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Abstract

For many complex traits, gene regulation is likely to play a crucial mechanistic role. How
the genetic architectures of complex traits vary between populations and subsequent
effects on genetic prediction are not well understood, in part due to the historical
paucity of GWAS in populations of non-European ancestry. We used data from the
MESA (Multi-Ethnic Study of Atherosclerosis) cohort to characterize the genetic
architecture of gene expression within and between diverse populations. Genotype and
monocyte gene expression were available in individuals with African American (AFA,
n=233), Hispanic (HIS, n=352), and European (CAU, n=578) ancestry. We performed
expression quantitative trait loci (eQTL) mapping in each population and show genetic
correlation of gene expression depends on shared ancestry proportions. Using elastic net
modeling with cross validation to optimize genotypic predictors of gene expression in
each population, we show the genetic architecture of gene expression for most
predictable genes is sparse. We found the best predicted gene, TACSTD2, was the same
across populations with R2 > 0.86 in each population. However, we identified a subset
of genes that are well-predicted in one population, but poorly predicted in another. We
show these differences in predictive performance are due to allele frequency differences
between populations. Using genotype weights trained in MESA to predict gene
expression in independent populations showed that a training set with ancestry similar
to the test set is better at predicting gene expression in test populations, demonstrating
an urgent need for diverse population sampling in genomics. Our predictive models and
performance statistics in diverse cohorts are made publicly available for use in
transcriptome mapping methods at https://github.com/WheelerLab/DivPop.
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Author summary

Most genome-wide association studies (GWAS) have been conducted in populations of 1

European ancestry leading to a disparity in understanding the genetics of complex traits 2

between populations. For many complex traits, gene regulation is critical, given the 3

consistent enrichment of regulatory variants among trait-associated variants. However, 4

it is still unknown how the effects of these key variants differ across populations. We 5

used data from MESA to study the underlying genetic architecture of gene expression 6

by optimizing gene expression prediction within and across diverse populations. The 7

populations with genotype and gene expression data available are from individuals with 8

African American (AFA, n=233), Hispanic (HIS, n=352), and European (CAU, n=578) 9

ancestry. After calculating the prediction performance, we found that there are many 10

genes that were well predicted in one population are poorly predicted in another. We 11

further show that a training set with ancestry similar to the test set resulted in better 12

gene expression predictions, demonstrating the need to incorporate diverse populations 13

in genomic studies. Our gene expression prediction models and performance statistics 14

are publicly available to facilitate future transcriptome mapping studies in diverse 15

populations. 16

Introduction 17

For over a decade, genome-wide association studies (GWAS) have facilitated the 18

discovery of thousands of genetic variants associated with complex traits and new 19

insights into the biology of these traits [1]. Most of these studies involved individuals of 20

primarily European descent, which can lead to disparities when attempting to apply 21

this information across populations [2–4]. Continued increases in GWAS sample sizes 22

and new integrative methods will lead to more clinically relevant and applicable results. 23

A recent study shows that the lack of diversity in large GWAS skew the prediction 24

accuracy across non-European populations [5]. This discrepancy in predictive accuracy 25

demonstrates that adding ethnically diverse populations is critical for the success of 26

precision medicine, genetic research, and understanding the biology behind genetic 27

variation [5–8]. 28

Gene regulation is likely to play a critical role for many complex traits as 29

trait-associated variants are enriched in regulatory, not protein-coding, regions [9–13]. 30

Numerous expression quantitative trait loci (eQTLs) studies have provided insight into 31

how genetic variation affects gene expression [14–17]. While eQTLs can act at a great 32

distance, or in trans, the largest effect sizes are consistently found near the transcription 33

start sites of genes [14–17]. Because gene expression shows a more sparse genetic 34

architecture than many other complex traits, gene expression is amenable to genetic 35

prediction with relatively modest sample sizes [18, 19]. This has led to new mechanistic 36

methods for gene mapping that integrate transcriptome prediction, including 37

PrediXcan [20] and TWAS [21]. These methods have provided useful tools for 38

understanding the genetics of complex traits; however, most of the models have been 39

built using predominantly European populations. 40

How the key variants involved in gene regulation differ among populations has not 41

been fully explored. While the vast majority of eQTL mapping studies have been 42

performed in populations of European descent, increasing numbers of transcriptome 43

studies in non-European populations make the necessary comparisons between 44

populations feasible [14,22,23]. An eQTL study across eight diverse HapMap 45

populations (∼100 individuals/population) showed that the directions of effect sizes 46

were usually consistent when an eQTL was present in two populations [14]. However, 47

the impact of a particular genetic variant on population gene expression differentiation 48
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is also dependent on allele frequencies, which often vary between populations. A better 49

understanding of the degree of transferability of gene expression prediction models 50

across populations is essential for broad application of methods like PrediXcan in the 51

study of the genetic architecture of complex diseases and traits in diverse populations. 52

Here, in order to better define the genetic architecture of gene expression across 53

populations, we combine genotype [24] and monocyte gene expression [25] data from the 54

Multi-Ethnic Study of Atherosclerosis (MESA) for the first time. We perform eQTL 55

mapping and optimize multi-SNP predictors of gene expression in three diverse 56

populations. The MESA populations studied herein comprise 233 African American 57

(AFA), 352 Hispanic (HIS), and 578 European (CAU) self-reported ancestry individuals. 58

Using elastic net regularization and Bayesian sparse linear mixed modeling, we show 59

sparse models outperform polygenic models in each population. We show the genetic 60

correlation of SNP effects and the predictive performance correlation is highest between 61

populations with the most overlapping admixture proportions. We found a subset of 62

genes that are well predicted in the AFA and/or HIS cohorts that are poorly predicted, 63

if predicted at all, in the CAU cohort. We also test our predictive models trained in 64

