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Abstract 

Redox biochemistry plays a key role in the transduction of chemical energy in all living systems. 

Observed redox reactions in metabolic networks represent only a minuscule fraction of the space 

of all possible redox reactions. Here we ask what distinguishes observed, natural redox 

biochemistry from the space of all possible redox reactions between natural and non-natural 

compounds. We generate the set of all possible biochemical redox reactions involving linear 

chain molecules with a fixed numbers of carbon atoms. Using cheminformatics and quantum 

chemistry tools we analyze the physicochemical and thermodynamic properties of natural and 

non-natural compounds and reactions. We find that among all compounds, aldose sugars are the 

ones with the highest possible number of connections (reductions and oxidations) to other 

molecules. Natural metabolites are significantly enriched in carboxylic acid functional groups 

and depleted in carbonyls, and have significantly higher solubilities than non-natural compounds. 

Upon constructing a thermodynamic landscape for the full set of reactions as a function of pH 

and of steady-state redox cofactor potential, we find that, over this whole range of conditions, 

natural metabolites have significantly lower energies than the non-natural compounds. For the 

set of 4-carbon compounds, we generate a Pourbaix phase diagram to determine which 

metabolites are local energetic minima in the landscape as a function of pH and redox potential. 

Our results suggest that, across a set of conditions, succinate and butyrate are local minima and 

would thus tend to accumulate at equilibrium. Our work suggests that metabolic compounds 

could have been selected for thermodynamic stability, and yields insight into thermodynamic and 

design principles governing nature’s metabolic redox reactions. 
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Introduction 

Redox reaction networks are at the center of energy exchange in biochemical processes. The two 

main biogeochemical carbon-based transformations - respiration and photosynthesis - are at heart 

oxidative and reductive electron transport processes. In addition to these central respiratory and 

photosynthetic electron-transport chains, a very large fraction of catalogued enzymatic reactions 

(~40%) are oxidoreductive in nature 1,2.  

Thermodynamic and other physicochemical properties impose constraints on the 

evolution of metabolism in general and redox biochemistry in particular. A classic case of this is 

the expansion of metabolic pathways during the Great Oxygenation Event 3. The rise in 

atmospheric oxygen levels resulted in a standard redox potential of ~1.1 eV available from 

oxidizing the universal redox cofactor NAD(P)H with molecular oxygen. For instance, as Bloch 

and Woodward pointed out, cholesterol biosynthesis - with six of its steps requiring molecular 

oxygen - emerged only after the increase in available oxygen 4. Other physicochemical properties 

such as hydrophobicity and charge at physiological pH also act as constraints that shape the 

evolution of metabolite concentrations 5. 

Previous work has uncovered thermodynamic principles and constraints governing 

carbon redox biochemistry 6,7. This line of work has focused on the three main types of redox 

reactions that change the oxidation state of carbon: reductions of carboxylic acids (-COO) to 

carbonyls (-C=O); reduction of carbonyls to alcohols (C-O), and reduction of alcohols to 

hydrocarbons (C-C). A first principle is the “rich-get-richer” principle: the more reduced a 

carbon functional group is, the higher its redox potential. Thus, alcohol reduction is more 

favorable than carbonyl reduction, which in turn is more favorable than carboxylic acid 
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reduction. This explains the set of reactions where ATP is invested in carbon fixation pathways, 

with all ATP used to drive reductions of carboxylic acid functional groups. Another principle 

involves the optimally tuned redox potential of NAD(P). With a value ranging from -370 to -250 

mV, it is well matched to reversibly reduce/oxidize the vast of majority of central metabolic 

redox half-reactions. In addition, its standard potential is lower than that of the average carbonyl 

compound, thus effectively reducing the steady-state concentrations of damage-causing 

carbonyls in the cell.  

In this work our goal is to contribute to the understanding of thermodynamic and 

physicochemical principles governing carbon redox biochemistry. We focus on a question that to 

our knowledge has not been systematically or quantitatively addressed in the literature: What 

distinguishes the set of observed, natural carbon redox reactions from the null space of all 

possible redox reactions? In order to address this, we use a three-pronged approach involving 

cheminformatics, quantum chemistry, and pathway thermodynamic modelling techniques. We 

generate the networks of all possible redox reactions involving n-carbon linear-chain molecules 

and partition these into natural and non-natural reactions and compounds. We find that natural 

compounds are significantly enriched for carboxylic acid functional groups and depleted for 

carbonyls. Using cheminformatics, we estimate and compare physicochemical properties of 

