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Abstract

This contribution sketches a work flow to design an RNA switch that is
able to adapt two structural conformations in a ligand dependent way. A well
characterized RNA aptamer, i. e., knowing its Kd and adaptive structural fea-
tures, is an essential ingredient of the described design process. We exemplify
the principles using the well known theophylline aptamer throughout this work.
The aptamer in its ligand-binding competent structure represents one structural
conformation of the switch while an alternative fold that disrupts the binding
competent structure forms the other conformation. To keep it simple we do not
incorporate any regulatory mechanism to control transcription or translation.
We elucidate a commonly used design process by explicitly dissecting and ex-
plaining the necessary steps in detail. We developed a novel objective function
which methodically describes the function of this simple, ligand-triggered ribo-
switch and describe an extensive in silico analysis pipeline to evaluate important
kinetic properties of the designed sequences. This protocol and the developed
software can be easily extended or adapted to fit novel design scenarios and thus
can serve as a template for future needs.
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1. Introduction

Riboswitches are highly structured RNA sequences commonly found in the
5’-untranslated region (UTR) of prokaryotic messenger RNAs (mRNAs). Within
this regulatory domain, they are responsible for altering gene expression on
the transcriptional or translational level in response to environmental changes,5

which is typically the concentration of a small ligand [1]. A riboswitch consists
of two components: i) a sensory domain and ii) a regulatory domain. While
the former specifically senses the environmental change, the latter is responsi-
ble for influencing the expression level of the downstream gene. Beside those
switches that follow this commonly assumed two-component model, examples10

are known where a sensory domain alone, i. e., an aptamer, is able to alter
gene expression [2, 3, 4, 5]. The possibility to encode effective sensors at RNA
level makes riboswitches valuable gadgets that can directly interfere with the
complex process of gene expression without the need of additional co-factors
such as proteins. Here we elucidate the complex process of designing such a15

ligand-sensing riboswitch that, for simplicity, does not implement a specific reg-
ulation mechanism at transcriptional or translational level. The RNA sequence
should “simply” adapt two alternative conformations depending on the presence
or absence of a ligand. Therefor, we aim to extend an aptamer such that an
alternative structural conformation is formed in the absence of the ligand.20

Successful design approaches show that the problem of generating an artifi-
cial RNA sequence exhibiting a prescribed functionality needs to be formulated
as a multi-step approach, including computational and experimental, analytic
and constructive methods [6, 7]. Early design publications already followed such
a multi-step scheme but included manual steps instead of computational meth-25

ods, as there were just no computational tools available that implemented the
features actually needed by the experimentalists. However, this changed over
time and recently the common trend is to perform as many steps as possible
with the support of advanced in silico methods [8].

As a first step, it is important to analyze the underlying biological system,30

the cellular environment and, most importantly, all the properties of the build-
ing blocks to use. With this information, it is then possible to design a model
describing the functionality of the novel RNA molecule in its environment. To
determine a sequence with the requested characteristics, usually an optimization
problem is formalized, where the objectives are specified as constraints and a35

mathematical function describing various biophysical properties of the system.
Obtaining a sequence compatible with constraints such as specific target struc-
tures and sequence motifs is a quite tricky task, which was solved with various
methods ranging from manual design [9] to graph-theoretical coloring algorithms
as implemented in RNAblueprint [10]. A variety of well-established optimization40

methods such as the Metropolis–Hastings algorithm [11, 12] or genetic algorithm
based approaches were used to find optimal solutions by traversing through the
constrained solution space [13, 14]. However, until now, only little effort was
made to find proper objective functions. Often only some static properties of
the molecule’s energy landscape are used instead of more directly characteriz-45
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ing the mechanism of the artificial device. Only recently, some published design
programs started to allow to compile an objective function from a catalog of
predefined functions [15, 14]. RNAblueprint [10] went one step further and al-
lowed to formulate the objective utilizing a scripting interface, which gives the
user complete control over the optimization procedure.50

To narrow down the number of obtained RNA sequences, a subsequent step
to analyze and filter the obtained solutions was almost always performed. Es-
sentially, the differences and advantages of various solutions are explored. The
generation of proper visualizations or the evaluation of additional properties
that could not be incorporated into the objective function help to perform this55

selection process.
Finally, it is crucial to biologically test for the desired functionality of the de-

signed molecule as many biologically relevant aspects cannot be easily included
in the computational models and algorithms.

In this contribution, we aim to closely follow the described design steps60

to generate a simple, ligand-triggered riboswitch. Therefor, we combine the
previously published RNA design software RNAblueprint with analysis tools
like the coarse graining program barriers and the kinetics simulator treekin.
To achieve our goal, we propose a functional model, specify valid constraints,
and develop an objective function, which directly describes the functionality of65

this riboswitch at an abstract level. To compute the quality measures used by
our objective, we resort to the well-established thermodynamic RNA folding
model implemented in the ViennaRNA package. An extensive in silico analysis
pipeline evaluates important properties of the designed sequences and thus helps
to narrow down and filter the list of obtained sequences that might be sent to70

the laboratory for biological testing. Although we describe a work flow for
the purpose of generating a specific riboswitch, the overall result comprises the
developed protocol and software, which can easily be extended or adapted to fit
novel design scenarios and thus serves as a scaffold for future tasks.

2. Materials and Methods75

2.1. Specifying the design constraints

Given a model describing a desired riboswitch or functional RNA, it now
needs to be converted into a machine-readable format in order to computation-
ally generate valid sequences. Thus, the desired properties and the functionality
can be expressed as a combination of constraints such as structural requirements80

and various properties specifying the energy landscape, and the kinetic folding
properties. We specified these constraints of the functional states in the file
design input.txt:

# alternative conformation:
.........................(((((((((((...... )))))))))))...........85

# binding competent conformation:
(((((...((((((((.....)))))...)))...))))).. ......................
# sequence constraint:
AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCA NNNNNNNNNNNNNNNNNNNNNN
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These sequence and structure constraints are represented in IUPACK and dot–90

bracket notation, respectively. In the sequence constraint, A, U, G and C cor-
respond to the nucleotides adenine, uracil, guanine and cytosine, respectively.
To positions marked with N, any nucleotide can be assigned as long as they
are compatible to the structural constraints, where “.” represents an uncon-
strained position and matching brackets “( )” two positions paired with each95

other. Please note, constraints resulting from or overlapping with the chosen
aptamer are separated by a space that needs to be removed when constraints are
used as input for RNAblueprint , the applied sequence designer. We collected
any tools in Table 1 including a short summary, the download link, citation
and further remarks. RNAblueprint can be invoked by executing the following100

command:

$ RNAblueprint -v < design_input.txt > design_output.txt

This returns how many compatible sequences exist (1.342 18× 108 for the given
example) and, by default, ten randomly generated sequences which are written
into file design output.txt. In principle, each of these sequences can fold into105

both specified structures, the most stable structure typically being a hybrid.
Please note that the obtained sequences are randomly generated and thus vary
on every call.