MESA cohorts in independent cohorts from the HapMap Project [14], Geuvadis 65

Consortium [26], and Framingham Heart Study [18,27] and show the correlation 66

between predicted and observed gene expression is highest when the ancestry of the test 67

set is similar to that of the training set. By diversifying our model-building populations, 68

new genes may be implicated in complex trait mapping studies that were not previously 69

interrogated. Models built here have been added to PredictDB for use in PrediXcan [20] 70

and other studies, links at https://github.com/WheelerLab/DivPop. 71

Results 72

eQTL discovery in MESA and replication in independent 73

populations reflects ancestry and sample size 74

We surveyed each MESA population (AFA, HIS, CAU) and two combined populations 75

(AFHI, ALL) for cis-eQTLs. SNPs within 1Mb of each of 10,143 genes were tested for 76

association with monocyte gene expression levels using a linear additive model. The 77

MESA HIS cohort includes many individuals with recent African admixture (S1 Fig). 78

We compared models that included a range of genotypic principal components (0, 3, 5, 79

10) and PEER factors (0, 10, 20, 30) to adjust for hidden confounders in the expression 80

data [28]. Genotypic principal components (PCs) and PEER factors were computed 81

within each population prior to cis-eQTL mapping. While 3 genotypic PCs controlled 82

for inflation due to population stratification compared to 0 PCs, especially in HIS, the 83

cis-eQTLs discovered with 3, 5, or 10 PCs were nearly the same (S2 Fig). 84

We calculated the true positive rates (π1) of top cis-eQTLs (FDR < 0.05) from our 85

MESA discovery cohorts by examining their P value distribution in several replication 86

cohorts: Framingham Heart Study (FHS, n = 4838 European ancestry individuals, 87

whole blood expression microarray) [27], Geuvadis (GEU, n = 344 European and 77 88

African ancestry individuals, lympoblastoid cell line (LCL) RNA-Seq) [26], Yoruba from 89

Ibadan, Nigeria (YRI, n = 107, LCL expression microarray) [14], and Mexican ancestry 90

from Los Angeles (MXL, n = 45, LCL expression microarray) [14]. True positive rates 91

were similar across PEER factors except for models with 0 PEER factors, which were 92

either higher or lower depending on the replication population (Fig. 1). Because the 93

FHS replication population is the largest, true positive rates were higher across 94

discovery populations. True positive rates for eQTLs discovered in AFA were higher 95

compared to the other MESA populations in replication populations that include 96

African ancestry individuals (GEU and YRI). eQTLs discovered in AFA and HIS 97
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Fig 1. Summary of eQTL analyses in MESA populations True positive rate π1

statistics [29] for cis-eQTLs are plotted vs. the number of PEER factors used to adjust for
hidden confounders in the expression data of both discovery and replication populations. The
MESA discovery population is listed in the gray title box and the color of the each line
represents each replication population. Higher π1 values indicate a stronger replication signal.
π1 is calculated when the SNP-gene pair from the discovery population is present in the
replication population. All models shown included 3 genotypic principal components. AFA =
MESA African American, CAU = MESA European American, HIS = MESA Hispanic
American, FHS = Framingham Heart Study, GEU = Geuvadis, MXL = Mexicans in Los
Angeles, YRI = Yoruba in Ibadan, Nigeria.

yielded higher true positive rates in both YRI and MXL compared to eQTLs discovered 98

in CAU (Fig. 1). A full pairwise comparison of π1 statistics across all discovery and 99

replication population PEER factor combinations showed similar trends (S3 Fig). 100

As expected, the sample size of the discovery population influences the number of 101

eQTLs mapped (Table 1). Hundreds of thousands to millions of SNPs were found to 102

associate with gene expression (eSNPs) and most genes had at least one associated 103

variant (eGenes) at FDR < 0.05, with the absolute numbers correlating with sample 104

size (Table 1). Cis-eQTL summary statistics for each population are available at 105

https://github.com/WheelerLab/DivPop. 106

Table 1. cis-eQTL (FDR < 0.05) counts across MESA populations

Population number eSNPs number eGenes
AFA (n=233) 412,450 6837
HIS (n=352) 890,100 7974
CAU (n=578) 1,290,814 7925
AFHI (n=585) 1,126,620 8628
ALL (n=1163) 1,652,365 8877

Linear additive models were adjusted for 3 genotypic principal components and 10
PEER factors. FDR = Benjamini-Hochberg false discovery rate. AFA = African
American, HIS = Hispanic American, CAU = European American, AFHI = AFA and
HIS, ALL = AFA, HIS, and CAU.

Genetic effect size correlations between populations reflect 107

shared ancestry proportions 108

We estimated the local (cis-region SNPs) heritability (h2) for each gene and the genetic 109

correlation (rG) between genes in each MESA population. We used the average 110

information-REML algorithm implemented in GCTA [30,31] to estimate rG, which is 111
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constrained between -1 and 1 for each gene (See Methods). As in Brown et al. [32], the 112

sample sizes for gene expression data are too small for obtaining accurate point 113

estimates of rG for each gene. However, the large number of genes allow us to obtain 114

accurate estimation of the global mean rG between populations. The population pair 115

with the highest mean rG was CAU and HIS, followed by AFA and HIS, and the least 116

correlated pair was AFA and CAU (Table 2). Genes with larger h2 estimates in at least 117

one population tended to have larger rG estimates with lower standard errors (Fig. 2A, 118

S4 Fig). As the h2 threshold for inclusion increases, the mean rG between populations 119

also increases (Fig. 2B). The same pattern is observed when the h2 estimates are 120

normalized by the number of SNPs in the gene (S4 Fig). 121

Table 2. Genetic correlation (rG) between MESA populations

pop pair mean rG SE rG genes that converged
AFA-CAU 0.46 0.0080 9209
AFA-HIS 0.57 0.0076 9313
HIS-CAU 0.62 0.0072 9490

rG was estimated using a bivariate restricted maximum likelihood (REML) model
implemented in GCTA.