natural and non-natural compounds in the networks. Natural compounds have significantly 

higher solubility and lower lipophilicity (as measured by their octanol-water partition 

coefficients). Next, using a calibrated quantum chemistry approach, we estimate the transformed 

standard reduction potentials (Eo’) of all reactions in the networks. We find that, across a range of 

pH and steady state redox cofactor potentials, E(cofactor),  thermodynamics favors the 
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accumulation of natural metabolites over non-natural compounds, with some interesting 

exceptions. We generate a pH/E(cofactor) phase diagram (a Pourbaix diagram 8) to highlight the 

molecules with minimal energy as a function of phase space parameters. Our work provides 

concrete evidence for the argument that thermodynamic stability guides the natural selection of 

metabolic compounds, and yields insight into thermodynamic and design principles governing 

nature’s metabolic redox reactions. 

 

Results 

In the full linear chain n-carbon molecule redox networks, aldose sugars have the maximal 

number of connections.  

We generate and study the properties of redox networks of linear chain molecules with 

n-carbon atoms (Figure 1), focusing the majority of the analysis on the 4-carbon network. For a 

given molecule in a redox network, each of its n carbon atom can be in one of four different 

oxidation states: carboxylic acid, carbonyl (ketone or aldehyde), alcohol, and hydrocarbon 

(Figure 1a). Molecules in the network are connected by three different types of reduction (or the 

reverse oxidation) reactions that change the oxidation state of a single carbon atom: reduction of 

a carboxylic acid to a carbonyl; reduction of a carbonyl (either an aldehyde or a ketone) to an 

alcohol; and reduction of an alcohol to a hydrocarbon. In order to make the network model 

tractable to analysis, we decrease its complexity by not including carbon-carbon bond cleavage 

or formation reactions (e.g. carboxylations or decarboxylations), keto-enol tautomerizations, 

double-bond formation, intramolecular redox reactions, or different stereoisomers for a fixed 
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molecular oxidation state. In what follows, we focus the results and analysis on the properties of 

the 4-carbon linear chain molecule redox network.  

The 4-carbon network consists of 78 molecules connected by 204 reactions. The 

molecules span 11 different molecular oxidation states, from fully oxidized 2,3-dioxosuccinic 

acid (a dicarboxylic acid and di-carbonyl) to the fully reduced alkane, butane (Figure 1a). 84 

reactions reduce carbonyls to alcohols and the same number reduce alcohols to hydrocarbons. 

Since carboxylic acids are restricted to the carbon atoms at the edge of a molecule, only 36 

reactions reduce carboxylic acids to aldehydes (Figure 1c). 

The number of reactions that connect a single molecule to its oxidized or reduced 

products - the degree of a molecule - ranges from 2 to 8 (Figure 1b). Only a single molecule in 

the network, the aldose sugar erythrose (and its stereoisomers, e.g threose), has the maximal 

degree value of 2n=8, where n is the number of carbon atoms. This holds true for networks with 

different number of carbon atoms: only the corresponding aldose sugars in the 2, 3, 5, and 6 

carbon networks have the maximum value in the degree distribution (2n). This can be explained 

by the fact that aldose sugars satisfy the two constraints required to have a maximal number of 

connections in an n-carbon linear chain redox network: 1) Each atom must be in an intermediate 

oxidation state that can be both oxidized and reduced. Therefore all “inner” carbon in the 

molecule atoms must be in the alcohol oxidation state, while carbon atoms in the edge can be 

either in the carbonyl (aldehyde) or alcohol oxidation state;  2) The molecule must not be 

symmetric under a 180 degree rotation along its center; thus the two edge atoms must be in 

different oxidation states. This leads to the aldose sugar oxidation state configuration.  

 

6 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/245811doi: bioRxiv preprint 

https://doi.org/10.1101/245811
http://creativecommons.org/licenses/by-nc-nd/4.0/


Natural compounds are significantly enriched for carboxylic acids, depleted for carbonyls, 

and have higher solubilities.  

We then asked: what distinguishes molecules in the 4-carbon redox network that are 

found in cellular metabolism from the set of non-natural compounds? To explore this question, 

we divided the 78 molecules in the network into natural and non-natural categories by 

identifying compounds that match metabolites in the KEGG database1,2. We find that 30 

molecules in the network match natural compounds while 48 are non-natural (Methods, Figure 

2a). Compounds that appear in KEGG with the same oxidation state as a network molecule but 

with substituted functional groups were considered a match (see Methods for further details). For 

example, the natural metabolites oxaloacetate and aspartate, which have the same oxidation state 

at each carbon atom but differ by the substitution of an alcohol into an amine, are both 

considered a match to the corresponding molecule in our network. Similarly, we consider 

metabolites with phosphate groups instead of alcohols, and those with activated carboxylic acids 

(with thioesters or phosphate groups) as matches to network molecules.  

