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ABSTRACT2

Computational models in systems biology and systems medicine are typically simulated using a3
single formalism such as ordinary differential equations (ODE). However, more complex models4
require the coupling of multiple formalisms since different biological phenomena are better5
described by different methods. For example, metabolism in steady state is often modeled using6
flux-balance analysis (FBA) whereas dynamic changes of model components are better described7
via ODEs. The coupling of FBA and ODE modeling formalisms results in dynamic FBA models.8
A major challenge is how to describe such hybrid models that couple multiple formalisms in a9
standardized way so that they can be exchanged between tools and simulated consistently in a10
reproducible manner. This paper presents a scheme for encoding and implementation of dynamic11
FBA models in the Systems Biology Markup Language (SBML), thereby enabling the exchange of12
multi-framework computational models between software tools. We demonstrate the feasibility of13
the approach using various example models and show that different tools are able to simulate the14
hybrid models and agree on the results. As part of this work, two independent implementations of15
a multi-framework simulation method for dynamic FBA have been developed supporting such16
models: iBioSim and sbmlutils.17

18
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1 INTRODUCTION
In systems biology, mathematical modeling is used to investigate biological systems (Kitano, 2002). The21
resulting computational models enable researchers to make predictions in silico which can be validated22
experimentally. However, the process of model building is time-consuming and error-prone. Model23
reproducibility and exchangeability are of major importance for independent validation of results and24
model reuse, especially in the case of more complex models.25

To achieve reproducibility, interoperability, and consistent model interpretation, a well-defined modeling26
representation with unambiguous syntax is crucial. To this end, standard model representation formats27

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 28, 2022. ; https://doi.org/10.1101/245076doi: bioRxiv preprint 

https://doi.org/10.1101/245076


König et al. DFBA Models in SBML

exist that enable model exchange, such as the Systems Biology Markup Language (SBML) (Hucka et al.,28
2003; Keating et al., 2020; Hucka et al., 2019).29

SBML has been successfully applied to the encoding of single formalism models, but the encoding of30
hybrid models using SBML has yet to be explored. Some tools have implemented hybrid simulation, such31
as COPASI (Hoops et al., 2006) and E-CELL (Tomita et al., 1999), nonetheless, they lack reproducibility.32
In COPASI, the models fall short of necessary pieces of information for model exchange. Namely, these33
models lack the information about their own model formalism which results in hybrid models being only34
specific to COPASI. In E-CELL, most models are encoded in C++ and only few in SBML. Even though35
the C++ models are repeatable, they are not reproducible because other tools cannot use these files and36
even models encoded in SBML are incomplete and lack the integration of different formalisms.37

The support of hybrid modeling adds new challenges. The present work addresses this problem by38
developing a methodology in conjunction with implementations to support such hybrid modeling efforts.39
We demonstrate the usefulness of our approach by exchanging two models between two distinct simulation40
tools with both implementations leading to similar simulation results.41

1.1 Coupling multiple modeling formalisms42

Various simulation and analysis methods have been developed in systems biology. Depending on the43
biological question, different methods are preferred. Kinetic time-course simulations based on ordinary44
differential equations (ODE) are often employed to study the dynamics of entities in a model over time.45
Depending on the research question and biological system, such simulations can be non-deterministic46
(stochastic). Other popular simulation methods are Boolean (Thomas, 1973; Kauffman, 1969) models,47
logical models (Morris et al., 2010), and constraint-based approaches (Bordbar et al., 2014).48

Dynamical modeling of metabolic networks by ODE approaches is particularly challenging since kinetic49
parameters needed for ODE models are often unobtainable (Varma and Palsson, 1994). Hence, steady-state50
approaches that do not need kinetic information are employed to model metabolism such as flux balance51
analysis (FBA) (Savinell and Palsson, 1992; Varma et al., 1993) which is based on constraint-based52
optimization. This method only requires the connectivity of the reactions and metabolites along with the53
respective stoichiometry, an objective function, such as cell growth, and additional constraints like flux54
bounds. The idea is to constrain the model based on the stoichiometry of the reactions and optimize the55
objective function while satisfying the flux constraints. These models do not require kinetic information56
and can be simulated efficiently even in case of very large systems.57

