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Abstract

Reproduction critically depends on the pulsatile secretion of gonadotrophin-releasing

hormone (GnRH) from the hypothalamus. This ultradian rhythm drives the secretion

of gonadotrophic hormones (LH and FSH) from the pituitary gland, which are crit-

ical for gametogenesis and ovulation, and its frequency is regulated throughout the

life course to maintain normal reproductive health. However, the precise mechanisms

controlling the pulsatile GnRH dynamics are unknown. Here, we propose and study a

novel mathematical model of a population of neurones in the arcuate nucleus (ARC) of

the hypothalamus that co-expresses three key modulators of GnRH secretion: kisspeptin;

neurokinin B (NKB); and dynorphin (Dyn). The model highlights that positive feedback

in the population exerted by NKB and negative feedback mediated by Dyn are the

two key components of the pulse generator, which operates as a relaxation oscillator.

Furthermore, we use the model to study how external inputs modulate the frequency of
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the pulse generator, a prediction that can be readily tested in-vivo using optogenetically-

driven stimulation. Finally, our model predicts the response of the system to various

neuropharmacological perturbations and reconciles inconsistent experimental observa-

tions following such interventions in-vivo. We anticipate that our model in combination

with cutting-edge, in-vivo techniques, allowing for neuronal stimulation and recording,

will set the stage for a quantitative, system-level understanding of the GnRH pulse

generator.

Introduction 1

Reproduction is fundamental for the survival of species and is therefore tightly regulated 2

even in the simplest of living organisms. In mammals, reproduction is controlled by the 3

coordinated action of the brain, the pituitary gland, and the gonads. Within the brain a 4

neuronal clock drives the periodic release of gonadotrophin-releasing hormone (GnRH). 5

The operation of this GnRH pulse generator at a frequency appropriate for the species 6

is critical for the generation of gonadotrophin hormone signals (luteinizing hormone, LH; 7

and follicle-stimulating hormone, FSH) by the pituitary glad, which stimulate the gonads 8

and set in motion gametogenesis and ovulation. However, the mechanisms underlying 9

the GnRH pulse generator remain poorly understood. 10

GnRH is produced from specialised neurones, known as GnRH neurones, and its 11

secretion into the pituitary is controlled by upstream hypothalamic signals [1]. Neu- 12

ropeptide kisspeptin has been identified as a key regulator of GnRH as both humans 13

and rodents with inactivating mutations in kisspeptin or its receptor fail to progress 14

through puberty or show normal pulsatile LH secretion [2–4]. Within the hypothalamus, 15

two major kisspeptin producing neuronal populations are located in the arcuate nucleus 16

(ARC) and in the preoptical area [5] or the anteroventral periventricular (AVPV)/rostral 17

periventricular (PeN) continuum in rodents [6]. Moreover, the invariable association 18

between neuronal activity in the ARC and LH pulses across a range of species from 19

rodents to primates [7] has been suggestive that the ARC is the location of the GnRH 20

pulse generator, and therefore the ARC kisspeptin neurones, also known as KNDy 21

for co-expressing neurokinin B (NKB) and dynorphin (Dyn) alongside kisspeptin [8], 22

constitute the core of the GnRH pulse generator. 23
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Although animal studies have shown that the KNDy population plays a critical role 24

in the regulation of GnRH, there has been relatively little information on the regulatory 25

mechanisms involved in generating and sustaining pulsatile dynamics. Pharmacological 26

modulators of kisspeptin, NKB and Dyn signalling have been extensively used to perturb 27

the system and study the effect on the activity of the neuronal population (using 28

hypothalamic multiunit activity (MUA) volleys as a proxy), as well as on downstream 29

GnRH/LH dynamics [9–12]. For example, it has been shown that kisspeptin (Kp-10) 30

administration does not affect MUA volleys in the ovariectomised rat [9], suggesting 31

that kisspeptin is relaying the pulsatile signal to GnRH neurones rather than generating 32

it. On the contrary, administration of NKB or Dyn modulates MUA volley frequency 33

in the ovariectomised goat [11], suggesting a more active role for these neuropeptides 34

in the generation of the pulses. Deciphering, however, the role of NKB has been 35

problematic, and there exist conflicting data showing either an increase or decrease of 36

