + tDDDl,pn(k),n)

(6)

as fast as possible. This requires a way of storing and updating per-allele like-
lihood values. The general data structure that we seek is map from alleles to
values. Naively storing a value for each allele is wasteful and slow as discussed
in section 2.3.2, so a linear data structure such as an array or list is not suitable.

We know that we want a mapping where the number of key-value pairs
is on the order of the number of values (v), as opposed to the number of keys.
Therefore, how do we aggregate these keys, or is there an efficient representations
of a large set of alleles into one key?

The size (N) of the full set of alleles is specified ahead of time20, The desired
set of keys always form partition elements of this set. This is the origin of the
name partition map. The problem that remains is to determine an efficient
representation for these sets.

One can use a bitvector for the keys. An association list of bitvector and
unique values. A bitvector represents an allele’s presence in a subset and is N/64
words long. This is fairly efficient (as compared to naively using maps or arrays)
as computing intersections and set-differences can be accomplished with fast bit
operations. This approach results in a running time that is approximately 20%
of the naive, “for-each-allele” approach. The main drawback with this approach
is that the resulting representation is inefficient for small subsets (e.g. a single
allele). Furthermore, it doesn’t actually achieve the reduced theoretical running
time that we are after N/64 = O(N); during each of the comparisons over the
keys of this operation, we are still imposing this cost and it never shrinks.

An (slight) improvement can be achieved with if we store the allele subsets
as interval pairs of their indices: (1, 4) would mean a set from the first to fourth
allele. Now we can impose a natural, ascending, order on the association list;
compare by the first element of the pair. By maintaining the list in ascending
order; this guarantee’s that there is always an intersection at the first (head)
elements of the two lists during merging, and after computing a new value there
is less of the list to process. Unfortunately, the full size of this list is still not
effectively constrained as we can have the same value, at later alleles.

The final improvement, the one that is used in production, is to use a list
of pairs as the keys, one associated with a unique value. Two ordering are
imposed, the key sub-lists are in ascending order, and their first elements are
also in ascending order. Unfortunately, when constructing these lists we have

20When we specify the global alignment file from IMGT, or merge gDNA and cDNA data.
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to traverse the accumulator after each comparison looking for values that are
equal. This turns out to be worth the extra cost as it effectively compresses the
final association list.
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