Biological research questions often require the coupling of different model formalisms. One such recent58
example is the whole-cell model for the Mycoplasma genitalium (Karr et al., 2012) that is encoded using a59
mixture of Boolean networks, stochastic processes, differential equations, and FBA.60

61
1.2 Dynamic flux balance analysis62

One disadvantage of FBA is that it cannot express the dynamics of the metabolites since it does not change63
amounts or concentrations of species, but only provides information about the optimal flux distribution64
for the given optimization problem. Due to this limitation, the field of dynamic FBA (DFBA) (Varma and65
Palsson, 1994) has emerged, which couples the stationary flux distribution resulting from FBA with the66
kinetic update of the metabolites taken up or consumed by the FBA network. For DFBA models, a FBA67
submodel is coupled to a kinetic model (ODE).68
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Besides the whole-cell model, which uses DFBA as a core module, various metabolic pathways have69
been modeled using DFBA. DFBA has been applied in small-scale examples (Varma and Palsson, 1994;70
Mahadevan et al., 2002; Luo et al., 2006), over medium-size models (Pizarro et al., 2007; Lequeux et al.,71
2010; Meadows et al., 2010), and up to genome-scale DFBA applications (Hanly and Henson, 2011;72
Hjersted et al., 2007). For an overview, see Table 1 in (Höffner et al., 2013).73

The coupling between FBA and kinetic model parts can be implemented via three main approaches: static74
optimization approach (SOA), dynamic optimization approach (DOA), and direct approach (DA) (Gomez75
et al., 2014). The SOA approach solves the linear programming (LP) problem of FBA at each time step76
using an Euler forward method assuming constant fluxes over the time step (Gomez et al., 2014). DOA77
approaches optimize simultaneously over the entire time period by solving a nonlinear programming78
problem (NLP). The DA approach directly includes the LP solver on the right-hand side of the ordinary79
differential equations (ODEs).80

The advantage of the SOA is its relatively simple implementation, which is why most of the published81
DFBA models use the SOA approach. However, SOA is often less accurate compared to other computational82
more demanding methods such as DOA. The DA method exhibits the best trade-off between accuracy and83
runtime performance but has its downsides in terms of implementation difficulty. For this work, we use the84
SOA method. Its simplicity makes it a good candidate to use as proof of concept for this work.85

1.3 Exchangeability & reproducibility of models86

Despite the wide range of published DFBA models no standard for the exchange of such models exists.87
Existing models are hard-coded, such as the whole-cell model which is implemented in MATLAB. Hereby,88
the mathematical model is separated in the respective kinetic and FBA formalisms in a script along with the89
connections between the kinetic and flux balance parts of the models. As a consequence, it is not possible90
to exchange existing DFBA models between different software tools. Thus, they cannot be reproduced or91
validated. This is especially problematic in the case of DFBA models because often multiple optima can92
exist for the FBA model part (and the various time steps). The resulting DFBA results are not unique since93
they depend on the analysis implementation (how a solver selects one of the possible FBA solutions). In94
addition, the simulation results may depend on the selected step size of the SOA algorithm, in particular, if95
the step size is not small enough.96

While it is possible to replicate the same scripts in different programming languages, it is unpractical,97
error-prone, unnecessary, often leads to data loss, and most importantly does not solve the underlying98
problem of non-exchangeability of such models. For these reasons, script replication makes achieving99
reproducibility difficult and often infeasible. The necessity of an exchange format for DFBA emerged from100
efforts trying to encode and reproduce the DFBA submodel of the whole-cell model using standards during101
the whole-cell workshop (Waltemath et al., 2016).102

