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Abstract

For many complex traits, gene regulation is likely to play a crucial mechanistic role.
How the genetic architectures of complex traits vary between populations and
subsequent effects on genetic prediction are not well understood, in part due to the
historical paucity of GWAS in populations of non-European ancestry. We used data
from the MESA (Multi-Ethnic Study of Atherosclerosis) cohort to characterize the
genetic architecture of gene expression within and between diverse populations.
Genotype and monocyte gene expression were available in individuals with African
American (AFA, n=233), Hispanic (HIS, n=352), and European (CAU, n=578)
ancestry. We performed expression quantitative trait loci (eQTL) mapping in each
population and show genetic correlation of gene expression depends on share ancestry
proportions. Using elastic net modeling with cross validation to optimize genotypic
predictors of gene expression in each population, we show the genetic architecture of
gene expression is sparse across populations. We found the best predicted gene,
HLA-DRB5, was the same across populations with R2 > 0.81 in each population.
However, there were 1094 (11.3%) well predicted genes in AFA and 372 (3.8%) well
predicted genes in HIS that were poorly predicted in CAU. Using genotype weights
trained in MESA to predict gene expression in 1000 Genomes populations showed that
a training set with ancestry similar to the test set is better at predicting gene expression
in test populations, demonstrating an urgent need for diverse population sampling in
genomics. Our predictive models in diverse cohorts are made publicly available for use
in transcriptome mapping methods at http://predictdb.hakyimlab.org/.
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Author summary

Most genome-wide association studies (GWAS) have been conducted in populations of 1

European ancestry leading to a disparity in understanding the genetics of complex traits 2

between populations. For many complex traits, gene regulation is likely to play a 3

critical mechanistic role given the consistent enrichment of regulatory variants among 4

trait-associated variants. However, it is still unknown how the effects of these key 5

variants differ across populations. We used data from MESA to study the underlying 6

genetic architecture of gene expression by optimizing gene expression prediction within 7

and across diverse populations. The populations with genotype and gene expression 8

data available are from individuals with African American (AFA, n=233), Hispanic 9

(HIS, n=352), and European (CAU, n=578) ancestry. After calculating the prediction 10

performance, we found that there are many genes that were well predicted in AFA and 11

HIS that were poorly predicted in CAU. We further showed that a training set with 12

ancestry similar to the test set resulted in better gene expression predictions, 13

demonstrating the need to incorporate diverse populations in genomic studies. Our gene 14

expression prediction models are publicly available to facilitate future transcriptome 15

mapping studies in diverse populations. 16

Introduction 17

For over a decade, genome-wide association studies (GWAS) have facilitated the 18

discovery of thousands of genetic variants associated with complex traits and new 19

insights into the biology of these traits [1]. Most of these studies involved individuals of 20

primarily European descent, which can lead to disparities when attempting to apply 21

this information across populations [2–4]. Continued increases in GWAS sample sizes 22

and new integrative methods will lead to more clinically relevant and applicable results. 23

Non-European populations need to be included in these studies to avoid further 24

contribution to health care disparities [5]. A recent study shows that the lack of 25

diversity in large GWAS skew the prediction accuracy across non-European 26

populations [6]. This discrepancy in predictive accuracy demonstrates that adding 27

ethnically diverse populations is critical for the success of precision medicine, genetic 28

research, and understanding the biology behind genetic variation [6–8]. 29

Gene regulation is likely to play a critical role for many complex traits as 30

trait-associated variants are enriched in regulatory, not protein-coding, regions [9–13]. 31

Numerous expression quantitative trait loci (eQTL) studies have provided insight into 32

how genetic variation affects gene expression [14–17]. While eQTL can act at a great 33

distance, or in trans, the largest effect sizes are consistently found near the transcription 34

start sites of genes [14–17]. Because gene expression shows a more sparse genetic 35

architecture than many other complex traits, gene expression is amenable to genetic 36

prediction with relatively modest sample sizes [18, 19]. This has led to new mechanistic 37

methods for gene mapping that integrate transcriptome prediction, including 38

PrediXcan [20] and TWAS [21]. These methods have provided useful tools for 39

understanding the genetics of complex traits; however, most of the models have been 40

built using predominantly European populations. 41

How the key variants involved in gene regulation differ among populations has not 42

been fully explored. While the vast majority of eQTL mapping studies have been 43

performed in populations of European descent, increasing numbers of transcriptome 44

studies in non-European populations make the necessary comparisons between 45

populations feasible [14,22,23]. An eQTL study across eight diverse HapMap 46

populations (∼100 individuals/population) showed that the directions of effect sizes 47

were usually consistent when an eQTL was present in two populations [14]. However, 48