2.2. Prediction of minimum free energy structures

A transcribed RNA molecule immediately forms intra-molecular base pairs,110

folding into a structural conformation known as its (secondary) structure. The
structure, in turn, often determines the RNA’s biological function, e. g., in our
case, the binding affinity for a given ligand. Any structure of a given RNA
sequence can be assigned an energy value—the Gibbs free energy—and the
structure expressed most likely is the one having the lowest possible energy. It115

is therefore called the minimum free energy (MFE) structure.
To predict the MFE of a given sequence and its associated secondary struc-

ture, we use the tool RNAfold included in the ViennaRNA package (cf. Table 1).
We first store an example sequence in a text file exa.txt and subsequently apply
RNAfold to it.120

$ echo "AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU" \
> exa.txt

$ cat exa.txt | RNAfold

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU125

...........(((((.....)))))((((((((((......))))))))))............ (-19.70)

The above invocation of RNAfold returns, beside the input sequence, its most
stable structure in dot–bracket notation and the corresponding MFE. Energies
are given in kcalmol−1.
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2.3. Modelling ligand binding with soft constraints130

To incorporate the ability to bind to a specific ligand into an in silico

RNA design process, a model that is aware of the stabilizing contributions of
this dimerization on the resulting RNA–ligand complex is required. For the
work presented here, the recently implemented soft constraint framework of the
ViennaRNA package [16] has been applied. Among other things, it allows to add135

an energy bonus to structural states that exhibit a certain motif. This allows
for a direct integration of the effects of ligand binging into the RNA structure
prediction and evaluation process [16]. When evaluating the structure ensemble
of a given molecule containing the theophylline aptamer sequence, an energy
bonus of ∆G = −9.22 kcalmol−1 is added to every secondary structure that140

contains the correctly folded binding pocket. This value is obtained from the
relation ∆G = R × T × lnKd for the gas constant R = 1.987 17 calmol−1, the
temperature T = 310.15K, and the experimentally measured dissociation con-
stant Kd = 0.32 µM [17]. Using the example sequence and the --motif option
of RNAfold ,145

$ cat exa.txt | RNAfold -p \
--motif="GAUACCAG&CCCUUGGCAGC,(...((((&)...)))...),-9.22"

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU
.((((...((((((((.....)))))...)))...))))((((...)))).............. (-21.92)150

,((((...((((((((,...,)))))...)))...))))|(((...})),.............. [-23.32]
.((((...((((((((.....)))))...)))...)))).(((...)))............... {-12.20 d=4.04}
frequency of mfe structure in ensemble 0.103202; ensemble diversity 6.30

the MFE structure now contains the binding-competent aptamer fold with a
corrected energy value (cf. first row after he sequence). As a result from using155

the -p option, a condensed representation of the base pair probabilities of each
nucleotide in the ensemble with the Gibbs free energy of the soft-constrained
ensemble G(x | s) (second row) as well as the centroid structure, i. e., the con-
sensus structure of all base pairs with a probability higher than 50% in the
ensemble [18], and its free energy (third row) are printed.160

2.4. Obtain the probability of structural features

In a design process, one usually wishes to enforce the presence or absence of
certain structural motifs, or even requires a certain sub-structure to be present
with a specific probability. This calls for a method that can determine the
fraction of structures of a given RNA sequence that contain a given motif. An165

objective function can then use this information to compute probabilities of
motifs and accordingly select sequences suitable for the design goal.

Hard constraints of the ViennaRNA package are well suited for such tasks.
They allow to restrict the conformations of an RNA to states containing a
combination of unconstrained bases “.”, bases that have to be unpaired “x”,170

bases that have to be paired no matter to which binding partner “|” and base
pairs indicated by matching brackets “( )”. It is furthermore possible to specify
if a base has to be paired with a binding partner up- or downstream by “<” and
“>”, respectively. Note that structures lacking some constraints are counted
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as well as long as no base pair conflicts with the constraint. To only include175

structures possessing all specified base pairs, use the --enforceConstraint

option. To calculate the probability of the alternative conformation, one can
use the following constraint and command:

constraint.txt
AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU180

.........................(((((((((((......)))))))))))...........

$ cat constraint.txt | RNAfold -C -p \
--motif="GAUACCAG&CCCUUGGCAGC,(...((((&)...)))...),-9.22"185

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGCUGGGGGAAUGUUUUUGU
............((((.....))))(((((((((((......)))))))))))........... (-19.50)
....,.......((((|...,))))(((((((((((......)))))))))))........... [-20.19]
............((((.....))))(((((((((((......)))))))))))........... {-19.50 d=3.89}190

frequency of mfe structure in ensemble 0.32628; ensemble diversity 6.02

This performs a constrained (-C) partition function (-p) fold simulating ligand
binding (--motif). Here, all structures of a sequence x containing only base
pairs compatible to the hard constraint h and the soft constraint s are considered
during the calculation. The Gibbs free energy G(x |h, s) of those structures can
then be used to calculate the frequency of the constrained sub-structure within
the complete ensemble, which is denoted as

P (x |h, s) = exp

(

−
G(x |h, s)−G(x | s)

RT

)

. (1)

For more background information on the relation of these energies and the prob-
abilities, please refer to subsection 2.6. Re-running the last command without
the -C option yields the Gibbs free energy G(x | s) without the hard constraint h.
This will include all suboptimal structures in the calculation, but still uses the
soft constraint option to model ligand binding (cf. subsection 2.3). For the above
example, G(x | s) and G(x |h, s) are −23.32 kcalmol−1 and −20.19 kcalmol−1,
respectively, and the resulting probability is

P (x |h, s) = exp

(

−
−20.19 + 23.32

310.15× 1.98717

)

≈ 0.01.