To verify that our rG analysis did not contain any small sample-size biases, we 122

simulated gene expression phenotypes in each population with the same local h2
123

distributions as the real data. For ten sets of simulated gene expression phenotypes, we 124

estimated rG between populations and compared the simulated results to the observed 125

results. While the mean rG ranged from 0.46-0.62 in the observed data, the mean rG in 126

the simulated data was near zero with similar numbers of genes at -1 and 1 (Fig. 2C). 127

Table 3. Proportion of genes with greater lasso (α = 1) model predictive
performance (R2) compared to elastic net models with different mixing
parameter (α) values.

Population elastic net (α = 0.05) elastic net (α = 0.5)
AFA 1497/2517 (0.595) 1342/2567 (0.523)
CAU 2213/3858 (0.574) 1943/3867 (0.502)
HIS 1950/3529 (0.553) 1763/3529 (0.500)

Models with a sparse component outperform polygenic models 128

for gene expression 129

We examined the prediction performance of a range of models using elastic net 130

regularization [33] to characterize the genetic architecture of gene expression in each 131

population. The mixing parameter (α) of elastic net ranges from 0-1. Models with α 132

near 0 assume a more polygenic architecture and models with α near 1 assume a more 133

sparse architecture. We used nested cross-validation to compute the coefficient of 134

determination R2 as our measure of model performance across three mixing parameters 135

(α = 0.05, 0.5, 1). The model with α = 1 is equivalent to least absolute shrinkage and 136

selection operator (lasso) regression [34]. When we compared the R2 values for each 137

gene between models, more genes had a higher R2 with the lasso model (α = 1) than 138

the most polygenic model tested (α = 0.05) in each population (Table 3, Fig. 3). The 139

lasso model performed similarly to the mixture model (α = 0.5), indicating elastic net is 140

somewhat robust to α choice as long as a sparse component is included (Table 3, Fig. 3). 141

In addition to elastic net, we used Bayesian Sparse Linear Mixed Modeling 142

(BSLMM) [35] to estimate if the local genetic contribution to gene expression is more 143
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Fig 2. Genetic correlation (rG) of gene expression between MESA populations.

(A) Pairwise population comparison of heritability (h2) and rG for each gene. The y-axis
is the minimum h2, the x-axis is the genetic correlation, and the points are colored
according to the maximum h2 between the populations titling each plot. (B) Comparison
of the genetic correlation between pairwise MESA populations and the subset of genes
with h2 greater than a given threshold in the AFA population. (C) Violin plots of the
observed results (obs) compared to simulated expression data (sim) with the same h2

distributions. The blue points represent the mean rG across genes for the population pair.
The most correlated populations are CAU and HIS and the least correlated populations
are AFA and CAU. Note more genes have an rG estimate equal to 1 in the observed
data compared to the simulated data.
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Fig 3. MESA gene expression predictive performance across a range of elastic
net mixing parameters. (A) The difference between cross-validated R2 of lasso and elastic
net with mixing parameters 0.05 or 0.5 is compared to the lasso R2 across genes in MESA
populations AFA, HIS, and CAU. (B) Zoomed in plot of A using contour lines from
two-dimensional kernel density estimation to visualize where the points are concentrated. The
R2 difference values (y-axis) with a mixing parameter α = 0.5 are closer to zero indicating that
they perform similarly to the lasso model. The values with a mixing parameter α = 0.05 are
above zero indicating that they perform worse than the lasso model.

polygenic or sparse. This approach models the genetic contribution of the trait as the 144

sum of a sparse component and a polygenic component. BSLMM estimates the total 145

percent variance explained (PVE) and the parameter PGE, which represents the 146

proportion of the genetic variance explained by sparse effects. We found that for highly 147

heritable genes (high PVE), the sparse component (PGE) is large; however, for genes 148

with low PVE, we are unable to determine whether the sparse or polygenic component 149

is predominant (S5 Fig). We also estimated heritability (h2) using a linear mixed model 150

(LMM) [30] and Bayesian variable selection regression (BVSR) [36], which assume a 151

polygenic and sparse architecture, respectively. It has previously been shown that 152

BVSR performs similarly to BSLMM when the simulated architecture is sparse, but 153

BVSR performs poorly compared to BSLMM when the simulated architecture includes 154

a polygenic component [35]. BSLMM outperforms both LMM and BVSR in each 155

population (S5 Fig). However, BSLMM and BVSR show greater correlation, providing 156

further support that the sparse component dominates in the MESA cohorts (S5 Fig). 157
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Differences in predictive performance are due to allele 158

frequency differences between populations 159

We then compared each population’s gene expression predictive performance as 160

measured by cross-validated coefficient of determination (R2). We first fit elastic net 161

models (α = 0.5) using 3 genotypic PCs and gene expression levels adjusted by 0, 10, 20 162

or 30 PEER factors in each population. Predictive performance was higher when we 163

used 10 PEER factors compared to no PEER factor adjustment (S6 Fig). Seeing little 164

difference between models with 10 or more PEER factors within populations (S6 Fig), 165

we compared predictive performance between populations using the elastic net models 166

with 10 PEER factors. The Spearman correlation (ρ) between CAU and HIS model 167

performance is highest (ρ = 0.778), followed by AFA and HIS (ρ = 0.663). The lowest 168

correlation between two populations was AFA and CAU with ρ = 0.586 (Fig. 4A). 169

These correlation relationships mirror the European and African admixture proportions 170

in the MESA HIS and AFA cohorts (S1 Fig). 171

Because the sample sizes between MESA populations differed (Table 1), we randomly 172

selected 233 individuals from CAU and HIS and fit elastic net models with these 173

downsampled populations to match the AFA sample size. Predictive performance R2 is 174

highly correlated between the full and downsampled populations (ρ > 0.96). A handful 175

of genes that are better predicted with the full sample size (S7 Fig). Also, the between 176

population correlations showed the same trend when all populations had the same 177

sample size, with CAU and HIS the most correlated, followed by AFA and HIS (S7 Fig). 178