2/17

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/245761doi: bioRxiv preprint 

https://doi.org/10.1101/245761
http://creativecommons.org/licenses/by-nd/4.0/


the impact of a particular genetic variant on population gene expression differentiation 49

is also dependent on allele frequencies, which often vary between populations. A better 50

understanding of the degree of transferability of gene expression prediction models 51

across populations is essential for broad application of methods like PrediXcan in the 52

study of the genetic architecture of complex diseases and traits in diverse populations. 53

Here, in order to better define the genetic architecture of gene expression across 54

populations, we combine genotype [24] and monocyte gene expression [25] data from the 55

Multi-Ethnic Study of Atherosclerosis (MESA) for the first time. We perform eQTL 56

mapping and optimize multi-SNP predictors of gene expression in three diverse 57

populations. The MESA populations studied herein comprise 233 African American 58

(AFA), 352 Hispanic (HIS), and 578 European (CAU) self-reported ancestry individuals. 59

Using elastic net regularization and Bayesian sparse linear mixed modeling, we show 60

sparse models outperform polygenic models in each population. We show the genetic 61

correlation of SNP effects and the predictive performance correlation is highest between 62

populations with the most overlapping admixture proportions. We found a subset of 63

genes that are well predicted in the AFA and/or HIS cohorts that are poorly predicted, 64

if predicted at all, in the CAU cohort. We also test our predictive models trained in 65

MESA cohorts in independent cohorts from the HapMap Project [14] and show the 66

correlation between predicted and observed gene expression is highest when the ancestry 67

of the test set is similar to that of the training set. By diversifying our model-building 68

populations, new genes may be implicated in complex trait mapping studies that were 69

not previously interrogated. Models built here have been added to PredictDB 70

http://predictdb.hakyimlab.org/ for use in PrediXcan [20] and other studies. 71

Results 72

Common and unique eQTLs across populations in MESA 73

We surveyed each MESA population (AFA, HIS, CAU) and two combined populations 74

(AFHI, ALL) for cis-eQTLs. SNPs within 1Mb of each of 10,143 genes were tested for 75

association with monocyte gene expression levels using a linear additive model. We used 76

10 genotype principal components in each model (Fig. 1) and compared models that 77

included a range of PEER factors (0, 10, 20, 30, 50, 100) to adjust for hidden 78

confounders in the expression data [26]. As expected, the sample size of the data 79

influences the number of eQTLs mapped (Fig. 2A). We found that using at least 20 80

PEER factors was best at finding the optimal number of eQTLs with a FDR < 0.05 for 81

each population (Fig. 2A). For the remainder of this work, all models were adjusted for 82

10 genotype principal components and 20 PEER factors. Hundreds of thousands to 83

millions of SNPs were found to associate with gene expression (eSNPs) and most genes 84

had at least one associated variant (eGenes) at FDR < 0.05 (Table 1). We quantified 85

the number of eSNPS and eGenes as well as the percentage of common and unique 86

eSNPs found for each population. Common eSNPs met FDR < .05 in all three 87

self-identified populations (AFA, HIS, CAU) or, in the case of the combined AFHI 88

population, common eSNPs met FDR < 0.05 in both AFHI and CAU. Unique eSNPs 89

met FDR < 0.05 in only the designated population. While the AFA population has a 90

sample size of less than half of the CAU population, the two populations have a similar 91

proportion of unique eSNPs (Table 1). SNPs discovered in the CAU population were 92

less likely to be replicated in the other populations than those discovered in the AFA 93