The frequency of a structural motif in the absence of any ligand can be obtained
by running both commands without the --motif option. Thus, we can also
calculate P (x |h) as denoted in Equation 1.195

2.5. Enumerating suboptimal structures of an RNA molecule

To analyze the kinetics of an RNA molecule, at least a part of its structural
ensemble needs to be explicitly constructed. This is a challenging task as the
number of structures even for small RNAs is enormous. The tool RNAsubopt
(cf. Table 1) can be applied to generate all structures a given sequence can adopt200

up to a given energy threshold. Consider the following example:

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2018. ; https://doi.org/10.1101/245464doi: bioRxiv preprint 

https://doi.org/10.1101/245464
http://creativecommons.org/licenses/by-nc-nd/4.0/


seq1.txt
AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGUUGAGGGGGCUCAAUGAC

$ cat seq1.txt | RNAsubopt -e 1.2 -s205

AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGUUGAGGGGGCUCAAUGAC -21.60 1.20
................((((((((.(((((((((((......))))))))))).).)))).))) -21.60
....(((......)))((((((((.(((((((((((......))))))))))).).)))).))) -21.50
(((((...((((((((.....)))))...)))...)))))..(((((((((....))))))))) -21.10210

(((((...(((((((((...))))))...)))...)))))..(((((((((....))))))))) -20.80
.((((...((((((((.....)))))...)))...))))...(((((((((....))))))))) -20.80
..(((.......))).((((((((.(((((((((((......))))))))))).).)))).))) -20.60
.((((...(((((((((...))))))...)))...))))...(((((((((....))))))))) -20.50
..((.......))...((((((((.(((((((((((......))))))))))).).)))).))) -20.50215

...(((..((.(((((.....)))))((((((((((......))))))))))))..)))..... -20.40

where all suboptimal structures with an energy at most 1.2 kcalmol−1 above
the MFE are generated. Note that the number of generated structures /grows
egrows exponentially with both the sequence length and the size of the selected
energy band. Thus, larger instances of these calculations do not only consume220

CPU time, but also generate files of several gigabytes in size. To reduce the
number of generated sequences, it is possible to skip all structures containing
lonely base pairs, i. e., helices of length one, by applying the --noLP option of
RNAsubopt , cf. subsection 2.6.

As the sorting routine applied by RNAsubopt (-s option) might fail on huge225

instances even on high memory machines with giga- or even terabytes of RAM,
a workaround is to pipe the RNAsubopt output to Unix’s sort tool. The latter
scales much better with the memory consumption of the typically huge ensem-
ble sizes. The following example generates the full RNAsubopt output. The
execution of this command may take some time as the RNAsubopt output of230

the example sequence is approximately 16GB in size.

$ cat seq1.txt | RNAsubopt -e 22.60 | sort -k2,2n -k1,1r -S20G > seq1.sub

Here, the main memory buffer allocated by sort is set to 20GB. Above this
threshold, sort will dump data to temporary files on the hard drive. Assuming
enough disk space is available, this still implies performance loss but makes it235

possible to process even huge RNAsubopt output. We estimated the energy
band width to use for the -e option by folding the sequence with RNAfold (cf.
subsection 2.2), setting its value to −1×MFE+1 to convert the minimum free
energy (MFE) into a positive value and also take a few structures with positive
energies into account. The obtained file seq1.sub contains a list of all possible240

structures within 22.60 kcalmol−1, sorted by ascending energy values.

2.6. Assessing the impact of avoiding lonely pairs

The --noLP option of RNAsubopt (and barriers , cf. subsection 2.7) achieves
a considerable speed-up by neglecting structures containing so-called lonely base

pairs, i. e., base pairs which are not directly surrounded by another base pair.245

Put differently, this option enforces a minimal helix length of two base pairs.
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The biological motivation of this optimization is that lonely base pairs usu-
ally destabilize a secondary structure and thus would open up again quickly.
Structures not containing lonely pairs are called canonical structures.

Using --noLP significantly reduces the resources required for conducting the250

analysis, but may also bias its results. Therefore, when analyzing a newly
designed sequence, the question arises whether applying this heuristics will, in
this specific case, yield accurate results or not. Here, we derive a measure that
helps to answer this question for individual sequences.

The probabilities of the secondary structures for a given RNA sequence x
follow a Boltzmann distribution, i. e., the probability of a secondary structure

φ is proportional to B(x |φ) := exp(−G(x |φ)
RT

). Here, R is the universal gas
constant, T is the absolute temperature, and G(x |φ) is the Gibbs free energy
of the RNA x folded into the structure φ. The term B(x |φ) is referred to as
the Boltzmann weight of φ. If Φ is the entire structure ensemble of x, then the
partition function of x is given by Z =

∑

φ∈Φ B(x |φ), and the probability of
structure φ in the ensemble is

P (x |φ) =
B(x |φ)

Z
.

Note that Z = B(x) := exp(−G(x)
RT

), i. e., the partition function is the Boltzmann255

weight of the ensemble energy G(x).
It is reasonable to assume that leaving out extremely unlikely structures will

not significantly change the results of the analysis to be performed, so one way
to assess the impact of the heuristics is to enumerate structures up to a certain
energy threshold and compute the fraction of structures that contain lonely260

pairs and will, therefore, be excluded from the simplified analysis. Furthermore,
instead of simply taking the fraction of counts of structures with and without
lonely pairs, one can get more profound results by comparing the sums of their

Boltzmann weights corresponding to the probabilities of the respective sets of
structures.265

To achieve this for a given sequence x, first calculate the partition of the full
ensemble Z = B(x) using the ensemble energy G(x) that can be computed by
running RNAfold -p. Now, RNAsubopt -e can be used to enumerate structures
within a given energy band above the MFE. Initialize variables Z(0) ← 0 and

Z
(0)
can ← 0, which will be used to store the approximations of the partition270

functions of the full and the canonical ensemble, respectively. For the t-th
output structure φ of RNAsubopt , compute its Boltzmann weight B(x |φ) and
set Z(t) ← Zt−1 + B(x |φ). Then, verify whether φ is canonical and, if this is

the case, set Z
(t)
can ← Z

(t−1)
can +B(x |φ), otherwise, leave it unchanged by setting

Z
(t)
can ← Z

(t−1)
can . Finally, compute the fractions Z(t∗)/Z and Z

(t∗)
can /Z, where t∗275

is the final value of t. The first fraction measures the structure coverage, i. e.,
which Boltzmann-weighted fraction of structures has been analyzed. It should
be close to 1 for reliable results and can be improved by increasing the width
of the energy band that limits the structure enumeration. The second fraction
approximates the ratio of canonical structures in the ensemble.280
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As a side node, one might argue that, instead of the more complex enumer-
ation process just described, one could directly compute the ensemble energy
of the canonical ensemble using RNAfold -p --noPS. However, due to current
technical limitations, the returned ensemble energy is only an upper bound of
the actual value and may dramatically over-predict the fraction of canonical285

structures.