There are many genes that are well predicted in both populations and poorly 179

predicted in both populations. We found the best predicted gene, TACSTD2, was the 180

same across each population with an R2 > 0.86 in each population. On the other hand, 181

there are some genes that are well predicted in one population, but poorly predicted in 182

the other and vice versa (Fig. 4A). 183

To test the hypothesis that allele frequency differences between populations are 184

influencing predictive power, we performed a fixation index (FST) analysis. For each 185

population pair, we calculated the the mean FST for SNPs in each gene expression 186

prediction model. Gene models with an absolute value R2 difference between 187

populations greater than 0.05 had significantly higher mean FST distribution than those 188

with a smaller difference (Wilcoxon P = 2.7× 10−66). The significant increase in mean 189

FST was robust across R2 difference thresholds (Fig. 4C). Similar significant differences 190

were observed when the SNP FST values were weighted by elastic net model betas 191

across R2 difference thresholds from 0.05-0.3 (S8 Fig). 192

Gene expression prediction improves when training set has 193

similar ancestry to test set 194

In order to further compare gene expression prediction model performance between 195

populations, using the models built in each MESA population, we predicted gene 196

expression in our replication populations: FHS, GEU, MXL, and YRI. We calculated 197

the true positive rates (π1 statistics) [29] for predicted vs. observed expression in each 198

replication cohort when different numbers of gene models were included based on MESA 199

predictive performance (Table 4, Fig. 5). As expected, true positive rates were higher 200

across model training populations for the largest replication population, FHS. For GEU, 201

which includes European and African ancestry individuals, the best performing models 202

were trained using all the MESA individuals (ALL, Fig. 5). Prediction in YRI was best 203

using AFA or AFHI models and prediction in MXL was optimal using the CAU models 204

(Fig. 5). These results demonstrate that when comparing predicted expression levels to 205

the observed, a balance of the training population with ancestry most similar to the test 206

population and total sample size leads to optimal predicted gene expression. 207
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Fig 4. Allele frequency differences lead to gene expression predictive
performance differences between populations. (A) Comparison of predictive
performance for each gene (R2) between each pair of populations. Predictive performance (R2)
was measured within each population using nested cross-validation. In each gray title box,
population 1 is listed first and population 2 is listed second. The identity line is shown in blue.
The pairwise Spearman correlations (ρ) between genes are AFA-CAU: ρ = 0.762, AFA-HIS:
ρ = 0.84, HIS-CAU: ρ = 0.92. (B) Comparison of mean FST between gene models with large
(> t) and small (<= t) differences in predictive performance R2. Mean FST of SNPs in each
gene expression prediction model between all pairwise populations was calculated. The gene
groups with the larger absolute value R2 difference between populations had significantly larger
mean FST at each difference threshold, t (Wilcoxon rank sum tests, P < 2.2× 10−16).
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Fig 5. Predictive performance in independent test cohorts across MESA
population models.

True positive rate π1 statistics [29] for replication cohort prediction are plotted vs. the
training population model predictive performance R2. The MESA training population
is listed in the gray title box and the color of each line represents each replication
population. Higher π1 values indicate a higher true positive rate of predicted expression
in the replication cohort using the MESA model vs. observed expression in the replication
cohort. All models shown included 3 genotypic principal components and 10 PEER
factors. AFA = MESA African American, CAU = MESA European American, HIS =
MESA Hispanic American, FHS = Framingham Heart Study, GEU = Geuvadis, MXL
= Mexicans in Los Angeles, YRI = Yoruba in Ibadan, Nigeria.

Table 4. Number of genes with models at different R2 thresholds.

Model R2 ≥ 0 R2 ≥ 0.01 R2 ≥ 0.05 R2 ≥ 0.1 R2 ≥ 0.2
AFA 3486 3006 2153 1584 910
HIS 4457 3879 2704 1913 1152
CAU 4901 4128 2753 1921 1149
AFHI 5778 4926 3303 2304 1308
ALL 6896 5672 3532 2407 1336

The number of genes in MESA (AFA = African American, HIS = Hispanic American, CAU = European American, AFHI =
AFA and HIS, ALL = AFA, HIS, and CAU) as training sets to predict gene expression

Gene-based association using multiethnic predictors 208

Gene-based association methods like PrediXcan, TWAS, and S-PrediXcan have been 209

developed to use genotype data to discover genes whose predicted expression is 210

associated a phenotype of interest [20,21,37]. To date, most predicted expression 211

models available for these methods were trained in European ancestry cohorts. We used 212

the five MESA models with S-PrediXcan [37] and publicly available multiancestry 213

GWAS summary statistics from a large asthma study by the Trans-National Asthma 214

Genetic Consortium (TAGC) [38]. While all MESA models performed similarly, the top 215

genes differed across models (Fig. 6, S1 Table). Many genes identified by S-PrediXcan 216

were not previously implicated in TAGC GWAS [38] (Table 5, S1 Table). Two of the 217

genes that associated with asthma using the ALL models were not predicted in CAU 218

and thus not even tested, demonstrating the additional information non-European 219

populations may add to studies. They include C2 (complement C2) and BLOC1S1 220

(biogenesis of lysosomal organelles complex 1 subunit 1), which are on different 221

chromosomes. Neither gene has been implicated in asthma GWAS before, but both are 222

associated with age-related macular degeneration, another inflammation-related 223

disease [39]. All summary statistics from our S-PrediXcan analyses are in S2 Table. 224
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Fig 6. Comparison of S-PrediXcan results using gene expression prediction
models from different MESA populations and summary statistics from a
multiancestry GWAS of asthma.

Summary statistics were retrieved from the GWAS Catalog for the Trans-National
Asthma Genetic Consortium study [38]. Q-Q plots of S-PrediXcan results using models
built in each population.