LH levels in response to administration of a selective NKB receptor agonist (senktide) 37

[10, 12, 13]. Recently, a study combining optogenetics, with whole-cell electrophysiology 38

and molecular pharmacology has shed light on the action of neuropeptides NKB and 39

Dyn and their role in controlling reproductive function [14]. The key mechanistic insight 40

from this study was that NKB functions as an excitatory signal by depolarising cells at 41

the post-synaptic end, while Dyn functions as an inhibitory signal by suppressing the 42

action of NKB at the presynaptic end. 43

Here, motivated by these experimental findings, we develop a mathematical model of 44

the ARC KNDy population. The model is based on a network description of the popula- 45

tion and captures two important processes: secretion of Dyn and NKB by individual 46

neurones; and regulation of the population firing activity by the two neuropeptides. The 47

model predicts that the KNDy population can indeed generate and sustain oscillatory 48

firing dynamics similar to the multi-unit activity (MUA) volleys observed in-vivo [12] 49

and provides insight on mechanism underlying pulse generation. Furthermore, our model 50

predicts the response of the system to various neuropharmacological perturbations and 51

reconciles inconsistent experimental observations following such interventions in-vivo. 52

Finally, we perform global sensitivity analysis to uncover possible pathways through 53

which the dynamics of the system can be modulated. Our model complements existing 54

phenomenological models of GnRH dynamics [15], and makes testable in-vivo predictions 55
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that will shed light on the mechanisms underlying GnRH regulation. 56

Results 57

A mathematical network model describing the ARC KNDy pop- 58

ulation 59

We use a mathematical network model (Fig 1A) to describe and study the collective

dynamics of KNDy neurones in the ARC. The model describes the dynamics of M

synaptically connected KNDy neurones using a set of coupled ordinary differential

equations (ODEs). For each neurone i, we use variables Di and Ni, to denote the

concentration of Dyn and NKB, secreted at its synaptic ends; and variable vi to denote

its firing rate, measured in spikes/min. The ODEs describing the dynamics of neurone i

in the population are:

dDi

dt
= fD(vi)− dDDi; (1)

dNi

dt
= fN (vi, Di)− dNNi; (2)

dvi
dt

= fv

(
{vj , Nj}j∈neigh(i)

)
− dvvi. (3)

Parameters dD, dN and dv prescribe the characteristic timescale for each variable. In 60

particular, parameters dD and dN correspond to the rate at which Dyn and NKB are 61

lost (e.g., due to diffusion or active degradation), while dv relates to the rate at which 62

neuronal activity resets to its basal level. Functions fD, fN give the secretion rate of 63

Dyn and NKB, respectively, while function fv encodes how the firing rates changes in 64

response to synaptic inputs. Crucially, the activity of neurone i, vi, depends on the firing 65

rate and secreted level of NKB of all other neurones j that are synaptically connected 66

to it. This dependence is denoted by the curly brackets notation in the arguments list of 67

fv. Synaptic connections are summarised by the adjacency matrix, A: a binary, square 68

(M ×M) matrix with Aij = 1(0) indicating synaptic connectivity from neurone i to 69

neurone j. In the model, synaptic connections are formed randomly between all neurones 70

with a constant probability, i.e., Prob(Aij = 1) = c̄. 71

We use the following sigmoidal (Hill-type) functions to describe regulatory relation-
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Fig 1. A network model of KNDy neurones in the arcuate nucleus (ARC).
(A) Schematic illustration of the dynamical, network model comprising a population of
synaptically connected KNDy neurones. In the model, the neuronal firing rate drives
the secretion of regulatory neuropeptides dynorphin (Dyn) and neurokinin B (NKB).
Furthermore, NKB excites postsynaptic neurones while Dyn inhibits NKB secretion pre-
synaptically. (B) Multi-unit activity (MUA) volleys recorded from the hypothalamus of an
ovariectomized rat (data from [12]). (C) The model produces sustained oscillations with
explosive spikes of neuronal activity similar to those observed in-vivo. Model parameters
were inferred from the data in (B) using an Approximate Bayesian Computation method
based on sequential Monte Carlo (ABC SMC; see Material and Methods section) and
are listed in Tbl 1.