2.7. Analyzing the high-dimensional structure landscape

As the number of structures for a given RNA sequence grows exponentially
with the sequence length, one cannot simulate the folding process with every
single secondary structure even for small RNAs. Therefore, the number of sim-290

ulation states needs to be reduced to a feasible number, ideally without biassing
the outcome. This can be achieved by applying a coarse graining approach,
which reduces the size of the high-dimensional structure landscape the sequence
spans to a much smaller set of macro-states, each of which represents a set of
multiple structures.295

The tool barriers (cf. Table 1) implements a flooding algorithm that effec-
tively coarse grains an energy landscape to macro-states or basins, each repre-
sented by a local minimum of the folding landscape. Each basin contains all the
structures connected to its representative local minimum by the folding path of
steepest descend. The tool also computes, for each two macro-states, the barrier300

height, i. e., the highest intermediate structure (with respect to its energy) that
has to be overcome in order to refold from one state to the other. It can be
used to visualize the RNA landscape by drawing a barrier tree.

barriers requires a list of all suboptimal structures within a certain energy
range, sorted by ascending energy value, as input. How to obtain such a list305

is explained in subsection 2.5. To obtain correct simulation results, the en-
ergy range has to be large enough to connect all generated macro-states. If
this is not the case, the width of the energy band has to be increased. Al-
ternatively, heuristic approaches such as findPath [19] may be used to connect
formerly disconnected states. In order to handle the huge amount of structural310

states generated by our design example, it is mandatory to configure barriers

using the option --with-hash-bits=29 and to run make with the argument
AM CFLAGS=-mcmodel=large.

Once the input file has been generated, barriers can be applied to it by
executing315

$ barriers --max=500 -G RNA -M noShift --bsize --rates < seq1.sub > seq1.bar

The --max=500 option specifies the number of macro-states to be generated,
-G, specifying the graph type, is set to RNA, -M noShift disallows so-called
shift moves (i. e., a move changing exactly one of the two indices of an existing
base pair), and --bsize and --rates enable the output of the size of each320

basin, and to compute transition rates between these macro-states. The results
of barriers are then piped into the file seq1.bar. A graphical representation
of the barrier tree in the PostScript format is by default saved to a file named
tree.ps, whereas the rates are stored in file rates.out.
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Note that barriers needs to be run with the -G RNA-noLP option when pre-325

dicting an ensemble without lonely pairs.

2.8. Simulating kinetic folding using macro-states

Relying solely on thermodynamic criteria—e. g., probabilities of given con-
formations—during an RNA design process, one may miss important traits of
the candidate sequences. Transcriptional riboswitches, for example, interact330

with the RNA polymerase in a time-critical manner, and information about
the presence or absence of specific sub-structures within certain time frames
are necessary to ensure correct switching behaviour. Such knowledge can be
obtained by running a kinetics simulation for the given RNA sequence. Even if
this type of analysis is too time-consuming to involve it into the design process335

directly, it should be performed on a small set of promising candidates to verify
their functionality.

The program treekin can be used to simulate single-molecule kinetics, which
solves a continuous-time Markov process by numerical integration with the in-
finitesimal generator being a rate matrix. The latter is obtained by running340

barriers , which estimates the transition rates from each macro-state to all the
other ones and stores them as a matrix in the file rates.out (subsection 2.7).
The computation is performed using treekin as follows:

$ treekin --p0 1=1 -m I -f rates.out --t8=1E12 < seq1.bar > seq1.tkin

Here -m I tells treekin to parse the file specified by -f as barriers output, --t8345

sets the maximum simulation time to 1× 1012 arbitrary time units (AU) and
--p0 sets the initial population size of the selected minimum of the barrier tree.
Here, we set the global minimum of the barrier tree (i. e., macro-state 1) to be
100%. The output can then be visualized by using the program xmgrace with
the following command:350

$ xmgrace -log x -nxy seq1.tkin

2.9. Coarse grain visualization to emphasize structural features

Kinetic folding plots (cf. subsection 2.8) usually produce a big amount of
independent curves (500 in our example), one for each macro-state of the bar-
rier tree. However, we optimized the RNA to exhibit specific structural features355

and thus want to visualize how often we observe this sub-structure in the en-
semble of structures and the kinetic plots. Thus, we are collecting states that
exhibit our structural features, i. e., ligand-binding stem or alternative stem, and
summarize them into combined density curves. We implemented a Perl script
called coarsify.pl that performs this task. It can be applied to seq1.bar and360

seq1.tkin output as follows:

coarsify_regex.txt

# ?25(((((((((((......))))))))))) | ?26((((((((((......))))))))))

^.{25}\({11}\.{6}\){11}[\.\(\)]{11}|^.{26}\({10}\.{6}\){10}[\.\(\)]{11}

365

# ?2(((...((((((((.....)))))...)))...))) | ?2(((...((((((((.....))))...))))...)))"

^.{2}\({3}\.{3}\({8}\.{5}\){5}\.{3}\){3}\.{3}\){3}|^.{2}\({3}\.{3}\({8}\.{5}\){4}\.{3}\){4}\.{3}\){3}
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$ perl coarsify.pl -regs coarsify_regex.txt -minh 30 seq1.bar seq1.tkin

coarsify.pl merges macro-states of a given barrier tree in two ways: i) if the
barrier height of a state is below the selected --minh value, it is merged to370

its neighbor and the population density of this neighbor is increased accord-
ingly, and ii) if states contain similar structural elements, specified as regular
expressions (coarsify regex.txt), they are merged. Note that macro-states
containing a different set of these structural elements are never merged although
i) would be applicable. In the above example, all states are merged as --minh375

is larger than the energy band generated by RNAsubopt . However, the two
specified regular expressions combine states that are compatible with the initial
structural constraints of the design and keep the remaining landscape sepa-
rate. The coarse-grained barriers and treekin output is written to the files
seq1 30.bar and seq1 30.tkin, respectively.380