We next analyzed the enrichment or depletion of functional groups (oxidation states) in 

the natural and nonnatural sets. To do this, we compared the observed number of times that each 

functional group appears in the natural metabolites, in comparison to what would be expected by 

chance (Methods). Natural metabolites are significantly enriched in carboxylic acids (p<0.001) 

while being significantly depleted for ketones (p<0.001) (Figure 2b). After properly normalizing 

for the observed single functional group statistics (Methods) we computed the expected of 

2-carbon and 3-carbon atom functional group patterns (Figure S1), and find that only the 2-gram 

pattern [alcohol-hydrocarbon] is depleted in the natural set, albeit not significantly (p=0.05). All 
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other 2-mer patterns, including the low observed number of nearest neighbor dicarbonyls, can be 

explained by the single carbon atom functional group statistics.  

We also explored whether the observed enrichments and depletions for carboxylic acids 

and carbonyls result in different physicochemical properties of the natural and nonnatural sets. 

To explore this, we used cheminformatic tools to estimate the values of solubility (logS) and 

lipophilicity (as measured by the octanol-water partition coefficient, logP) at pH=7 (Methods). 

The enrichment of natural metabolites for carboxylic acid functional groups results in natural 

metabolites having significantly higher solubilities at pH = 7 (p<0.005) (Figure 2c). We also find 

that the natural metabolites have a significantly lower predicted octanol-water partition 

coefficient at pH=7 (p<0.01) (Figure S2). 

 

The thermodynamic landscape of carbon redox biochemistry 

 We apply a calibrated quantum chemistry strategy to predict the thermodynamics of all 

redox reactions in the networks. Briefly (see Methods section for further details), we use density 

functional theory (DFT) with a double-hybrid functional9,10 to compute the electronic energy of 

several geometry-optimized conformations of the fully protonated state of every compound in 

the network. We estimate the standard redox potential Eo (for the fully protonated species) as the 

difference in electronic energies of the products and substrates, ΔEelectronic. Using cheminformatic 

pKa estimates (Marvin 17.7.0, 2017, ChemAxon) and the Alberty Legendre transform 11,12, we 

convert the standard redox potentials to a transformed standard redox potentials E’o(pH), which 

is a function of pH. Finally, in order to correct for systematic errors in the quantum chemistry 
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model and cheminformatic pKa’s, we calibrate the transformed standard redox potentials 

E’o(pH) against a dataset of available experimental data using linear regression.  

Our approach achieves significantly better accuracy than the group contribution method 

(GCM), the most commonly used approach to estimate thermodynamics of biochemical reactions 

(Figure 3) 13–16. The improvement in accuracy depends on the redox reaction category, and is 

most apparent for the set of carbonyl to alcohol reductions. By considering only the difference in 

group energies, GCM effectively ignores the molecular environment surrounding the 

reduced/oxidized carbon atom and its influence on thermodynamics.  Thus GCM collapses the 

redox potentials of all carbonyl reductions to two values, corresponding to average linear-chain 

aldehyde and ketone standard reduction potentials (Figure 3a).  

Having estimated the potentials of all reactions, we study the thermodynamic landscape 

of the network. We assume that each redox reaction in the network is coupled to a redox cofactor 

with a fixed, steady-state, potential, E(cofactor). For instance, such a cofactor potential could 

correspond to the potential set by a steady state ratio of NAD/NADH inside the cell 18 or to that 

set by a certain concentration of molecular hydrogen in the context of an alkaline hydrothermal 

vent 19. With this cofactor potential value, we convert the standard redox potentials of each 

reaction into standard Gibbs reaction energies. (Figure 3a, Methods). This allows us to study the 

thermodynamic properties of the network across a wide range of cofactor potentials and pH 

values. 

We find that across a range of cofactor potentials, natural metabolites have on average 

significantly lower relative Gibbs energies than the non natural compounds (Figure 4, Figure 5a, 

Figure S3). An important exception to the relatively lower energies of the natural compounds is 
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the aldose sugar erythrose, the ketose sugar erythrulose, and the sugar alcohol threitol (and all 

corresponding stereoisomers), which have a high relative Gibbs energy across a large range of 

cofactor potentials.  