Table 5. Summary of S-PrediXcan results using MESA models in a multiancestry GWAS of the asthma [38].

Model Bonferroni threshold significant genes also significant in GWAS also significant using CAU
AFA 1.5e-5 10 4 6/10
HIS 1.1e-5 14 4 4/12
CAU 1.1e-5 17 7 NA
AFHI 9.2e-6 16 4 8/14
ALL 8.1e-6 17 5 10/15

Column 3: The number of genes using MESA gene expression prediction models (AFA = African American, HIS = Hispanic
American, CAU = European American, AFHI = AFA and HIS, ALL = AFA, HIS, and CAU) that were significant after
Bonferroni correction with each model; Column 4: Of the significant genes, the number of genes also implicated in the
multiancestry GWAS (listed in Table 1, Table 2, or Figure 2 in [38]). Column 5: Of the significant genes, the number that
were also significant using the S-PrediXcan CAU model out of the number tested in CAU.

Discussion 225

We compared three MESA populations (AFA, HIS, and CAU) to better understand the 226

genetic architecture of gene expression in diverse populations. We optimized predictors 227

of gene expression using elastic net regularization and found that models with a sparse 228

component outperform polygenic models. Between populations, the genetic correlation 229

of gene expression is higher when continental ancestry proportions are more similar. We 230

identified genes that are better predicted in one population and poorly predicted in 231

another due to allele frequency differences. We tested our predictors developed in 232

MESA in independent cohorts and found that the best prediction of gene expression 233

occurred when the training set included individuals with similar ancestry to the test set. 234

As seen in other studies [18,21,40], we show models with a sparse component 235

outperform polygenic only models for gene expression prediction across populations. 236

Thus, the genetic architecture of gene expression for many genes has a substantial 237

sparse component. Notably, some genes do perform better in more polygenic models as 238

shown here (genes below the horizontal zero line in Fig. 3 and S5 Fig) and in Zeng et 239
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al. [41]. Larger sample sizes may reveal an additional polygenic component that may 240

improve prediction for some genes. However, the population with the largest sample size 241

(CAU) showed the least variability between models (Fig. 3), suggesting that a more 242

polygenic model does not add much to the predictive performance of a sparse model 243

with fewer predictors. Thus, to balance these observations, we recommend using models 244

that include a mixture of polygenic and sparse components like elastic net 245

(α ' 0.5) [33], BSLMM [35], and latent Dirichlet process regression [41]. 246

We estimated the genetic correlation between each population pair for each gene. 247

Populations with more shared ancestry as defined by clustering of genotypic principal 248

components showed higher mean correlation across genes (Fig. S1 Fig, Table 2). As 249

estimated heritability of genes increase, the mean genetic correlation between 250

populations also increases (Fig. 2B), which indicates the genetic architecture underlying 251

gene expression is similar for the most heritable genes. However, even though prediction 252

across populations is possible for some of the most heritable genes, we define a class of 253

genes where predictive performance drops substantially between populations. We show 254

this drop is due to allele frequency differences (larger FST) between populations. 255

We tested our predictive gene expression models built in the MESA populations in 256

several replication populations. As expected, the YRI gene expression prediction was 257

best when using the AFA, AFHI, or ALL training sets, which each include individuals 258

with African-ancestry admixture (Fig. 5). The best gene expression prediction for MXL 259

was with the CAU training set, which may reflect the lack of recent African ancestry in 260

MXL [6] compared to the MESA HIS population (S1 Fig). For GEU, the best MESA 261

prediction population was ALL, which indicates that multi-ethnic cohorts like GEU 262

benefit from a pooled training set containing individuals of diverse ancestries. Thus, it 263

may be beneficial to build gene expression models using training populations with a 264

similar allele frequency spectrum to that of the test cohort taking into account SNPs 265

that are interrogated in both populations. A similar cohort-specific strategy was used to 266

increase power to detect genes associated with warfarin dose using PrediXcan in African 267

Americans [42]. 268

We applied S-PrediXcan using our MESA models to summary statistics from a 269

multiancestry GWAS of asthma [38]. We found several novel and previously reported 270

genes significantly associated with asthma (Table 5, S1 Table). Of the genes not 271

implicated in the Demenais et al. GWAS [38], most were associated with 272

inflammation-related diseases in the GWAS Catalog [1]. We found increased predicted 273

ADORA1 expression significantly associated with increased asthma risk in 4/5 MESA 274

models tested (S2 Table). While ADORA1 was not significant in Demenais et. al. [38], 275

the gene has previously been reported to associate with asthma in a study investigating 276

the relationships between phenotypes, which also found that immune-related disease 277

associations cluster together [43]. Similar inflammation mechanisms could explain why 278

two genes (C2 and BLOC1S1 ) previously associated with age-related macular 279

degeneration [39] might also be implicated in asthma as shown here. 280

Predictive models of gene expression developed in this study and performance 281

statistics are made publicly available at https://github.com/WheelerLab/DivPop for 282

use in future studies of complex trait genetics across diverse populations. As in our 283

S-PrediXcan analysis of asthma, multiancestry transcriptome integration may reveal 284

new genes not implicated in European only studies. Inclusion of diverse populations in 285

complex trait genetics is crucial for equitable implementation of precision medicine. 286

Materials and methods 287

This work was approved by the Loyola University Chicago Institutional Review Board. 288
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Genomic and transcriptomic training data 289

The Multi-Ethnic Study of Atherosclerosis (MESA) 290

MESA includes 6814 individuals consisting of 53% females and 47% males between the 291

ages of 45-84 [24]. The individuals were recruited from 6 sites across the US (Baltimore, 292

MD; Chicago, IL; Forsyth County, NC; Los Angeles County, CA; northern Manhattan, 293