2.10. Kinetic simulation of an RNA with ligand interaction

Analyzing the influence of a ligand on the folding kinetics of a potentially
binding-competent RNA molecule can, in its most general form, be a difficult
problem. Under certain conditions, however, it is possible to use treekin (cf.
Table 1) for this task. Based on the assumption that the RNA–ligand complex385

has a rather low dissociation rate coefficient koff compared to its association
rate coefficient kon, the effect of ligand addition can be simulated by declaring
the binding-competent state absorbing, i. e., prevent any transitions out of it.
This can be achieved by starting treekin with the population density of the last
time point in seq1.tkin—i. e., the equilibrium distribution—and setting the -a390

option to the most stable binding-competent state:

$ grep -v "#" seq1.tkin | tail -n 1 | \
perl -ae '{for($i=1; $i<scalar(@F); $i++){print "--p0 $i=$F[$i] "}}' > t

$ treekin -m I `cat t` -f rates.out --t8=1E12 -a 3 < seq1.bar > seq1_absorb.tkin
$ coarsify.pl -regs coarsify_regex.txt -minh 30 seq1.bar seq1_absorb.tkin395

$ rm t

First, the last time point in seq1.tkin is extracted and converted such that the
output saved in t can be used as repeated --p0 parameter of treekin. Then,
treekin is called and its output is stored in seq1 absorb.tkin, which is subse-
quently coarse grained. Finally, the temporary file t is removed. Visualization400

of the coarse-grained absorbing landscape is possible with the graph plotting
tool xmgrace (cf. Table 1) by running:

$ xmgrace -log x -nxy seq1_absorb_30.tkin
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Table 1: Summary of the utilized software. RNA related software tools are either standalone
or part of the ViennaRNA package. The installation procedure is documented on the web
pages listed. Standard Unix tools are tagged as Other and are typically included in or easy
to install with the package manager of any distribution.

Software Description and URL Ref

R
N
A

re
la
te
d

RNAblueprint v1.2 Fair sampling approach that generates sequences compat-
ible to sequence and to one or more structural constraints.
You need to install the boost library first. Note that we
compiled it with --disable-perl

[10]

https://github.com/ViennaRNA/RNAblueprint

RNAsketch v1.2 Python library to design nucleic acid sequences using
RNAblueprint. It offers convenient functions to in-
teract with the software packages of ViennaRNA and
NUPACK . Furthermore, predefined methods, e. g., for
sequence optimization, help to standardize the design pro-
cess.

[10]

https://github.com/ViennaRNA/RNAsketch

barriers v1.6.0 Generates a coarse-grained energy landscape given an
energy-sorted list of suboptimal RNA secondary struc-
tures. Note that we configured with --with-hash-bits=29

and ran make with argument AM CFLAGS=-mcmodel=large in
order to handle upto 229 structures.

[20]

http://www.tbi.univie.ac.at/RNA/Barriers/

treekin v0.3.1 Calculates folding kinetics on a coarse-grained energy
landscape. One problem that often occurs during treekin

installation is its dependency on the blas and lapack pack-
ages. Try to install them first. Note that we compiled an
older version of treekin as v0.4.1 does not support the -a

option.

[21]

http://www.tbi.univie.ac.at/RNA/Treekin/

ViennaRNA v2.4.0 Library containing the ViennaRNA tools. [22]
(binary package) http://www.tbi.univie.ac.at/RNA/

RNAfold Calculates minimum free energy secondary structures and
partition function of nucleic acid sequences.

RNAsubopt Calculates suboptimal secondary structures a nucleic acid
sequence can fold into.

O
th

e
r

sort As part of the gnu core utils this program takes a text file
and sorts it in the specified order.
http://www.gnu.org/software/coreutils/sort

xmgrace xmgrace is a full-featured graphical user interface of grace
to make two-dimensional plots.
http://plasma-gate.weizmann.ac.il/Grace/
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binding competent
conformation (bc)conformation (ac)

alternative ligand bound
conformation (lc)

kon

koff

Figure 1: Graphical representation of the design idea. The system consists of two parts. In ab-
sence of the ligand, two conformations should dominate the structural ensemble. Depending
on the design parameter, the alternative conformation (ac) should be higher populated
than the binding competent (bc) one. Refolding rates between the two structural conforma-
tions depend on the energy barrier that separates them. Upon ligand addition, the bc gets
trapped and the system should be shifted towards the ligand bound conformation (lc).

3. Results

At the very beginning of a design process, necessary building blocks should405

be analyzed and evaluated to elucidate their properties. One of these blocks are
RNA aptamers, as they cannot be generated by simply applying computational
design methods. Here, we use an experimentally characterized RNA aptamer
with known dissociation constant Kd and adaptive structural features, namely
the well-known theophylline aptamer [17, 23, 24]. Alternatively, a novel aptamer410

could—at least in principle—be selected by performing an experimental protocol
such as Systematic Evolution of Ligands by EXponential enrichment (SELEX)
for the ligand of interest.

Next, a precise idea how the RNA regulation mechanism to be implemented
should work is required. If it resembles a naturally occurring regulation mech-415

anism, it is advisable to investigate its biological counterpart in detail before
transferring the concept to a novel design. Figure 1 sketches the idea used to
carry out the design step of this contribution. An aptamer is extended in a
way that an alternative structural conformation (ac) is formed in absence of
the ligand. As the ligand is added, it reacts with the binding-competent con-420

formation (bc) to form the ligand-bound conformation (lc), thereby stabilizing
it and sequestering the alternative conformation (ac).

We converted this model into a sequence and two structural constraints that
represent ac and bc. If its structure has been resolved, the ligand-bound confor-
mation could be taken into account as a third structural constraint. However,425

upon ligand binding, aptamers typically adapt complex tertiary interactions
going beyond the scope of the classical secondary structure model. In case of
theophylline, extensive stacking as well as the formation of base triples during
ligand recognition have been observed [23, 24]. Such interactions cannot be
handled by currently available secondary structure prediction and RNA design430

tools. A structural constraint modelling conformation lc is therefore omitted.
The functional model can be expressed as a combination of constraints such

as structural requirements and various properties specifying the energy land-
scape, and the kinetic folding properties. An RNA sequence meeting these
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requirements as close as possible can be obtained by performing a local opti-435

mization approach. Such an approach includes i) the sampling of sequences
with respect to a set of prescribed constraints, ii) the definition of a quality
criterion through a proper objective function, and iii) an optimization method
that decides whether to keep or reject a proposed solution.