ships between the variables. In particular, we set the the secretion rate of Dyn and NKB

to be:

fD(v) = kD
vn1

vn1 +Kn1
v,1

;

fN (v,D) = kN
vn2

vn2 +Kn2
v,2

Kn3

D

Dn3 +Kn3

D

.

That is, neuronal activity stimulates secretion of both neuropeptides, and Dyn represses

NKB secretion, which is in agreement with experimental evidence of Dyn inhibiting the

action of NKB presynaptically [14]. Neuropeptides secretion is limited by the available

neuropeptide pools as well as by other biochemical species driving or regulating the

process, therefore in the model we allow saturation of the secretion rate above certain

thresholds of v and D, which are set by parameters Kv,1, Kv,2 and KD. Furthermore,
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we set

fv

(
{vj , Nj}j∈neigh(i)

)
= v0

(
2

exp(−I) + 1
− 1

)
; I = I0 +

∑
j∈neigh(i)

pv
Nn4

j

Nn4
j +Kn4

N

vj ,

where v0 is the maximum rate at which the firing rate increases in response to synaptic 72

inputs. The stimulatory effect of NKB (secreted at the presynaptic end) is mediated via 73

G protein-coupled receptor Tacr3 and is manifested as a short-term depolarisation of 74

the postsynaptic neurone [14]. In our equation above, we accommodate this effect by 75

letting the synaptic strength be a function of the secreted NKB. Moreover, parameter 76

pv sets the maximum strength of the synapse, while parameter KN sets the level of 77

NKB at which its effect is half-maximal. Finally, parameter I0 captures synaptic inputs 78

stemming from other neuronal populations or from synaptic noise. 79

We infer model parameters using the frequency and duty-cycle of the multi-unit 80

activity (MUA) volleys recorded from thehypothalamus an ovariectomized rat [12] (see 81

Material and Methods section). As illustrated in Fig 1B&C, the model can replicate 82

pulses of synchronised activity similar to the MUA signal recorded in-vivo. This finding 83

further supports the hypothesis that KNDy neurones in the ARC constitute the core 84

of the GnRH pulse generator. Furthermore, the model will allow us to study the 85

mechanisms generating and sustaining the rhythmic activation of the KNDy neural 86

network, facilitating our understanding of the relationships underpinning this complex 87

biological system. 88

A relaxation oscillator drives the pulsatile activity of the KNDy 89

neuronal population 90

Having shown that the model can reproduce sustained pulses of neuronal activity (see

Fig 1B), we move to study the mechanisms driving the phenomenon. To do so, we

simplify the network model, and derive a coarse-grained (mean-field) model of the

neuronal population comprising three dynamical variables: D̄, representing the average

concentration of Dyn secreted; N̄ , representing the concentration of NKB secreted; and

v̄, representing the average firing activity of the neuronal population. Derivation of

the coarse-grained model proceeds by averaging Eq 3 over all neurones (index i); and
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expanding (keeping up to leading term) all non-linear functions of Di, Ni and vi around

the population-averaged values, D̄ =
∑

iDi/M ,N̄ =
∑

iNi/M and v̄ =
∑

i vi/M (see S1

text). The resulting equations, describing the time evolution of the population-averaged

variables, are:

dD̄

dt
= fD(v̄)− dDD̄; (4)

dN̄

dt
= fN (v̄, D̄)− dN N̄ ; (5)

dv̄

dt
= fv(v̄, N̄)− dv v̄. (6)

All parameters and functions are defined as before (see section above), except for synaptic 91

input I that now takes the form: I = I0 + pv c̄M
N̄n4

N̄n4 +Kn4

N

v̄, where c̄ is the average 92

number of synapses that a neurone receives as a fraction of the population size. 93