population (Fig. 2B). 94
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Fig 1. Genotype principal component (PC) analysis of MESA populations.
PC1 vs. PC2 plots of each MESA population when analyzed with HapMap populations
show varying degrees of admixture. The HapMap populations are defined by the
following abbreviations: Yoruba from Ibadan, Nigeria (YRI), European ancestry from
Utah (CEU), East Asians from Beijing, China and Tokyo, Japan (ASN). (A) MESA
AFA population (red), (B) MESA HIS population (green), (C) MESA CAU population
(blue), (D) all MESA populations combined.
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Fig 2. Summary of eQTL analyses in MESA populations (A) The number of
eQTLs with FDR < 0.05 increases when accounting for at least 20 PEER factors in
each population.(B) π1 statistics [27] for cis-eQTLs are reported for all pairwise
combinations of discovery (y-axis) and replication (x-axis) populations. Higher π1
values indicate a stronger replication signal. π1 is calculated when the SNP from the
discovery population is present in the replication population.

Table 1. cis-eQTL (FDR < 0.05) characteristics across MESA populations

Population number eSNPs number eGenes common SNPs unique SNPs
AFA (n=233) 657,185 7559 41% 38%
HIS (n=352) 1,628,344 8621 26% 33%
CAU (n=578) 1,977,647 8602 25% 39%
AFHI (n=585) 2,008,900 9074 35% 22%
ALL (n=1163) 3,051,709 9393 NA NA

Linear additive models were adjusted for 10 genotype principal components and 20
PEER factors. FDR = Benjamini-Hochberg false discovery rate. AFA = African
American, HIS = Hispanic, CAU = European American, AFHI = AFA and HIS, ALL
= AFA, HIS, and CAU.

Pairwise comparison between populations show CAU and HIS 95

are the most correlated 96

We estimated the local heritability (h2) for each gene and the genetic correlation (rG) 97

between genes in each MESA population using GCTA [28]. The sample sizes are not 98

large enough to estimate genetic correlation for individual genes, but since there are a 99

large number of genes, we can estimate the mean rG across genes [29]. The population 100

pair with the highest mean rG was CAU and HIS, followed by AFA and HIS, and the 101

least correlated pair was AFA and CAU (Table 2, Fig. 3). As the heritability threshold 102

within a population increase, the mean rG between populations also increases (Fig. 3B). 103

Sparse models outperform polygenic models for gene expression 104

We examined the prediction performance of a range of models using elastic net 105

regularization [30] to characterize the genetic architecture of gene expression in each 106

population. The mixing parameter that gives the largest prediction performance R2
107
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Fig 3. Genetic correlation (rG) of gene expression between MESA
populations.
(A) Distribution of genetic correlation (rG) between populations. The vertical lines
represent the mean rG across genes for the population pair. The most correlated
populations are CAU and HIS and the least correlated populations are AFA and CAU.
(B) Comparison of the genetic correlation between pairwise MESA populations and
the subset of genes with heritability (h2) greater than a given threshold in the AFA
population.

Table 2. Genetic correlation (rG) between MESA populations

pop pair mean rG SE rG genes that converged
AFA-CAU 0.48 0.0080 9227
AFA-HIS 0.57 0.0076 9269
CAU-HIS 0.62 0.0071 9480

rG was estimated using a bivariate restricted maximum likelihood (REML) model
implemented in GCTA.

indicates the degree of sparsity or polygenicity of the gene expression trait. If the 108

highest R2 occurs when α = 0.05, then the gene expression trait exhibits a more 109

polygenic architecture. However, if the optimal R2 occurs when α = 1 then the trait has 110

a sparse architecture [18]. We performed 10-fold cross-validation across three mixing 111

parameters (α = 0.05, 0.5, 1). We found that the highest R2 predictive performance 112

occurred when α = 0.5 or α = 1, whereas the R2 was smaller when α = 0.05, indicating 113

that the sparse model outperformed the polygenic model. Figure 4 shows that models 114

with 0.5 and 1 had similar predictive power while an α = 0.05 was suboptimal for gene 115

expression prediction in each of the populations. The number of genes that converged 116

when α = 0.5 was 9695 for each population. 117

In addition to elastic net, we also used Bayesian Sparse Linear Mixed Modeling 118