NY; St.Paul, MN). MESA cohort population demographics were 39% European 294

American (CAU), 22% Hispanic American (HIS), 28% African American (AFA), and 295

12% Chinese American (CHN). Of those individuals, RNA was collected from CD14+ 296

monocytes from 1264 individuals across three populations (AFA, HIS, CAU) and 297

quantified on the Illumina Ref-8 BeadChip [25]. Individuals with both genotype 298

(dbGaP: phs000209.v13.p3) and expression data (GEO: GSE56045) included 234 AFA, 299

386 HIS, and 582 CAU. Illumina IDs were converted to Ensembl IDs using the RefSeq 300

IDs from MESA and gencode.v18 (gtf and metadata files) to match Illumina IDs to 301

Ensembl IDs. If there were multiple Illumina IDs corresponding to an Ensembl ID, the 302

average of those values was used as the expression level. 303

Genomic and transcriptomic test data 304

Stranger et al. HapMap data 305

We obtained lymphoblastoid cell line (LCL) microarray transcriptome data from 306

Stranger et al. [14] for HapMap populations of interest, including 45 Mexican ancestry 307

individuals in Los Angeles, CA, USA (MXL) and 107 Yoruba individuals in Ibadan, 308

Nigeria (YRI) (Illumina Sentrix Human-6 Expression BeadChip version 2, Array 309

Express: E-MTAB-264). We obtained genotype data from the 1000 Genomes Project 310

(phase3 v5a 20130502) [44]. HapMap genotypes in individuals not sequenced through 311

the 1000 Genomes Project were imputed using the Michigan Imputation Server for a 312

total of 6-13 million SNPs per population, after undergoing quality control [45]. These 313

imputed samples were then merged with the individuals that were previously sequenced, 314

filtering the SNPs (imputation R2 > 0.8, MAF > 0.01, HWE p > 1e-06). 315

Geuvadis Consortium (GEU) 316

We obtained RNA sequencing transcriptome data from the Geuvadis Consortium (GEU) 317

at https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/ and genotype 318

data from the 1000 Genomes Project (phase3 v5a 20130502) [26,44]. The GEU cohort 319

includes 78 Utah residents with Northern and Western European ancestry, 89 Finnish 320

from Finland, 85 British from England and Scotland, 92 Toscani in Italy and 77 Yoruba 321

in Ibadan, Nigeria individuals [26]. 322

Framingham Heart Study (FHS) 323

We obtained genotype and exon expression array (Affymetrix Human Exon 1.0 ST 324

microarray) data [27] through application to dbGaP accession phs000007.v29.p1. 325

Genotype imputation and gene level quantification were performed by our group 326

previously [18], leaving 4838 European ancestry individuals with both genotypes and 327

observed gene expression levels for analysis. 328

Quality control of genomic and transcriptomic data 329

We imputed genotypes in the MESA populations using the Michigan Imputation Server 330

and 1000 genomes phase 3 v5 reference panel and Eagle v2.3. Reference populations 331

were EUR for CAU and mixed population for AFA and HIS [44–46]. The results were 332
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filtered by R2 < 0.8, MAF > 0.01, and ambiguous strand SNPs were removed. This left 333

9,352,383 SNPs in AFA, 7,201,805 SNPs in HIS, and 5,559,636 SNPs in CAU for further 334

analysis. Quality control and cleaning of the genotype data was done using PLINK 335

(https://www.cog-genomics.org/plink2). SNPs were filtered by call rates less than 336

99%. Prior to IBD and principal component (PC) analysis, SNPs were LD pruned by 337

removing 1 SNP in a 50 SNP window if r2 > 0.3. One of a pair of related individuals 338

(IBD > 0.05) were removed. Pruned genotypes were merged with HapMap populations 339

and EIGENSTRAT [47] was used to perform PC analysis both across (Fig. S1 Fig) and 340

within populations. Final sample sizes for each population post quality control are AFA 341

= 233, HIS = 352, and CAU = 578 . We used 5-7 million non-LD pruned SNPs per 342

population post quality control. PEER factor analysis within each population was 343

performed on the expression data using the peer R package in order to correct for 344

potential batch effects and experimental confounders [48]. 345

eQTL analysis 346

We used Matrix eQTL [49] to perform a genome-wide cis-eQTL analysis in each 347

population separately (AFA, HIS, CAU), in the AFA and HIS combined (AFHI), and in 348

all three populations combined (ALL). We used SNPs with MAF > 0.01 and defined 349

cis-acting as SNPs within 1 Mb of the transcription start site (TSS). We tested a range 350

of linear regression models with 0, 3, 5, or 10 within population genotypic PC covariates 351

and 0, 10, 20, or 30 within population PEER factors [28]. The false discovery rate 352

(FDR) for each SNP was calculated using the Benjamini-Hochberg procedure. We 353

estimate the pairwise population eQTL true positive rates with π1 statistics using the 354

qvalue method [17,29]. π1 is the expected true positive rate and was estimated by 355

selecting the SNP-gene pairs with FDR < 0.05 in each discovery cohort (MESA) and 356

examining their P value distribution in each replication cohort (FHS, GEU, MXL, YRI). 357

π0 is the proportion of false positives estimated by assuming a uniform distribution of 358

null P values and π1 = 1− π0 [29]. 359

Genetic correlation analysis 360

We performed eQTL effect size comparisons between populations using Genome-wide 361

Complex Trait Analysis (GCTA) software [30]. We performed a bivariate restricted 362

maximum likelihood (REML) analysis to estimate the genetic correlation (rG) between 363

each pair of MESA populations for each gene [31]. As in the eQTL analysis, we 364

compared cis-region (within 1 Mb) SNPs for each gene. In our implementation, the 365

models can be written as 366

y1 = X1b1 + Z1g1 + e1

for population 1 and 367

y2 = X2b2 + Z2g2 + e2

for population 2, where y1 and y2 are vectors of gene expression values, b1 and b2 are 368

vectors of fixed effects, g1 and g2 are vectors of random polygenic effects, and e1 and e2 369

are residuals for populations 1 and 2, respectively. X and Z are incidence matrices for 370

the effects b and g, respectively. The variance covariance matrix (V) is defined as 371