To explore the mechanisms underpinning the oscillatory behaviour, we remove Dyn- 94

mediated negative feedback from the system and study the the dynamics of the (N̄ , v̄) 95

subsystem treating variable D̄ as a bifurcation parameter. The result of this analysis is 96

illustrated in Fig 2B and shows that for intermediate values of Dyn the (N̄ , v̄) exhibits 97

two stable steady states corresponding to the high and low branches shown in Fig 2B. 98

This bistable behaviour, stemming from the non-linear, positive feedback between 99

neuronal activity and NKB secretion, leads to sustained oscillations of neuronal activity 100

when combined with slow negative feedback mediated through Dyn. Furthermore, we 101

expect exogenous inhibitory/excitatory sources, such as distinct neuronal populations 102

or synaptic noise, to be direct modulators of the oscillatory behaviour by altering the 103

dynamic behaviour of the (N̄ , v̄) sub-system. Indeed, treating the basal synaptic inputs 104

parameter, I0, as a bifurcation parameter, we find that oscillatory behaviour of the 105

system is limited to a critical range. In particular, as inputs are increased from zero, 106

high-amplitude, low-frequency pulses emerge after a homoclinic bifurcation (Fig 2C; 107

HC point). The value of I0 at which the bifurcation occurs is equivalent to driving the 108

neuronal population at a rate of approximately 0.024 Hz in the absence of NKB and 109

Dyn modulation. As external excitation ramps up, the frequency of pulses continues to 110

increase, until oscillations disappear altogether through a Hopf bifurcation (Fig 2C; HB 111

point) and the system re-enters a mono-stable regime. In engineering terms, the system 112
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behaves as a relaxation oscillator, where the bi-stable subsystem is successively triggered 113

by external excitation and silenced due to negative feedback. We should note that a 114

sufficiently slow negative feedback can sustain oscillations in the absence of bistabity, 115

however, the combination of bistability with negative feedback is a recurring motif in 116

many biological oscillators [16,17]. 117
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Fig 2. A coarse-grained model gives mechanistic insight into the pulsatile
behaviour of the neuronal population. (A) We simplify the network model by
deriving a mean-field model of the neuronal population comprising three dynamical
variables: D̄, representing the average concentration of Dyn secreted; N̄ , representing
the concentration of NKB secreted; and v̄, representing the average firing activity
of the neuronal population. (B) After disrupting the negative feedback loop (i.e.,
setting Dynorphin under external control) the system exhibits, for intermediate values
of Dynorphin, two stable steady-states (upper and lower solid lines) and an unstable
one (dashed line). At the edges of the bistable regime equilibria are lost through a
saddle-node bifurcation (SD points). The bistability gives rise to hysteresis as the value
of Dyn is varied externally (grey arrows). (C) The coarse-grained model predicts how
external excitatory inputs affect the system’s dynamics and pulse frequency. As external
excitation is increased from zero, high-amplitude, low-frequency pulses emerge after some
critical value (HC point; homoclinic bifurcation). The frequency of pulses continues to
increase with external excitation until oscillations disappear altogether (HB point; Hopf
bifurcation) and the system enters a mono-stable regime. Model parameter values are
given in Tbl 1.
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The model predicts the response of the system to various neu- 118

ropharmacological perturbations and reconciles inconsistent ex- 119

perimental observations following such interventions in-vivo 120

Neuropharmacology is a powerful tool used to study the role of neurotransmitter and neu- 121

ropeptide signalling on the pulsatile GnRH dynamics. In-vivo, localised administration 122

of drugs that selectively activate or inhibit certain pathways of interest, can shed light 123

on the regulatory mechanism underlying pulse generation and frequency modulation. 124