(BSLMM) [31] to estimate if the local genetic contribution to gene expression is more 119

polygenic or sparse. This approach models the genetic contribution of the trait as the 120

sum of a sparse component and a polygenic component. The parameter PGE represents 121

the proportion of the genetic variance explained by sparse effects. We also estimated 122

heritability (h2) using GCTA, a linear mixed model approach [28]. The PVE is the 123

BSLMM equivalent of h2 that is estimated from GCTA. We found that BSLMM PVE, 124
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Fig 4. MESA cross-validated predictive performance across a range of
elastic net mixing parameters. The difference between the 10-fold cross-validated
R2 of LASSO and elastic net mixing parameters 0.05 or 0.5 is compared to the LASSO
R2 across genes in MESA populations AFA, HIS, and CAU. The R2 difference values
with a mixing parameter α = 0.5 are close to zero indicating that they perform similarly
to the LASSO model. The values with a mixing parameter α = 0.05 are above zero
indicating that they perform worse than the LASSO model.

GCTA h2, and elastic net R2 are highly correlated in each population (S1 Fig). Using 125

BLSMM, we also found that for highly heritable genes, the sparse component (PGE) is 126

large; however, for genes with low PVE, we are unable to determine whether the sparse 127

or polygenic component is predominant (S1 Fig). 128

A subset of well-predicted genes in AFA and HIS were missed 129

in CAU 130

We then compared each population’s gene expression predictive performance. Higher 131

correlation values indicate similar accuracy in prediction performance of gene expression 132

models between two populations. The correlation between CAU and HIS is highest 133

(R2=0.853) followed by AFA and HIS (R2=0.702) and the lowest correlation between 134

two populations was AFA and CAU with R2=0.678 (Fig. 5A-C). These correlation 135

relationships mirror the European and African admixture proportions in the MESA HIS 136

and AFA cohorts (Fig. 1). There are many genes that are well predicted in both 137

populations and there are some that are poorly predicted between populations. We 138

found the best predicted gene, HLA-DRB5, was the same across each population with 139

an R2 > 0.81 in each population. On the other hand, there are some genes that are well 140

predicted in one population, but poorly predicted in the other and vice versa (Fig. 141

5D-E). There were 1094 (11.3%) well predicted genes in AFA that were poorly predicted 142

in CAU with an R2 difference greater than 0.2 between AFA and CAU (Table 3). When 143

comparing HIS and CAU, there were 372 (3.8%) well predicted genes in HIS and poorly 144

predicted in CAU with an R2 difference greater than 0.2. In contrast, a much smaller 145

proportion of genes were well predicted in CAU and poorly predicted in AFA or HIS, 146

2.8% and 0.61%, respectively (Table 3). 147
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Fig 5. Comparison of predictive performance between populations. The
correlation of predictive performance between HIS and AFA (A, R2 = 0.702), AFA and
CAU (B, R2 = 0.678), and CAU and HIS (C, R2 = 0.853). The most correlated
populations are HIS and CAU and least correlated populations are AFA and CAU. The
difference in predictive performance of AFA (D) and HIS (E) population compared to
CAU. Note that there are more genes that are better predicted in AFA and HIS that
are not present or poorly predicted in CAU than genes better predicted in CAU that
are poorly predicted in the AFA and HIS populations.
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Table 3. Comparison of gene expression prediction performance in AFA
and HIS compared to CAU

pop pair difference in R2 diff > 0.2 diff < -0.2 -0.2 < diff < 0.2 total
AFA R2 − CAU R2 1094 (11.3%) 276 (2.8%) 8325 (85%) 9695
HIS R2 − CAU R2 372 (3.8%) 60 (0.61%) 9263 (95%) 9695

Predictive performance improves when training set has similar 148

ancestry to test set 149

In order to further compare the predictive performance between populations, using each 150

of the MESA populations as training sets, we predicted gene expression in two 151

populations, Mexican ancestry individuals in Los Angeles (MXL) and Yoruba 152

individuals in Ibadan, Nigeria (YRI), from the HapMap and 1000 Genomes Projects 153

(Table 4, Fig. 6). The mean predicted vs. observed Pearson correlation (R) for YRI was 154