We applied RNAblueprint to uniformly sample sequences that are compat-440

ible to the given sequence and structure constraints of the proposed design
model, cf. subsection 2.1. The returned sequences need to be scored according
to the design goal. Clearly, this design goal should include the evaluation of
kinetic processes driving the implemented switching dynamics. However, these
predictions are usually too demanding to be evaluated many times during opti-445

mization. Thus, we only use reasonable fast thermodynamic measures to ensure
mandatory properties of the resulting kinetic processes [25].

On the thermodynamic level, we need to guarantee that the conformations of
our model are exclusively present at least in the equilibrium. Given a sequence x
and a compatible structure φ, one can calculate the corresponding Gibbs free en-
ergy G(x |φ) using the nearest neighbor model [26, 27]. The sequence–structure
mapping is a one-to-many relation. Hence, one sequence can adapt a huge
set of possible structures Φ called this sequence’s structure ensemble. In the

equilibrium, the Boltzmann weight B(x |φ) := exp(−G(x|φ)
RT

) of a structure φ
is proportional to its probability. Summing over all structures of the ensemble
gives rise to the partition function Z =

∑

φ∈Φ B(x |φ) of x. From that we can
calculate the probability of φ with respect to the ensemble as

P (x |φ) =
B(x |φ)

Z
.

We utilize these properties to develop a novel objective function for the
proposed model, cf. Figure 1. When adding the ligand to the system, we want
to maximize the number of bound molecules, i. e., the probability of lc should450

ideally be one. As we do not have an explicit structural constraint of this state,
we maximize the number of binding-competent structures in presence of the
ligand, assuming the ligand is available in excess and immediately bound. In
case of the theophylline aptamer, this precondition is fulfilled as its association
rate constant kon has been determined to be much higher than the dissociation455

rate constant koff [24]. This is in accordance to its independently measured Kd

of about 0.32 µM [17]. We therefore add an energy bonus of −9.22 kcalmol−1 to
every secondary structure in the ensemble that contains the correctly folded—
i. e., binding-competent—theophylline aptamer.

By maximizing the probability of bc in the presence of the ligand, we favor
the conversion to the ligand-bound conformation lc. In contrast, ac should
be highly populated in absence of the ligand. However, no ligand binding is
possible if the RNA molecule exclusively adapts ac as only bc induces a high
binding affinity of the ligand for the RNA molecule. It is therefore necessary to
establish a balance between ac and bc where bc must always be present. We
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combined all these assumptions into the novel objective function

f(x) = (1− P (x | bc, ligand)) · |a− P (x | ac)| · |b− P (x | bc)| (2)

where a, b ∈ (0, 1), a+b ≤ 1 are the target probabilities of the alternative confor-460

mation and binding-competent conformation, respectively. We set a = 0.7 and
b = 0.3 for the discussed example. We describe the details on how to calculate
the individual terms of the objective function given above utilizing the constraint
framework of the ViennaRNA package in subsection 2.3 and subsection 2.4.

To perform a local optimization procedure searching for sequences optimal465

with respect to the derived objective function (2), we chose to harness a script-
ing library called RNAsketch, which is available as interface to the sequence
sampler RNAblueprint (cf. Table 1). RNAsketch offers ready-to-use implemen-
tations of several well-known optimization strategies. To tackle the presented
design problem, we implemented a Python script that performs adaptive walks470

with randomly chosen steps of varying size—ranging from point mutations to
full resampling of the sequence—until the score evaluated with the designed ob-
jective function (2) stays minimal. This approach has been found to converge
relatively fast towards reasonable results for other objectives [10]. Our imple-
mentation1 and the corresponding commands including the inputs are available475

online to serve as an example of use for RNAsketch.
The described local optimization procedure is capable of producing many

potential solutions in a relatively short amount of time. As the returned scores
contain no additional information but the three probabilities, we developed an
in silico analysis pipeline to visualize additional properties of the obtained se-480

quences, facilitating a consecutive ranking and filtering step. First and foremost,
we need to verify the kinetic properties of our obtained solutions, a usually very
expensive and time-consuming task. In the following, we discuss this process
for an example sequence2.

For a more complete picture of the energy landscape, we need to investi-485

gate the structural states our example sequence will likely fold into. We apply
RNAsubopt to generate all suboptimal structures up to 22.6 kcalmol−1 above
the sequence’s minimum free energy, cf. subsection 2.5. The number of possible
structures grows exponentially with sequence length and is approximately 225
million for the chosen energy range of 22.6 kcalmol−1, resulting in a 16GB large490

file. To reduce the number of generated suboptimal structures, and thereby
speed up all subsequent steps, it is possible to skip all structures containing
lonely pairs, i. e., helices of length one, generating only so-called canonical struc-
tures. This reduces the number of states to approximately 6.7 million, and the
file size to 459MB. However, for the shown example, this also excludes the495

predicted MFE structure, cf. most populated structures in the equilibrium in
Figure 2. The previous ground state containing the alternative structural el-
ement is only the fourth-stable state while the MFE structure contains the

1design-ligand switch.py
2AAGUGAUACCAGCAUCGUCUUGAUGCCCUUGGCAGCACUUCAGUUGUUGAGGGGGCUCAAUGAC
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binding-competent aptamer. Of course, this has a dramatic impact on the sim-
ulated kinetics, cf. Figure 2.500

To assess the impact of the “no lonely pairs” (--noLP) heuristics more pro-
foundly, the procedure described in subsection 2.6 has been applied to the ex-
ample sequence. By enumerating all structures up to 10 kcalmol−1 above the
MFE, one obtains a structure coverage of 99.9%. The identified fraction of
canonical structures here is only 43%, so the vast majority of structures that505

would likely be encountered in the simulation are removed when applying the
--noLP heuristics. It is clear that, in this case, the reduction to the canonical
structure ensemble leads to a strong bias.

Other sequences, in contrast, have much higher fractions of canonical struc-
tures. For example, another sequence3 having the same length (64 nt) and GC510

content (51%) as the previous example has a predominantly canonical ensemble
(96% of the structures).

In any case, further coarse graining of the structure landscape is mandatory.
We apply the program barriers , which implements a flooding algorithm and
abstracts the structure landscape to a selected number of macro-states, each515

represented by a local minimum of the landscape (subsection 2.7). Transition
rates from each of these macro-states to all other ones are then estimated and
subsequently used to predict the folding kinetics.