1.4 Model standards103

To achieve exchangeability and reproducibility of models, standards for the encoding of models have104
been created. The de-facto standard for systems biology models is SBML (Hucka et al., 2003; Keating105
et al., 2020). SBML core elements are used to describe mathematical models of reaction-based networks106
and provide the means to encode computational models based on reaction networks that can be represented107
both deterministically and stochastically. SBML uses packages for extending the functionality of core108
elements. While SBML is used to encode mathematical models of biological networks, there are different109
standards for other purposes: the Simulation Experiment Description Markup Language (SED-ML) is used110
for describing simulations (Waltemath et al., 2016; Bergmann et al., 2018), the Systems Biology Graphical111
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Notation (SBGN) is used for describing visualizations (Le Novère et al., 2009), and COMBINE Archives112
are used for grouping files in a single archive necessary to reproduce a modeling experiment (Bergmann113
et al., 2014). The main advantage of using these standards over hard-coding models in code is the ability to114
exchange models between research groups and reproduce results using various tools that support these115
standards. In addition, these standards enable the use of semantic annotations to document the model and116
model components which enhances the reusability and interoperability (Neal et al., 2019, 2020).117

One of the challenges in SBML models is the limitation of models to a single formalism lacking support118
for the expression of models using multiple formalisms. Although there are several tools that support ODE119
simulation and FBA, they all support them independently. In order to overcome this challenge, this paper120
introduces a scheme that enables the coupling of ODE and FBA models. This paper demonstrates that this121
scheme facilitates exchangeability and reproducibility by encoding and simulating DFBA models in both122
iBioSim (Watanabe et al., 2019) and sbmlutils (König, 2022).123

2 MATERIAL AND METHODS

2.1 Model encoding124

The DFBA models presented in this paper were created in the proposed scheme either using a graphical125
user interface in iBioSim or a script-based approach in sbmlutils. For a given model, the four126
submodels (TOP, FBA, BOUNDS, and UPDATE) were packaged with the corresponding simulation files127
using SED-ML in COMBINE archives in order to facilitate the exchange between tools. All models and128
simulation results are available from https://github.com/matthiaskoenig/dfba.129

2.2 Stationary optimization approach (SOA)130

A stationary optimization approach for DFBA was implemented as a simulation algorithm in iBioSim131
and sbmlutils following the simulation scheme depicted in Figure 1.132

The following paragraph assumes familiarity with SBML and we refer to the SBML specification for133
more information (Hucka et al., 2019). As the first step, all of the species and parameters in the model are134
initialized and each variable is assigned an initial value. After the initialization step, the FBA submodel is135
executed. During the FBA step, reaction fluxes are computed using the initial flux bound values where136
the flux bounds for the reactions come from the top-level using replacements from the SBML comp137
package (Smith et al., 2015). In SBML, replacements of parameters and species indicate the top-level138
entities are the same entity as the one being replaced. Once the fluxes are computed, they are assigned on139
the top-level to parameters using assignment rules. These parameters represent reaction rates.140

After computing reaction fluxes, the update step is performed concurrently with a dynamic step by141
computing the time-evolution of every species in the UPDATE and KINETIC submodels. Species that142
affect any flux bound in the FBA submodel are updated on the top-level. The new bounds are used in the143
FBA submodel for the next time step. Simulation time is incremented at the end. If the time limit is reached,144
then the simulation is complete. Otherwise, all of the steps are repeated.145

The SOA simulation algorithm has been implemented in iBioSim and sbmlutils. The iBioSim146
tool uses the structure of (Watanabe and Myers, 2014) for simulation. The sbmlutils tool uses147
roadrunner (Somogyi et al., 2015) for the kinetic simulation and cobrapy (Ebrahim et al., 2013) to solve148
the FBA problem. Both iBioSim and sbmlutils take an SBML file that describes a DFBA model and149
a SED-ML file that describes the simulation experiment. In the proposed approach, SED-ML is mainly150
used to indicate which simulation algorithm to use, the time points in which tools should print out the151
values of the variables, the initial time, and the time limit. The SED-ML files provide a minimal simulation152
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Figure 1. Overview of the implemented SOA algorithm for DFBA. After the initialization of the model,
the FBA and kinetic simulations are run iteratively until the simulation endpoint. In every step, FBA is
used to compute the reaction rates of the FBA network. Subsequently, based on the computed FBA rates,
the values of the species are updated dynamically. In the SOA approach, FBA fluxes are assumed to be
constant within a time step. For a detailed description see the Material And Methods Section.