0.081 when using the AFA population as a training set, while mean R = 0.051 when 155

using the CAU training set (Table 4). The MXL population had a mean R = 0.092 156

using the HIS population as a training set, whereas the mean R was 0.090 when CAU 157

was the training set (Table 4). The AFA training set is suboptimal across models with 158

varying predictive performance R2 when tested in MXL (Fig. 6A). Similarly, the CAU 159

training set is suboptimal across models when used to predict expression in YRI (Fig. 160

6B). When using the currently available DGN training set that consists of 922 European 161

individuals [20], both YRI and MXL are more poorly predicted than when the MESA 162

training sets are used (Table 4). After combining the AFA and HIS population (AFHI), 163

we see that the predicted expression for YRI does better than HIS or AFA alone (Table 164

4). When all of the MESA populations are combined, the MXL and YRI mean 165

predicted vs. observed correlation is optimized across models (Fig. 6). This 166

demonstrates that when comparing predicted expression levels to the observed, a 167

balance of the training population with ancestry most similar to the test population and 168

total sample size leads to optimal predicted gene expression. 169

Table 4. Mean predictive performance in independent test cohorts across training models.

Population AFA (n=233) HIS (n=352) CAU (n=578) AFHI (n=585) ALL (n=1163) DGN (n=922)
YRI (n=107) 0.081 0.070 0.051 0.084 0.079 0.032
MXL (n=45) 0.073 0.092 0.090 0.091 0.094 0.053

The mean Pearson correlation (R) of the predicted vs. observed gene expression using MESA (AFA = African American, HIS
= Hispanic, CAU = European American, AFHI = AFA and HIS, ALL = AFA, HIS, and CAU) and DGN (Depression Genes
and Networks, all European ancestry) as training sets to predict gene expression in HapMap/1000 Genomes populations YRI
(Yoruba in Ibadan, Nigeria) and MXL (Mexican ancestry in Los Angeles).

Discussion 170

We used three MESA populations (AFA, HIS, and CAU) to better understand the 171

genetic architecture of gene expression in diverse populations. We optimized predictors 172

of gene expression using elastic net regularization and found that sparse models 173

outperform polygenic models. The genetic correlation of gene expression is highest 174

when continental ancestry overlaps between populations. We identified genes that are 175

better predicted in the AFA and/or HIS models that are either absent or poorly 176

predicted in the CAU model. We tested our predictors developed in MESA in 177
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Fig 6. Predictive performance in independent test cohorts across MESA
population models.
Loess smoothing lines of the predicted vs. observed gene expression correlation (R) in test
HapMap/1000 Genomes cohorts MXL (A) and YRI (B) compared to the cross-validated
predictive performance (R2) of each prediction model built in the MESA populations.

independent cohorts and found that the best prediction of gene expression occurred 178

when the training set included individuals with similar ancestry to the test set. 179

As seen in other studies [18,21,32], we show sparse models outperform polygenic 180

models for gene expression prediction across diverse populations. Thus, the genetic 181

architecture of gene expression for well predicted genes has a substantial sparse 182

component. Larger sample sizes may reveal an additional polygenic component that 183

may improve prediction for some genes. 184

We estimated the genetic correlation between each population pair for each gene. 185

Populations with more shared ancestry as defined by clustering of genotypic principal 186

components showed higher mean correlation across genes (Fig. 1, Table 2). As 187

estimated heritability of genes increase, the mean genetic correlation between 188

populations also increases (Fig. 3B), which indicates the genetic architecture underlying 189

gene expression is similar for the most heritable genes. However, even though prediction 190

across populations is possible for some of the most heritable genes, we define a class of 191

genes where predictive performance drops substantially between populations. 192

There were several genes with high predictive performance (R2 > 0.2) in AFA or 193

HIS that were poorly predicted or not predicted at all in the CAU population (Fig. 5, 194

S1 Table, S2 Table). Of the 372 genes found that were better predicted in HIS, there 195

were 153 genes that overlapped with the 1094 gene found for AFA (S3 Table). Almost 196

all of these well predicted genes in AFA and HIS populations also had biological 197

implications in at least one study in the GWAS Catalog (S4 Table). Examples of such 198

genes include COMMD1 (ENSG00000147905.13), which has been associated with blood 199

cell volume and elevated iron levels and ZCCHC7 (ENSG00000173163.6), which has 200

been linked to HIV susceptibility [33–35]. 201

We tested our predictive gene expression models built in the MESA cohorts in two 202