It is possible that multiple macro-states exhibit structural features such as
the structure of bc or the stem of ac. Thus, for better visualization, we merged520

states that exhibit certain structural features by implementing coarsify.pl , cf.
subsection 2.9. Based on the resulting landscape and the processed transition
rates, treekin has been invoked to simulate the single-molecule folding kinetics,
cf. subsection 2.8. A visualization of the output shows the expected population
density of the two designed structural states ac and bc after the equilibrium525

has been reached, cf. Figure 2A. This way, we verified that the estimate based
on partition function folds—as used during the optimization process—matches
the results of the kinetic simulation even in absence of the ligand and when the
full RNAsubopt output, including non-canonical structures, is used.

When sketching the design (cf. Figure 1), we assumed that the RNA–ligand530

complex has a rather low dissociation rate coefficient koff compared to its asso-
ciation rate coefficient kon. For the theophylline aptamer, this is in accordance
with published rates of (0.07± 0.02) sec−1 and (1.7± 0.2)× 105 M−1 sec−1 at
25 ◦C for koff and kon, respectively [24]. We therefore modeled the effect of
ligand addition by starting treekin with the population density of the equilib-535

rium and making the binding-competent state absorbing, cf. subsection 2.10.
Visualization of the coarse-grained absorbing landscape shows that after about
9× 106 AU, which can be mapped to approximately 45 sec [28], 50% of the RNA
molecules are in the ligand-bound state, cf. Figure 2.

3GUAAGAGAGGCCGCGCACAACUUUCCUACUGUUCGAAAGGUAGGAGCGCUGUCAACUUACAUGG

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2018. ; https://doi.org/10.1101/245464doi: bioRxiv preprint 

https://doi.org/10.1101/245464
http://creativecommons.org/licenses/by-nc-nd/4.0/


(A)

time [arbitrary units]

p
o
p
u
la

ti
o
n
 d

e
n
s
it

y

A
AGU

G
A

U

A

C

C
A

G C A
U

C

G U C U U G AUG C C C U U G G C A G C
A C

U

U
CA

GUUGUUGAGGGGGCUCAAUGAC

1 100 10000 1e+06 1e+08
0

0.2

0.4

0.6

0.8

1

1 100 10000 1e+06 1e+08
0

0.2

0.4

0.6

0.8

1

(B)

time [arbitrary units]

p
o
p
u
la

ti
o
n
 d

e
n
s
it

y

A
AGU

G
A

U

A

C

C
A

G C A
U

C

G U C U U G AUG C C C U U G G C A G C
A C

U

U
CA

GUUGUUGAGGGGGCUCAAUGAC

1 100 10000 1e+06 1e+08
0

0.2

0.4

0.6

0.8

1

A
AGU

G
A

U

A

C

C
A

G C A
U

C

G U C U U G A
U G

C C C U U G G C A G C
A C

U

U
CA

GUUGUUGAGGG
GGC

UCAAUGAC

1 100 10000 1e+06 1e+08
0

0.

0.

0.

0.

1

Figure 2: Simulated kinetics using (A) the complete and (B) a reduced structure ensemble by
avoiding lonely pairs. In both cases, the simulation is started with the complete population in a
structural state that contains the binding competent aptamer structure (orange). The left part
of each plot shows the dynamics until the system is equilibrated, whereas the right part depicts
the simulated systems kinetics after ligand addition. Dashed gray lines indicate the system’s
kinetics without coarse graining. By design, the population density in the equilibrium of all
structures containing the alternative (blue) and the binding-competent (orange) structural
element should be 0.7 and 0.3, respectively. Colored lines display the coarse-grained kinetics
where states containing specific structural elements are merged. For most prominent states,
the corresponding secondary structures of the most stable representative are shown using the
same color. The blue and the thick black curves are not merged as the perfectly stacked stem
of the alternative structural element was forced to be 11 nt long when adding up states.
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4. Discussion540

During the development of our software pipeline, we realized that, until re-
cently, there mainly existed two kinds of publications. One, created by wet
lab researchers, focused on an experimental testing setup as well as functional
and analytical tests. They frequently missed the possible advances of in silico

tools and their valuable predictive power. In contrast, publications written by545

researchers mainly working on computational biology often comprised sophisti-
cated biophysical methods, great computational details, and a huge variety of
mathematical and algorithmic tricks, but were frequently neglecting the aspect
of biological applicability.

A main reason for this situation is that most of the RNA design programs550

available use predefined terms in the objective function as well as a fixed op-
timization procedure [29], and thus are inflexible and not customizable enough
to be applied and adopted to the huge amount of considerably varying design
scenarios. The RNAblueprint approach[10] decouples sampling of sequences
compatible to one or more structural constraints from the subsequent optimiza-555

tion procedure, which gives the user the full flexibility to implement novel and
innovative objectives.

Computational design studies are often missing the bigger context, such as
the initial analysis of the system, suggestions for experimental testing or the
design of proper controls. However, experimental validation is not a straightfor-560

ward task and needs to be carefully planned already during the design process.
This includes extensive in vitro or in vivo studies, or preferable both. To really
gain knowledge about the device’s mechanism and about potential mistakes
or pitfalls in case of dysfunctionality, a purely qualitative answer will not be
enough. Therefore, a complete testing pipeline should include the determina-565

tion of structures, binding affinities, or elucidate kinetic properties. Smartly
designed positive and negative controls are also helpful to reveal important
properties of the newly generated RNA device. Ideally, these controls will un-
veil quantitative answers about the mechanistic details, the actual structures
of the RNA or even about kinetic aspects like co-transcriptional dependency or570

ligand affinity.
In this contribution, we described in detail the de novo design of a ligand-

sensing riboswitch that adapts two alternative conformations. Depending on
the presence of the ligand, either a binding competent state, or a specified al-
ternative structural conformation is dominating the ensemble. This riboswitch575

design can easily be extended, e. g., to perform regulatory tasks in a host cell
such as translational or transcriptional regulation of a downstream target gene.
A translational riboswitch for instance will probably contain a Ribosome Bind-
ing Site (RBS) which is sequestered in the inactive state. This can be included
easily by specifying the appropriate sequence constraints and further objectives580

such as the accessibility of the RBS in both conformations.
For such a purpose, it is important to distinguish two types of switching

behaviours. One can design riboswitches that are capable to switch on and off
during the entire lifetime of the molecule. The other switches are fixed after a
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certain time of sensing disregarding future changes in the ligand concentration.585

For the latter, switching is only possible through RNA decay and repeated
transcription.