experiment to check reproducibility between implementations. The value of each time increment for SOA153
is defined by a parameter with id dt in the SBML model, which can be overwritten by the SED-ML154
file for the actual simulation. An ontology term for the description of DFBA simulation algorithms has155
been introduced in the Kinetic Simulation Algorithm Ontology (KISAO) (Zhukova et al., 2011), term156
KISAO:0000500 corresponding to the DFBA-SOA method, and is used in the SED-ML descriptions.157
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2.3 Reproducibility between tools158

In order to test interoperability based on the proposed scheme, models were built in both the iBioSim159
and the sbmlutils tools. Models built in iBioSim were then imported into sbmlutils and vice-160
versa to check whether models could be interpreted by both tools consistently. This was done in an iterative161
manner and issues were solved by clarifying the encoding scheme by adding additional rules which162
resolved ambiguities. Ensuring reproducibility for DFBA models is challenging because there may exist163
several possible outcomes that satisfy the objective function and constraints of the FBA models. Different164
trajectories can result from the DFBA simulation depending on how a solver and implementation selects165
one of the multiple optima. The issue of multiple optima was solved by guaranteeing uniqueness of the166
solution in every time step based on Flux Variability Analysis (FVA) (Mahadevan and Schilling, 2003).167
FVA gives the possible minimal and maximal fluxes for each reaction in each step of the simulation. If all168
minimal fluxes are equal to all maximal fluxes for a time point a solution is unique in the time point. If all169
time points are unique the solution is unique. As a practical note: If the solution is not unique, the addition170
of additional constraints to the FBA problem allows to make the solution unique. Reproducibility of the171
model simulations was tested by comparing the numerical SOA results between the two tools for models172
with unique solutions (see Supplementary Material S2). Results were assumed as numerically identical if173
the absolute difference for every time point tk for all dynamical FBA species in the model ck was smaller174
than the tolerance ϵ = 10−5. The difference is computed as follows:175

abs(ci(tk)sbmlutils − ci(tk)ibiosim) ≤ ϵ ∀ci, tk

In SOA-DFBA, it is important that the time steps dt are small enough so that the solution converges176
against the optimal solution. Solutions vary if selected step sizes are too large. To highlight this fact,177
changing the step size in the toy wholecell model from 1.0 to 0.1 resulted in differences in steady-178
state concentrations of up to 10%. Consequently, the step size was reduced until the changes did not affect179
the simulation results.180

3 RESULTS
The major result of this work is the creation of the first schema for a DFBA encoding in SBML,181
demonstrating hybrid computational models to be exchangeable and reproducible between tools. In182
the following, the schema and its application to multiple DFBA models is presented.183

3.1 Schema for dynamic flux balance analysis184

This paper proposes for the first time a schema to encode hybrid models, such as DFBA model,185
in SBML. The developed schema consists of rules, guidelines, and additional information and is186
available in the Supplementary Material S1. The latest version of the document is available from187
https://github.com/matthiaskoenig/dfba/. Proposals, errata, and updates to the schema are managed via the188
respective issue tracker and releases.189

In this Section, we provide a high-level overview of the underlying concepts used in the schema, followed190
by an application of the schema to encode DFBA models.191