HapMap/1000 Genomes data sets (MXL and YRI) [14,36] using the MESA population 203

predictors we generated. As expected, the YRI gene expression prediction was best 204

when using the AFA, AFHI, or ALL training sets, which each include individuals with 205

African-ancestry admixture (Table 4, Fig. 6). The best gene expression prediction for 206
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MXL was with the ALL training set, which indicates that admixed populations like 207

MXL benefit from a pooled training set containing individuals of diverse ancestries. 208

Thus, increasing the sample sizes of non-European populations in genomic studies will 209

not only benefit the source population, but will also increase predictive power in 210

admixed populations. 211

Predictive models of gene expression developed in this study are made publicly 212

available at http://predictdb.hakyimlab.org/ for use in future studies of complex 213

trait genetics across diverse populations. Inclusion of diverse populations in complex 214

trait genetics is crucial for equitable implementation of precision medicine. 215

Materials and methods 216

The Loyola University Chicago Institutional Review Board (IRB) reviewed our 217

application for confirmation of exemption (IRB project number 2014). The IRB 218

determined that this human subject research project is exempt from the IRB oversight 219

requirements according to 45 CFR 46.101. 220

Genomic and transcriptomic data 221

The Multi-Ethnic Study of Atherosclerosis (MESA) 222

MESA includes 6814 individuals consisting of 53% females and 47% males between the 223

ages of 45-84 [24]. The individuals were recruited from 6 sites across the US (Baltimore, 224

MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; northern Manhattan, 225

NY; St.Paul, MN). MESA cohort population demographics were 39% Caucasian (CAU), 226

22% Hispanic (HIS), 28% African American (AFA), and 12% Chinese (CHN). Of those 227

individuals, RNA was collected from CD14+ monocytes from 1264 individuals across 228

three populations (AFA, HIS, CAU) and quantified on the Illumina Ref-8 229

BeadChip [25]. Individuals with both genotype (dbGaP: phs000209.v13.p3) and 230

expression data (GEO: GSE56045) included 234 AFA, 386 HIS, and 582 CAU. Illumina 231

IDs were converted to Ensembl IDs using the RefSeq IDs from MESA and gencode.v18 232

(gtf and metadata files) to match Illumina IDs to Ensembl IDs. If there were multiple 233

Illumina IDs corresponding to an Ensembl ID, the average of those values was used as 234

the expression level. 235

HapMap and 1000 Genomes data 236

We obtained genotype data from the 1000 Genomes Project [36] for populations of 237

interest where lymphoblastoid cell line (LCL) gene expression data were also 238

available [14]. Transcriptome data from Stranger et al. [14] included 45 Mexican 239

ancestry individuals in Los Angeles, CA, USA (MXL) and 107 Yoruba individuals in 240

Ibadan, Nigeria (YRI). 241

Quality control of genomic and transcriptomic data 242

MESA populations were previously imputed using IMPUTE 2.2.2 using the 1000 243

Genomes Phase I variant set and NCBI build 37/hg 19 for a final SNP count of at least 244

39 million variants [24,37,38]. Quality control and cleaning of the genotype data was 245

done using PLINK (https://www.cog-genomics.org/plink2). SNPs were filtered by 246

call rates less than 99%. Prior to IBD and principal component analysis (PCA), SNPs 247

were LD pruned by removing 1 SNP in a 50 SNP window if r2 > 0.3. One of a pair of 248

related individuals (IBD > 0.05) were removed. Pruned genotypes were merged with 249

HapMap populations and EIGENSTRAT [39] was used to perform PCA (Fig. 1). Final 250
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sample sizes for each population post quality control are AFA = 233, HIS = 352, and 251

CAU = 578 . We used 5-7 million non-LD pruned SNPs per population post quality 252

control. PEER factor analysis was performed on the expression data using the peer R 253

package in order to correct for potential batch effects and experimental confounders [40]. 254

A range of PEER factors (0, 10, 20, 30, 50, and 100) were calculated after 10 genotypic 255

PC adjustment in each population to determine how many were required to maximize 256

eQTL discovery. HapMap genotypes in individuals not sequenced through the 1000 257