If switching is possible at any time, one will obtain fast response times to
ligand changes. However, the individual states of the molecules remain fuzzy as
not all of them will adapt the desired structure, leading to the observation of590

background activity. In our example, we provoked such a behavior by target-
ing a 70:30 ratio of alternative to binding-competent conformation, and indeed
observed a quick refolding process upon addition or removal of the ligand.

Alternatively, we could generate a “one way switch” where the state decision
is only possible during a specific window. Thereafter, the chosen state is sta-595

bilized, either by a kinetic folding trap or by ongoing molecular processes such
as translation. Once decided, individual molecules cannot revert their choice
within reasonable time, even if the ligand dissociates or is removed from the
system. Therefore, one must ensure that the competing states are populated
during the decision window. This method has the advantage of obtaining dis-600

tinct states with very little noise. However, the response times to ligand changes
are quite long as they depend on RNA decay and the transcription speed.

It seems to be an rather easy design model we proposed in Figure 1. How-
ever, it is not straight forward to develop an experimental setup that is able
to determine if the target ratio of 70:30 of the two conformations is reached in605

the equilibrium or not. Sophisticated approaches such as single-molecule FRET
and NMR have been applied to determine the structure and energy landscape
of natural riboswitches[30, 31]. Both referenced studies revealed that more than
the presumably two dominating states are adapted depending on environmental
conditions, i. e., Mg2+ concentration and temperature. This might be the case610

for our designs as well although we optimized them towards two alternative
states only. It is, furthermore, important to note that the presented in silico

results are estimates. For instance the target ratio of 70:30 might be achieved
perfectly by the optimization procedure and predicted by kinetics simulations,
however, the results are extremely sensitive to the underlying energy param-615

eters. Those are measured under specific experimental conditions for rather
short structural elements. For more complex structures, i. e., those containing
large or even multi loops, estimates are utilized to determine a structure’s en-
ergy [26]. If the experimental conditions vary significantly between those used to
determine the energy parameters and the in vitro or in vivo testing environment620

discrepancies of prediction and measurement are an unavoidable effect.
Depending on the research question, neglecting structures with lonely pairs

can give valuable insights into the studied system while dramatically speeding up
the prediction process. The reason the analysis fails for the exemplary sequence
presented in this work is that many of its low-energy structures contain lonely625

pairs and are therefore excluded when enabling the heuristics. The effect is
dramatic here because even the MFE structure is not canonical.

A method to assess the importance of lonely pairs for the simulations has
been developed and shown to correctly predict the consequences of noLP heuris-
tics. In general, it is advisable to always consider the fraction of canonical base630
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pairs before resorting to the heuristic. Another advantage of conducting this ad-
ditional analysis is that one can estimate the width of the energy band required
to achieve a high coverage of the structure ensemble during the enumeration.
This information is useful to improve both the performance of the simulation
as well as the quality of the results even when not utilizing the noLP heuristics.635

Nevertheless, re-running the analysis of promising candidates with a full struc-
ture ensemble is advisable to assure correct results, if the required resources are
available.

Many of the techniques used in this work implicitly make simplifying as-
sumptions about the processes involved in RNA switching. For example, the640

soft constraint framework is a considerable abstraction of the binding process
in at least two ways. Firstly, it models a binary binding behavior in that the
ligand either perfectly fits an RNA structure and gets the full binding energy
bonus, or it does not bind to the structure at all. In reality, small variations in
the binding domain may lead to an altered binding energy instead. Secondly,645

any structure exhibiting the binding site receives the full stabilizing energy con-
tribution, neglecting the effect of the ligand concentration and assuming infinite
reaction rates. During the kinetics simulation, a similar behavior is achieved by
declaring the binding-competent macro-state absorbing, i. e., the dissociation of
the ligand is not possible at all.650

While these may be adequate assumptions for ligands with a high binding
affinity, present in an excessive concentration, it may lead to over-estimation
of the fraction of RNA–ligand complexes in cases where the association rate
becomes the bottleneck of the dimerization reaction. In such cases, one should
resort to more sophisticated models considering these rates as well as the ligand’s655

concentration [32]. An efficient implementation of this approach that can readily
be applied to ligand-aware cotranscriptional folding is published in this special
issue [33].

When analyzing our designed switch in silico, we started the kinetic simula-
tion of the ligand-free environment with all molecules in the binding-competent660

state. Thereby we ensured that, even in this worst scenario possible, the system
quickly recovers to the defined ratio of alternative state and binding-competent
state. To obtain better estimates of the switching times, starting with various
other distributions depending on the application might be preferable.

In case of an in vitro experiment, the protocol would probably envisage to665

first heat up the solution to completely untangle the RNA structures and then
quickly put the solution on ice until the ligand is added. A similar cooling exper-
iment could be performed in silico by performing Boltzmann-weighted structure
sampling from an ensemble at high temperature and using the resulting distribu-
tion of states as starting point for a subsequent kinetic simulation. In contrast,670

when using the generated riboswitch in vivo, it is likely co-transcriptionally
folded within the cell. Therefore, it is advisable to obtain the initial distri-
bution by applying a co-transcriptional folding approach, which simulates the
RNA’s elongation process until the binding-competent part of the structure is
fully transcribed. A software capable of this type of analysis is, for example,675

BarMap [34].

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2018. ; https://doi.org/10.1101/245464doi: bioRxiv preprint 

https://doi.org/10.1101/245464
http://creativecommons.org/licenses/by-nc-nd/4.0/


In this contribution, we aimed to generate a general ligand-triggered ribo-
switch, which can be extended to control regulation mechanisms, such as tran-
scriptional or translational control of a downstream target gene. We devised
a functional model of such a riboswitch and successfully implemented a design680

approach to de novo generate RNA sequences that fulfil the prescribed prop-
erties. The proposed pipeline consists of several modular pieces, which can be
easily adopted or exchanged in case of varying needs. This includes the flexible
sequence sampling engine RNAblueprint , a novel objective function to thermo-
dynamically describe important features of the mechanism, the optimization685

approach and, finally, the in silico analysis pipeline to verify kinetic properties
of the system.
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