However, the effect of such neuropharmacological perturbations can appear confusing 125

and difficult to interpret when feedback interactions and non-linearities are present in 126

the system. One notable example, regards senktide (a selective NKB receptor agonist) 127

that appears to be suppressing pulsatile GnRH/LH dynamics in some cases [12,13] while 128

stimulating LH secretion in others [10]. To study this controversial finding, we extend 129

our coarse-grained model to accommodate the effect of two drugs often used to perturb 130

the system in-vivo: senktide, a selective NKB receptor agonist; and nor-BNI, a selective 131

κ-opioid receptor antagonist. We use E to denote the drug concentration injected into 132

the system. As senktide has the same effect as NKB but functions independently, we 133

incorporate it in our model by modifying the expression for the synaptic input I as 134

follows: 135

I = I0 + pv c̄M
N̄n4 + En4

N̄n4 + En4 +Kn4

N

v̄

On the other hand, nor-BNI blocks Dyn signalling, therefore we modify function fN to 136

read: 137

fN (v,D) = kN
vn2

vn2 +Kn2
v,2

Kn3

D + En3

Dn3 + En3 +Kn3

D

.

That is, the antagonist is effectively increasing parameter Kv,2 in the model. 138

Figure 3A&B illustrates that the effect of perturbing the system with senktide varies 139

depending on the underlying NKB and Dyn secretion capacity (parameters kN and kD 140

in the model). In particular, Fig 3A shows the region over the parameter space (grey 141

area) for which the unperturbed system demonstrates pulsatile dynamics. This region 142

is deformed after senktide administration, and given the system starts from within the 143

oscillatory regime three distinct response types are observed (see Fig 3B; indicative 144

examples are marked with numbers). First, administration of senktide can set the system 145
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in a steady-state of elevated activity after a transient spike (see trace marked 1). Such 146

an effect is consistent with data from diestrus rats, showing that intracerebroventricular 147

administration of senktide to gonadal intact rats in the diestrous phase of the estrous 148

cycle stimulated transiently LH secretion [12]. Second, administration of senktide can 149

increase the pulse frequency (see trace marked 2 and Fig C in S1 text). This type of 150

response is consistent with data showing that intracerebroventricular administration of 151

NKB increases the frequency of multiunit electrical activity (MUA) volleys recorded 152

from the medial basal hypothalamus in the OVX goat [11]. An increase in the frequency 153

of MUA volleys in response to central nor-BNI administration [11] is also in agreement 154

with the model (see Fig B in S1 text). Finally, administration of senktide can suppress 155

pulsatile dynamics setting the system in a low activity steady-state (see trace marked 3). 156

This apparent inhibition of the system through an excitatory agent although counter 157

intuitive is in agreement with the inhibition of hypothalamic MUA volleys and serum LH 158

observed in adult OVX rats after intracerebroventricular administration of senktide [12]. 159

Fig 3C illustrates the effect of perturbing the system with a combination of NKB and 160

nor-BNI. Note, that the combined administration of the two drugs can preserve pulsatile 161

dynamics in cases where senktide alone was suppressing it (see trace 3); in agreement 162

with experimental data showing that nor-BNI blocks the senktide-induced suppression 163

of pulsatile LH secretion in OVX rats [12]. 164

Global sensitivity analysis predicts robustness of oscillatory be- 165

haviour to parameter perturbation 166

The dynamics of GnRH secretion are tightly controlled throughout life, from the initial 167

stages of postnatal development and throughout adulthood [1]. However, the specific 168

pathways through which control is achieved remain mostly unknown. Here, we use 169

the model and global sensitivity analysis to study how various factors could affect the 170

dynamic behaviour of the KNDy population in the arcuate nucleus and hence GnRH 171

secretion. We restrict our focus to three model parameters: the maximum Dyn secretion 172

rate, kD; the maximum NKB secretion rate kN ; and the magnitude of basal synaptic 173

inputs, I0. Variability in kD and kN capture, for example, regulation of Dyn and 174