V =

[
Z1AZ′1σ

2
g1 + Iσ2

e1 Z1AZ′2σ
2
g1g2

Z2AZ′1σ
2
g1g2 Z2AZ′2σ

2
g2 + Iσ2

e2

]
where A is the genetic relationship matrix based on SNP information [30], I is an 372

identity matrix, σ2
g is the genetic variance, σ2

e the is residual variance, and σ2
g1g2 is the 373

covariance between g1 and g2. In our models, the residual covariance component is 374

ignored because no individual belongs to two populations. We used the average 375
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information-REML algorithm implemented in GCTA [31] to estimate rG, which is 376

constrained between -1 and 1 for each gene by bending the variance-covariance matrix 377

to be positive definite. 378

As in Brown et al. [32], the sample sizes for gene expression data are too small for 379

obtaining accurate point estimates of rG for each gene. However, the large number of 380

genes allow us to obtain accurate estimation of the global mean rG between populations. 381

To verify that our rG analysis did not contain any small sample-size biases, we 382

simulated gene expression phenotypes in each population with the same local 383

heritability (h2) distributions as the real data. Effect sizes of cis-region SNPs for each 384

gene were randomly generated from a standard normal distribution such that the 385

individual population h2 estimate would be the same as the observed data. For ten sets 386

of simulated gene expression phenotypes, we estimated rG between populations and 387

compared the simulated results to the observed results (Fig. 2). 388

Prediction model optimization 389

We used the glmnet R package [33] to fit an elastic net model to predict gene expression 390

from cis-region SNP genotypes. The elastic net regularization penalty is controlled by 391

the mixing parameter alpha, which can vary between ridge regression (α = 0) and lasso 392

(α = 1, default). A gene with the optimal predictive performance when α = 0 has a 393

polygenic architecture, whereas a gene with optimal performance when α = 1 has a 394

sparse genetic architecture. In the MESA cohort we tested three values of the alpha 395

mixing parameter (0.05, 0.5, and 1) and a range of PEER factors (0, 10, 20, 30) for 396

optimal prediction of gene expression of 10,143 genes for each population alone (AFA, 397

CAU, HIS), AFA and HIS combined (AFHI), and all three populations combined (ALL). 398

We used the PredictDB pipeline developed by the Im lab to preprocess, train, and 399

compile elastic net results into database files to use as weights for gene expression 400

prediction [37]. We quantified the predictive performance of each model via nested 401

cross-validation. We split the data into 5 disjoint folds, roughly equal in size, and for 402

each fold, we calculated a 10-fold cross-validated elastic net model in 4/5 of the data 403

where the lambda tuning parameter is cross-validated. Then, using predicted and 404

observed gene expression, we calculate the coefficient of determination (R2) for how the 405

model predicts on the held-out fold. We report the mean R2 over all 5 folds as our 406

measure of model performance. R2 is defined as 407

1−
∑

(yo − yp)2∑
(yo − ȳo)2

where yo is observed expression, yp is predicted expression, and ȳo is the mean of 408

observed expression. See https://github.com/WheelerLab/DivPop. 409

We used the software GEMMA [50] to implement Bayesian Sparse Linear Mixed 410

Modeling (BSLMM) [35] for each gene with 100K sampling steps per gene. BSLMM 411

estimates the PVE (the proportion of variance in phenotype explained by the additive 412

genetic model, analogous to the h2 estimated in GCTA) and PGE (the proportion of 413

genetic variance explained by the sparse effects terms where 0 means that genetic effect 414

is purely polygenic and 1 means that the effect is purely sparse). From the second half 415

of the sampling iterations for each gene, we report the median and the 95% credible sets 416

of the PVE and PGE. We also estimated heritability (h2) using a linear mixed model 417

(LMM) implemented in GCTA [30] and Bayesian variable selection regression 418

(BVSR) [36], which assume a polygenic and sparse architecture, respectively. We used 419

the software piMASS for Bayesian variable selection regression (BVSR) [36]. For each 420

gene, we used 10,000 burn-in steps and 100,000 sampling steps in the BVSR Markov 421

chain Monte Carlo algorithm. From the output of every 10 sampling steps, we report 422

the median re-estimated PVE based on sampling posterior effect sizes. 423
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Comparing prediction models between MESA populations 424

We calculated the fixation index (FST) [51] for each SNP between each pair of 425

populations using PLINK. Then, for each gene expression prediction model, we 426

calculated both the mean FST and weighted average FST for SNPs in the model. In the 427

weighted average calculation, FST values were multiplied by the elastic net model beta 428

value to give SNPs with larger effect sizes more weight. We compared mean and 429

weighted average FST values between genes with divergent predictive performance and 430

genes with similar predictive performance between populations using Wilcoxon rank 431

sum tests. To test for robustness across thresholds, we varied the absolute value R2
432

difference threshold to define the divergent and similar groups from 0.05-0.3. 433

Testing prediction models in independent replication cohorts 434

Using our elastic net models built in MESA AFA, HIS, CAU, AFHI, and ALL (α = 0.5 435

with 10 PEER factors and 3 genotypic PCs), we predicted gene expression from 436

genotypes in independent test populations: FHS, GEU, MXL, and YRI. As for eQTLs, 437

we estimated the pairwise population prediction true positive rates with π1 statistics 438

using the qvalue method [17,29]. The Pearson correlation between predicted and 439

observed expression was calculated and the P value distribution of the correlation was 440

evaluated using π1 statistics. We calculated π1 values in the test populations using 441

several MESA model predictive performance R2 thresholds for gene inclusion (R2 = 0, 442