The DFBA model is constructed hierarchically using the SBML comp package, separating the hybrid192
model into different building blocks based on the respective functionality and modeling frameworks193
(Figure 2). The top-level model is hereby composed of four submodels: (i) a kinetic submodel that194
computes flux bounds based on the dynamic metabolite availability and ensures that the FBA problem is195
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constrained by the available metabolite resources (BOUNDS submodel); (ii) a FBA submodel that encodes196
metabolism as a FBA problem (FBA submodel); and (iii) a kinetic submodel that updates the amounts and197
concentrations of the dynamic metabolites changed via the FBA submodel via consumption or production198
(UPDATE submodel); (iv) an optional kinetic submodel that represents a dynamic part with all kinetics199
other than the metabolic pathway, such as DNA transcription, DNA translation, and protein degradation,200
among others (KINETIC submodel). Alternatively, arbitrary kinetics can be part of the top model.201

The top-level model couples the three different submodels using SBML comp replacedElement202
and replacedBy constructs with the interface between the submodels defined via comp ports (which203
define which model components of the submodels can be connected, i.e, are exposed).204

In order to describe the different formalisms of each submodel, the Systems Biology Ontology (SBO)205
is used (Courtot et al., 2011). The SBO defines controlled vocabulary terms used in the systems biology206
field. The SBO terms are arranged in a taxonomic hierarchy using a tree structure. This allows the207
grouping of terms that are related to one another. The modeling formalisms of the individual submodels208
are described using terms on the modeling framework branch, where FBA models are described using the209
flux balance framework term, stochastic processes are described using the non-spatial discrete framework210
term, and differential equations are described using the non-spatial continuous framework term. Although211
the terms for stochastic processes and differential equations can be used for describing either stochastic or212
deterministic simulation methods, these terms were selected because they are the ones that best describe213
these two formalisms.214

In addition to the modeling formalism, other key components are annotated in the submodels via SBO215
terms in the schema, like the upper and lower flux bounds and the exchange reactions in the FBA submodel216
defining which metabolites can be consumed or produced in the FBA part of the DFBA, or the dynamic217
species in the top model changed by the FBA submodel. By the means of these annotations, the interface218
between the hybrid submodels can be clearly defined.219

All of the interconnections between the submodels are encoded in SBML rather than using an external220
approach like for instance via SED-ML. The connections between model components are crucial221
information of the model and should be part of the model encoding. SED-ML is only used to encode which222
simulation to run with the model. As a consequence, this schema requires only a single hierarchical SBML223
model and a single SED-ML file.224

3.2 Minimal Example (toy wholecell)225

In order to illustrate the proposed schema, a simplified example of a whole-cell model was created226
and visualized. The corresponding files ( i.e. COMBINE archive and Cytoscape visualization) are in227
Supplementary Material S3. The visualization shows how the different submodels connect with each other228
in a flat form.229

This model is constructed hierarchically where a top-level model is created to instantiate different230
submodels (BOUNDS, UPDATE, and FBA) and make the necessary connections between them. The figure231
illustrates the structure of each submodel and how each submodel ties in with each other in a flat version of232
the model once all of the connections are established.233

In the example, the FBA submodel imports species A and convert it via a linear chain of reactions to234
species C. The exchange reactions EX A and EX C contain the rate of consumption and production of235
the respective species. The TOP model contains assignment rules that assign the fluxes to the parameters236
pEX A and pEX C. The pEX A and pEX C parameters are used by the UPDATE model to compute the new237
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Figure 2. Overview of the schema for DFBA model encoding in SBML. The hierarchical SBML model
is composed of a top-level model with four submodels: FBA, BOUNDS, UPDATE, and KINETIC. The
individual submodels are connected via ports. The respective SBML packages used are listed in the models,
as well as the employed simulation method. The BOUNDS submodel calculates the upper and lower flux
bounds based on metabolite availability. The FBA submodel computes the reaction fluxes of the metabolic
model encoded via the SBML fbc package using the bounds as constraints. The UPDATE submodel
calculates the dynamic update of the dynamic metabolites affected by the FBA model. The rates of change
are hereby functions of the FBA fluxes. The KINETIC submodel includes all of the other processes in the
model, which may affect or be affected by entities in metabolism. The top-level model ties together the
different submodels using SBML comp replacedElement and replacedBy constructs.