NKB levels by sex steroids during menstrual/oestrous cycle [18], whereas changes in 175
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Fig 3. The effect of neuropharmacological perturbations on the activity of
the KNDy population. Perturbation of the system with two drugs: senktide, a
selective NKB receptor agonist; and nor-BNI, a selective Dyn receptor antagonist. The
effect of the perturbation on the dynamics depends on the NKB and Dyn secretion
rate. (A) The magnitude of oscillations (grey scale) in the unperturbed system for
different levels of maximum NKB and Dyn secretion rate (parameters kN and kD in the
model). (B) The magnitude of oscillations after perturbing the system with senktide
(Esenktide = 60 pM). (C) The magnitude of oscillations after perturbing the system with
senktide (Esenktide = 60 pM) and nor-BNI (Enor−BNI = 4.1 nM) simultaneously. (D)
Time-traces of the system activity in response to neuropharmacological perturbations
with senktide and nor-BNI. Time-traces correspond to the (kN , kD) combinations marked
in (A)-(C).

I0 could map to changes in the excitatory/inhibitory inputs the population receives in 176

developmental stages [1]. To understand how changes in these three parameters affect 177

system dynamics, we vary them independently over a wide range (see Material and 178

Methods section) and study how parameter variability accounts for variance in various 179

critical features of the system’s dynamics, e.g., amplitude and period of oscillations. 180

In Fig 4A, the first order sensitivity indices indicate the proportion of variance 181

of a response feature that is explained by variation in a parameter, while keeping the 182

remaining parameters fixed. First order sensitivity indices, therefore, quantify the effect 183

that single parameter perturbations have on the dynamics of the system. We find 184

that the amplitude of oscillations is most sensitive to changes in the external synaptic 185
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inputs (I0), and that the maximum magnitude of the response is sensitive to changes 186

in the maximum Dyn secretion rate (kD). Also, the period of oscillations appears 187

robust to changes in any of the three parameters in isolation. Fig 4B reports the total 188

order sensitivity indices, that is the proportion of variance in a response feature that is 189

explained by variation in a parameter, while allowing other parameters to vary as well. 190

Therefore, the total order sensitivity index of a parameter is a proxy for the effect this 191

parameters has on the dynamics of the systems when co-varied with other parameters. 192

We find that the amplitude as well as the period of oscillations is far more sensitive 193

to combined changes of the parameters. For example, 28% of the total variance in the 194

amplitude of oscillations is attributable to variation of I0 alone, whereas this figure 195

jumps to more than 76% when variations in other parameters is taken into consideration. 196

Similarly, approximately 83% of the variance in the period of oscillations is explained 197

when parameters are allowed to covary, compared to no more than 14.5% when single 198

parameter variation is considered. 199
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Fig 4. Global sensitivity analysis of the coarse-grained model. Global sensi-
tivity analysis of the coarse-grained model considering maximum response amplitude,
minimum response amplitude, amplitude of oscillations, and period of oscillations. First
order (A) and total-order (B) sensitivity indices are shown for parameters kD (maximum
rate of Dyn secretion), kN (maximum rate of NKB secretion) and I0 (magnitude of
external synaptic inputs).

Discussion and Conclusions 200

Motivated by recent experimental evidence, we developed and studied a mathematical 201

model of the KNDy population in the arcuate nucleus, a population that has been 202

shown to be critical for GnRH pulsatile dynamics [19]. Our model demonstrates that the 203

KNDy population can indeed produce and sustain pulses of neuronal activity that drive 204
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GnRH secretion. The system works as a relaxation oscillator. On the one hand, external 205

excitation and auto-stimulation via NKB signalling effectively allows the population 206

to behave as a bistable switch, firing either at a high or low rate. Moreover, negative 207

feedback through Dyn signalling allows the population to switch between the two activity 208

states in a regular manner, giving rise to pulses of neuronal activity. We found that 209

this mechanism of pulse generation is robust to parameter perturbations. In fact, co- 210

variation of parameters governing, for example, the magnitude of external inputs, and 211

the maximum secretion rates of NKB and Dyn is a more effective way of modulating 212

the systems’ oscillatory behaviour (amplitude and frequency). This multi-channel mode 213

of efficient regulation is perhaps not surprising given the system’s crucial function, and 214

hints that steroid feedback modulating the dynamics of the pulse generator over the 215

reproductive cycle in female mammals is mediated through multiple, possibly interlinked, 216

pathways. 217

The proposed model allowed us to study the effect of pharmacological modulators 218

of NKB and Dyn signalling. We find that NKB receptor agonists, such as senktide, 219

could have either an inhibitory or an excitatory effect on the dynamics of the model. 220