0.01, 0.05, 0.1, and 0.2). 443

S-PrediXcan application of MESA gene expression prediction 444

models 445

We performed S-PrediXcan [37] with MESA models AFA, HIS, CAU, AFHI, and ALL 446

using publicly available multiancestry GWAS summary statistics from a large asthma 447

study by the Trans-National Asthma Genetic Consortium (TAGC) [38]. TAGC 448

contained 23,948 cases and 118,538 controls with the following ancestry proportions: 449

127,669 European, 8,204 African, 5,215 Japanese, and 1,398 Latino [38]. The Bonferroni 450

correction threshold used to define significant genes was calculated as P < (0.05/gene 451

count). 452
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Supporting information

S1 Fig. Genotypic principal component (PC) analysis of MESA
populations. PC1 vs. PC2 plots of each MESA population when analyzed with
HapMap populations show varying degrees of admixture. The HapMap populations are
defined by the following abbreviations: Yoruba from Ibadan, Nigeria (YRI), European
ancestry from Utah (CEU), East Asians from Beijing, China and Tokyo, Japan (ASN).
(A) MESA AFA population (red), (B) MESA HIS population (green), (C) MESA CAU
population (blue), (D) all MESA populations combined.
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S2 Fig. Consistent cis-eQTL results with 3 or more genotypic principal
components (PCs). cis-eQTL count (FDR < 0.05) vs. the number of PEER factors
used to adjust for hidden confounders in the expression data of each MESA population.
The number of genotypic PCs is listed in the gray title box and the color of the lines
represent each MESA population. Note that all curves with at least 3 genotypic PCs
look the same. AFA = MESA African American, CAU = MESA European American,
HIS = MESA Hispanic American.

S3 Fig. Pairwise cis-eQTL true positive rates across all PEER factor
combinantions True positive rate π1 statistics [29] for cis-eQTLs are plotted
comparing each Discovery Population to each Replication Population. The number after
each population abbreviation is the number of PEER factors used to adjust for hidden
confounders in the expression data. Higher π1 values indicate a stronger replication
signal. π1 is calculated when the SNP-gene pair from the discovery population is
present in the replication population. All models shown included 3 genotypic principal
components. AFA = MESA African American, CAU = MESA European American,
HIS = MESA Hispanic American, FHS = Framingham Heart Study, GEU = Geuvadis,
MXL = Mexicans in Los Angeles, YRI = Yoruba in Ibadan, Nigeria.
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S4 Fig. Higher heritability genes have higher genetic correlation (rG) and
lower standard error (SE) estimates between MESA populations. (A)
Pairwise population comparison of minimum heritability (h2) and rG standard (SE) for
each gene. The y-axis is the minimum h2, the x-axis is the −log10 SE of the rG estimate,
and the points are colored according to the maximum h2 between the populations titling
each plot. (B) rG compared to −log10 SE of the estimate. Genes with low SE are more
likely to have a positive rG estimate. (C) Comparison of the genetic correlation
between pairwise MESA populations and the subset of genes with normalized h2 greater
than a given threshold in the AFA population. h2 estimates are normalized by the
number of SNPs used in the estimate, i.e. those within 1 Mb of each gene.
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S5 Fig. Comparison of gene expression proportion variance explained
(PVE) estimates of models assuming different underlying genetic
architectures. (A) Bayesian Sparse Linear Mixed Modeling (BSLMM) includes both
sparse and polygenic components and estimates the total percent variance explained
(PVE) and the parameter PGE, which represents the proportion of the genetic variance
explained by sparse effects. The highly heritable genes (high PVE) have PGE near 1
and therefore the local genetic architecture is sparse. There is not enough evidence to
determine if the lower heritablility genes are more sparse or polygenic. (B) The
difference between PVE of BSLMM and LMM or BVSR is compared to the BSLMM
PVE across genes in MESA populations AFA, HIS, and CAU. (C) Zoomed in plot of A
using contour lines from two-dimensional kernel density estimation to visualize where
the points are concentrated. For both LMM and BVSR, the PVE difference values
(y-axis) are above the horizontal line at zero indicating that both models perform worse
than BLSMM. However, the difference between LMM and BSLMM is greater than
between BVSR and BSLMM, which indicates sparse effects predominate for most genes.
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S6 Fig. Consistent elastic net results with 10 or more PEER factors.
Comparison of the elastic net (α = 0.5) cross-validated predictive performance R2 in
models with different numbers of PEER factors as covariates. Across populations,
models with 10 PEER factors shows increased predictive performance over 0 PEER
factors, while models with 10, 20, or 30 PEER factors perform similarly.
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S7 Fig. Consistent elastic net results with downsampled populations. The
CAU and HIS populations were randomly downsampled to include the same sample size
as AFA (n = 233). Predictive performance was measured within each population using
nested cross-validation. (A) Comparison of the elastic net (α = 0.5) predictive
performance R2 of the full sample to the downsampled population. Spearman
correlations were 0.961 and 0.966 for CAU and HIS sample comparisons, respectively.
(B) Comparison of predictive performance for each gene (R2) between each pair of
populations. In each gray title box, population 1 is listed first and population 2 is listed
second. The identity line is shown in blue. The pairwise Spearman correlations (ρ)
between genes are AFA-CAU downsample: ρ = 0.74, AFA-HIS downsample: ρ = 0.82,
HIS downsample-CAU downsample: ρ = 0.87.
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S8 Fig Comparison of weighted FST between gene models with large (> t)
and small (<= t) differences in predictive performance R2. For each gene
model, weighted average FST was calculated by multiplying each beta from the elastic
net model by that SNP’s FST before taking the mean across SNPs. The gene groups
with the larger absolute value R2 difference between populations had significantly larger
weighted FST at each difference threshold, t (Wilcoxon rank sum tests, P < 2.2× 10−16).

S1 Table. Bonferroni significant S-PrediXcan results using gene
expression prediction models from different MESA populations and
summary statistics from a multiancestry GWAS of asthma.

S2 Table. All S-PrediXcan results using gene expression prediction
models from different MESA populations and summary statistics from a
multiancestry GWAS of asthma.
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