values of the dynamic species A and C via the update reactions update A and update C. The BOUNDS238
model calculates the bounds of all FBA exchange reactions (constraining the availability of the dynamic239
species). In the example, the upper bound ub R1 of reaction R1 is changed via a rate rule. Additional240
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Figure 3. Detailed schema of the minimal example model (toy wholecell). The figure shows the
components in the BOUNDS, FBA and UPDATE submodels. Links between submodel components
are based on ports which are connected elements via TOP model replacements (replacedElements
and replacedBy). The flattened SBML comp model (FLATTENED) shows the resolved connections
between the different submodels after these replacements have been performed. The flattened model can
not be simulated because the separation of the modeling formalisms is lost in the flattening process. The
network visualization are available as interactive graphs in Cytoscape as Supplementary Material, which
provide additional information and annotation of the components. The figure was created with cy3sbml
using the SBML models (König et al., 2012).

kinetics are encoded in the TOP model, such as the kinetic conversion of C to D (these could also be in a241
separate KINETIC submodel).242

In order to validate the exchangeability and reproducibility of the model, simulations were performed243
using the simulation algorithm described in Figure 1 with results depicted in Figure 4. Both implementations244
resulted in numerically identical results (see Section 2.3). Importantly, our encoding schema allowed to245
reproduce the numerical results even if the step sizes were not yet small enough to have converged against246
the correct solution, thereby allowing to test the effects of varying step sizes in a reproducible manner.247

In addition to the presented minimal model, a second model and its corresponding Cytoscape visualization248
of a simplified DFBA glycolysis (toy atp) is available in the supplement (COMBINE archive in249
Supplementary Material S3)250

3.3 Diauxic growth in Escherichia coli (diauxic growth)251

The next example is an encoding and reproduction of results from a published DFBA model of diauxic252
growth of the Escherichia coli (Mahadevan et al., 2002) consisting of four reactions between four253
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Figure 4. DFBA simulation results for the toy wholecell model in two different tools
(sbmlutils: A, B; iBioSim: C, D). This demonstrates that models can be exchanged by different tools
using standards and the results can be reproduced when using the same simulation algorithm. Species A is
converted to C via the FBA subnetwork over time. Species C is converted to D via the kinetic parts in the
top model. Species A is not consumed completely because of the import of A in the FBA subnetwork via
R1 which is shut down over time via a rate rule for the upper flux bound. The model was simulated for
50[h] with a time step dt of 0.1[h].

metabolites: glucose (Glcxt), oxygen (O2), acetate (Ac), and biomass (X). The model can grow either254
aerobically on acetate (v1), aerobically on glucose (v2 or v3), or anaerobically convert glucose to acetate:255

v1 : 39.43Ac + 35O2 → X

v2 : 9.46Glcxt+ 12.92O2 → X

v3 : 9.84Glcxt+ 12.73O2 → 1.24Ac +X

v4 : 19.23Glcxt → 12.12Ac +X

The kinetic part of the model is described by the following differential equations:

dGlcxt

dt
= AGlcxtνX

dAc

dt
= AAcνX

dO2

dt
= AO2νX + kLa(0.21−O2)

dX

dt
= (v1 + v2 + v3 + v4)X

where AGlcxt, AAc , AO2 are the respective rows of each variable in the stoichiometry matrix and kLa is the256
mass transfer coefficient of oxygen. For a detailed description see (Mahadevan et al., 2002).257

The model and its corresponding Cytoscape visualization is available in Supplementary Material S3.258
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Figure 5. Simulation results for the diauxic growth of Escherichia coli in sbmlutils (A, B, C, D) and
iBioSim (E, F, G, H). The model is able to reproduce the general behavior from experimental data. The
cell is growing exponentially while glucose is present, but when the cell runs out of glucose, growth slows
down and is limited mainly by oxygen. However, when the cell runs out of glucose and oxygen, growth
diminishes significantly. The model was simulated for 15[h] with a time step dt of 0.01[h].