We show that this response variability can be explained, for example, by variation in 221

parameters that control the levels of Dyn and NKB secreted by the neurones, which in- 222

vivo are controlled by the sex-steroid milieu. This finding reconciles previous conflicting 223

evidence regarding the effect of senktide on the levels of LH secretion [10,12,13]. Our 224

results also highlight the need for a more quantitative understanding of how the sex- 225

steroid milieu affects the NKB and Dyn signalling pathways in the KNDy population. 226

Such an understanding will lead to more accurate interpretation of results from in-vivo 227

neuropharmacological perturbation experiments in various animal models and will shed 228

light on the mechanisms underlying the regulation of GnRH pulsatile secretion. 229

Furthermore, the model makes a series of testable predictions. First, the model 230

predicts that pulsatile dynamics of the system critically depend on external excitatory 231

or inhibitory signals that the KNDy population receives. For example, low external 232

excitation should silence the system, whereas high excitation should fix the system 233

on a high activity state. This can be tested in-vivo using optogenetics [20–22], that 234

is, by introducing light-sensitive ion-channels into the KNDy neurones and using light 235

to continuously activate or inhibit them, one should be be able to directly control 236
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the generation and frequency of pulses. Moreover, the model predicts that the auto- 237

stimulatory effect of NKB signalling leads to bistable dynamics (see Fig 2B), a property 238

that allows the system to function as a relaxation oscillator [16,17]. Therefore, disrupting 239

the Dyn-mediated negative feedback should leave the system either at a low or high 240

activity state depending on the timing of the disruption relative to the period of the 241

oscillation (see Fig D in S1 text). Testing such predictions will be critical for our 242

understanding of the fundamental dynamic mechanisms governing the GnRH pulse 243

generator behaviour. 244

Finally, the model can be extended to incorporate the effect of sex hormones, for 245

example, by explicitly modelling circulating concentrations of sex hormones and allowing 246

them to modulate parameters of the current model (e.g., those governing the maximum 247

and minimum secretion rate of NKB and Dyn). This would be a step towards a 248

comprehensive mathematical model that reliably replicates hormonal dynamics in the 249

reproductive axis over longer timescales, spanning, for example, the menstrual/oestrous 250

cycle. We envision that as hormonal measurement techniques advance, enabling accurate, 251

real-time readouts from individuals at low cost, such predictive mathematical models 252

would be a valuable tool to the personalised design of IVF protocols and hormonal 253

contraception methods. 254

Materials and methods 255

Bifurcation analysis and numerical experiments 256

Bifurcation analysis of the coarse-grained model was performed using AUTO-07p [23]. 257

Both the full network model and coarse-grained model were simulated in Matlab using 258

function ode45 (explicit Runge-Kutta (4, 5) solver). 259

Parameter inference 260

Parameter inference was performed using an Approximate Bayesian Computation (ABC) 261

method based on sequential Monte Carlo (SMC) [24]. In ABC SMC a population of 262

parameter vectors or particles, θ, is initially sampled form the prior distribution π0 and 263

propagated with the use of a perturbation kernel through a sequence of distributions 264
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πi, i = 1, . . . , T . The final distribution πT (θ|d(x, x∗) < εT ) corresponds to the (approxi- 265

mate) target posterior distribution, where d(x, x∗) is the distance function comparing 266

the simulated dataset x∗ to the experimental data x and εT is the final error tolerance 267

level. Intermediate distributions are associated with a series of decreasing tolerance 268

levels εi, i = 1, . . . , T −1, making the transition to πT more gradual and avoiding getting 269

stuck in areas of low probability. 270

Here, to ensure gradual transition between populations we take T = 21 and set 271