Genomes Project were imputed using the Michigan Imputation Server for a total of 6-13 258

million SNPs per population, after undergoing PLINK quality control [41]. These 259

imputed samples were then merged back with the individuals that were previously 260

sequenced, filtering the SNPs (imputation R2 > 0.8, MAF > 0.01, HWE p > 1e-06). 261

HapMap expression data sets were adjusted by ten PEER factors. 262

eQTL analysis 263

We used Matrix eQTL [42] to perform a genome-wide cis-eQTL analysis in each 264

population separately (AFA, HIS, CAU), in the AFA and HIS combined (AFHI), and in 265

all three populations combined (ALL). We used SNPs with MAF > 0.05 and defined 266

cis-acting as SNPs within 1 Mb of the transcription start site (TSS). The linear 267

regression models included 10 genotype principal component covariates and a range of 268

PEER factors (0, 10, 20, 30, 50, or 100) [26]. The false discovery rate (FDR) for each 269

SNP was calculated using the Benjamini-Hochberg procedure. Similar to the approach 270

recently taken by the GTEx Project Consortium to compare tissues, we estimate the 271

pairwise population eQTL replication rates with π1 statistics (π1 = 1 − π0; π0 is the 272

proportion of false positives) using the qvalue method [17,27]. 273

Genetic correlation analysis 274

eQTL effect size comparisons between populations were performed using Genome-wide 275

Complex Trait Analysis (GCTA) software [28]. We performed a bivariate restricted 276

maximum likelihood (REML) analysis to estimate the genetic correlation (rG) between 277

each pair of MESA cohorts for each gene [43]. We also used GCTA to estimate the 278

proportion of variance explained by all cis-region SNPs (local h2) for each gene in each 279

population using restricted maximum likelihood (REML). 280

Prediction model optimization 281

We used the glmnet R package [30] to fit an elastic net model to predict gene expression 282

from cis-region SNP genotypes. The elastic net regularization penalty is controlled by 283

the mixing parameter alpha, which can vary between ridge regression (α = 0) and 284

LASSO (α = 1, default). We quantified the predictive performance of each model via 285

10-fold cross-validated Pearson R2 (predicted vs. observed gene expression). A gene 286

with the optimal predictive performance when α = 0 has a polygenic architecture, 287

whereas a gene with optimal performance when α = 1 has a sparse genetic architecture. 288

In the MESA cohort we tested three values of the mixing parameter (0.05, 0.5, and 1) 289

for optimal prediction of gene expression of 10,143 genes for each population alone, AFA 290

and HIS combined, and all three populations combined. We used the PredictDB 291

pipeline developed by the Im lab to preprocess, train, and compile elastic net results 292

into database files to use as weights for gene expression prediction. See 293

https://github.com/hakyimlab/PredictDBPipeline and 294

https://github.com/lmogil/run_PredictDB_with_pops. 295

We also used the software GEMMA [44] to implement Bayesian Sparse Linear Mixed 296

Modeling (BSLMM) [31] for each gene with 100K sampling steps per gene. BSLMM 297
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estimates the PVE (the proportion of variance in phenotype explained by the additive 298

genetic model, analogous to the heritability estimated in GCTA) and PGE (the 299

proportion of genetic variance explained by the sparse effects terms where 0 means that 300

genetic effect is purely polygenic and 1 means that the effect is purely sparse). From the 301

second half of the sampling iterations for each gene, we report the median and the 95% 302

credible sets of the PVE and PGE. 303
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and are colored by the elastic net R2. The genes with high heritability tend to have the 448

highest prediction performance R2. There are some genes that have better heritiability 449

estimates using BSLMM. (B) This shows the sparsity of gene expression traits 450

examining the PGE parameter of BSLMM approach of AFA, HIS, and CAU 451

respectively. PGE is the parameter that represents the proportion of the sparse 452

component of the total variance explained by genetic variance and PVE is the BSLMM 453

equivalent of h2. The highly heritable genes have a sparse component thats close to 1 454

and therefore the local genetic architecture is sparse. There is not enough evidence to 455

determine if the lower heritablility genes are more sparse or polygenic. 456
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