The results in Figure 5 depict an exponential growth phase using glucose aerobically until running out259
of glucose, which at this point the cell grows linearly due to oxygen. When both oxygen and glucose run260
out, the cell growth stagnates. Experimental data from (Varma and Palsson, 1994) is plotted alongside the261
simulation results. The model is able to capture the behavior observed in the experimental data. The results262
are equivalent to the models in (Mahadevan et al., 2002).263

We hereby showed that our schema is able to encode published DFBA models, resulting in a reproducible264
and exchangeable model representation between tools.265

3.4 Escherichia coli Core Metabolism (ecoli)266

To demonstrate the feasibility of the proposed schema and method for real-world examples of DFBAs,267
a larger metabolic network for the core metabolism of Escherichia coli (Orth et al., 2010) was encoded268
in the proposed schema and simulated as shown in Figure 6. The model is available as COMBINE269
archive in Supplementary Material S3. The FBA submodel was downloaded from BiGG (King et al.,270
2016) (core metabolism of Escherichia coli str. K-12 substr. MG1655) and transformed to an DFBA271
model in an automatic fashion using sbmlutils. BiGG models encode the exchangeable species via272
annotated exchange reactions which allows an automatic inference of the dynamic species. Only additional273
information required to run a DFBA simulations are initial concentrations for the species. The automatic274
encoding of larger scale examples demonstrates the scalability of the proposed encoding approach.275

While sbmlutils is able to find a solution for the model, iBioSim cannot as it runs into an unfeasible276
solution in the middle of simulation. This captures the well-known problem of DFBA with multiple277
solutions. The FBA problem is not constrained enough to result in a unique solution and depending on278
which solution the simulator picks, different solutions and thereby trajectories arise. Despite the existence279
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Figure 6. DFBA simulation results for core metabolism of Escherichia coli with sbmlutils. The proposed
approach can be used in larger models, such as the Escherichia coli model described in the paper. The
model is growing aerobically on glucose in the initial phase and reaches a steady state after oxygen is
consumed. The model was simulated for 3.5[h] with a time step dt of 0.01[h].

of multiple solutions, tools and LP solvers typically pick solutions deterministically. Hence, single tools280
can reproduce their own results, but results are irreproducible between different implementations. Without281
the use of standards, this could never be demonstrated because variations in results could be due to282
discrepancies in the model, and not in the tool.283

4 DISCUSSION
The ability to encode hybrid models, modularity and reproducibility of models are indispensable for284
encodings of complex models in computational biology. In this work, we presented such an approach,285
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which allows a clear separation of the different modeling formalisms via hierarchical models and defining286
the interfaces between the submodels. Here we propose and implement an exchangeable and reproducible287
hybrid modeling scheme. This scheme for encoding DFBA models has been implemented in two different288
tools, demonstrating the exchangeability and reproducibility of our approach on various examples models.289
iBioSim and sbmlutils are freely available for download and offer the necessary infrastructure for290
anyone to develop DFBA models using the proposed scheme. Currently, the proposed approach supports291
the modeling of DFBA models based on the SOA simulation algorithm. Hence, our approach only covers a292
subset of DFBA algorithms and a subset of possible frameworks.293

Most DFBA models are stiff. Hence, short time steps are required for stability and for accurate results.294
Due to the need for short time steps, the SOA approach is computationally expensive. Future directions295
include the exploration of adaptive time steps for executing the DFBA with SOA, alternative DFBA296
methods, such as DOA or DA, and extending our scheme to encode such models.297

Our current approach is limited to the coupling of ODEs to FBA models. Different hybrid modeling298
types, such as any mixtures of differential equations, stochastic processes, or Boolean models may yield299
promising results in the future. The proposed approach of decoupling different modeling formalisms via300
the comp package could work similarly for other modeling frameworks like Boolean models.301

So far, only small to medium-size DFBA models have been encoded in our proposed approach. For future302
work, we will encode genome-scale metabolic models such as HepatoNet1 (Gille et al., 2010) which will303
allow us to assess the scalability and performance of the proposed approach.304
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