tolerance levels to εi = 10(1−0.2i), i = 1, . . . , T . The size of each population is set to 500 272

particles. For each particle, the activity of the KNDy is simulated from t = 0 to 6000min, 273

the first 1000 min are discarded, and the remaining time-trace is used to calculate the pulse 274

frequency and duty cycle (defined as the fraction of one period in which KNDy activity is 275

above 50% of the pulse amplitude). The distance function, d, is defined as the sum of the 276

squared relative error in these two summary statistics between the simulated dataset and 277

the data (see Fig 1A; frequency 3.12 pulses/hour; duty cycle 0.15). The prior parameter 278

distributions were chosen as follows: log10(dD) ∼ U(−2, 1); log10(dN ) ∼ U(−2, 1); 279

log10(dv) ∼ U(0, 2); log10(kD) ∼ U(−1, 3); kN ∼ N (40, 4) estimate from [25] plus 280

10% error; log10(pv) ∼ U(−3, 1); KD ∼ N (0.3, 0.03) estimate from [26] plus 10% 281

error; KN ∼ N (4, 0.4) estimate from [27] plus 10% error; Kv,1 ∼ U(1, 3); Kv,2 ∼ U(1, 3); 282

log10(I0) ∼ U(−3, 0); where U(min,max) denotes the uniform distribution in the interval 283

[min,max], and N (µ, σ) denotes the normal distribution with mean, µ, and standard 284

deviation, σ. For parameters kN , KD, KN , Kv,1, and Kv,2 gaussian perturbation kernels 285

were used with standard deviation 4, 0.03, 0.4, 10 and 10 respectively. For all remaining 286

parameter log-normal perturbation kernels were used with standard deviation 0.05. An 287

(approximate) maximum a posteriori (MAP) estimate of model parameters (corresponding 288

to the parameter values of to the most probable particle in the final population) is 289

given in Tbl 1. Histograms of the approximate marginal posterior distribution of each 290

parameter and pairwise scatter plots are shown in Fig A in S1 text. 291

Global sensitivity analysis 292

Global sensitivity analysis was performed in Matlab using eFast [28]. For each parameter 293

set, the model was initialised randomly and run from t = 0 to 6000 min. Response 294
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Table 1. Model parameters. An (approximate) maximum a posteriori (MAP) estimate
of the model parameters obtained using an Approximate Bayesian Computation method
based on sequential Monte Carlo (ABC SMC).

No. Parameter Description Value

1 M Population size 1000 cells

2 dD Dyn degradation rate 0.367 min−1

3 dN NKB degradation rate 0.351 min−1

4 dv firing rate reset rate 4.392 min−1

5 kD maximum Dyn secretion rate 218.047 nM min−1

6 kN maximum NKB secretion rate 32.33 nM min−1

7 pv maximum strength of synaptic inputs 2.3 · 10−3 min

8 v0 maximum rate of neuronal activity increase 13176 spikes min−2

9 KD Dyn IC50 0.3 nM

10 KN NKB EC50 2.991 nM

11 Kv,1 firing rate for half-maximal Dyn secretion 810.637 spikes min−1

12 Kv,2 firing rate for half-maximal NKB secretion 116.09 spikes min−1

13 I0 basal synaptic inputs 0.0136 (dimensionless)

14 n1,n2,n3, n4 Hill coefficients 2 (dimensionless)

15 c̄ synapse probability 0.5

16 A adjacency matrix (M ×M) Prob(Aij = 1) = c̄

characteristics, i.e., maximum response amplitude, amplitude of oscillations and the 295

period of oscillation, were calculated from the response trajectory after discarding the 296

first 1000 min. 297

Table 2. Parameter ranges used in the global sensitivity analysis.

No. Parameter (units) max. Value min Value Distribution

1 kD (nM) 400 0.4 log10 uniform
2 kN (nM) 40 0.04 log10 uniform
3 I0 (dimensionless) 0.1 0.0001 log10 uniform

Supporting information 298

S1 text. Supporting Information. 299
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