The thermodynamic landscape reveals that a few metabolites are local energetic minima 

of the network as a function of pH and E(cofactor). A molecule is a local minima at a value of 

pH and E(cofactor) if its Gibbs energy is lower than all of its neighbors with whom it’s 

connected through a reductive or oxidative transformation. Figure 5b shows a Pourbaix phase 

diagram representation 8 of these local minima. In a Pourbaix diagram, the lowest energy phase 

or state of an electrochemical system is displayed as a function of pH and potential.  

At the lower left corner of the diagram, in the region corresponding to more acidic pH 

and lower cofactor potentials, the fully reduced 4-carbon alkane butane is the only local (and the 

global) minimum in the thermodynamic landscape. This illustrates the fact that more negative 

values of the cofactor potential and more acidic pH drive the redox network to an overall reduced 

state.  

Notably, succinate and the 4-carbon short-chain fatty acid (SCFT) butyrate - two natural 

compounds - emerge as additional local minima at relatively more oxidative regions of the phase 

diagram (the region containing the values E(cofactor) ~ -300 mV  and pH = 7). Both of these 

natural compounds chemically consist of “inner” carbon atoms that are in the hydrocarbon 

oxidation state, and “edge” carbon atoms in either the fully reduced hydrocarbon or the fully 

oxidized carboxylic acid state. Thus, at cofactor potentials around -550 mV and 0 mV, 

thermodynamics drives carbon atoms to either the most oxidized (carboxylic acid for edge atoms 

or carbonyl for inner atoms) or the most reduced (hydrocarbon) oxidation state (Figure 5c).  
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Further increases in either pH or the cofactor potential (Figure 5b) result in the 

emergence of additional compounds, both natural and non-natural, as local minima in the energy 

landscape. In regions of phase space with increasing values of pH and E(cofactor), the natural 

metabolites oxaloacetate, acetoacetate, and alpha-ketobutyrate emerge as local energetic minima. 

Finally, in the region of alkaline pH (pH~8) and high cofactor potential (E(cofactor) ~ -50  mV), 

the fully oxidized four carbon compound 2,3-dioxosuccinic acid becomes the sole local (global) 

minimum in the energy landscape.  

 

Discussion 

We generated the set of all possible redox reactions involving linear chain n-carbon 

compounds. Analyzing the structure of the resulting redox networks, we found that aldose sugars 

- glyceraldehyde (n=3), erythrose (n=4), ribose (n=5), and glucose (n=6), and their 

corresponding stereoisomers - are unique in that they have the highest possible number of 

oxidative and reductive connections (2n) to neighboring compounds. Thus our analysis reveals 

an aspect of the redox network topology that makes these sugar molecules unique. Whether this 

maximal number of connections played a role in the emergence of aldose sugars as key players 

in metabolism remains to be explored.  

Comparing the properties of natural and non natural compounds in the network, we find 

that the natural set is significantly enriched for carboxylic acids. This enrichment correlates with 

a significantly higher value of solubility (logS) at pH=7. Other benefits of carboxylates for 

cellular metabolism potentially include decreasing the permeability across cell membranes, 
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which is captured by our predicted octanol-water partition coefficients, logD(pH=7), as well as 

potentially enhancing enzyme recognition.  

 

We also find that natural compounds are significantly depleted for carbonyl functional 

groups. Carbonyls are significantly more reactive than carboxylic acids or alcohols, and can 

cause oxidative damage, spontaneously cross-link proteins, inactivate enzymes and mutagenize 

DNA 20. Only one natural compound in the 4-carbon network - diacetyl, which is part of the 

diacetyl/acetoin biosynthetic pathway in Lactococcus lactis bacteria 21 - contains a dicarbonyl. 

Selection against such dicarbonyls can again be explained by their very high reactivity as well as 

potential selectivity problems in the context of enzyme recognition stemming from having two 

identical active sites next to each other. 

We used a calibrated quantum chemistry approach to predict the transformed standard 

redox potentials of all reactions in the network as a function of pH. Importantly, the quantum 

chemistry strategy results in significantly better accuracy than the commonly used alternative 

biochemical thermodynamics prediction tool, the group contribution method 13,14. In trying to 

predict the redox potentials of the type considered here, GCM collapses a wide range of values 

into one or two energies.  In addition, the fact that the networks studied here contain numerous 

non-natural compounds implies that the reactant or component contribution methods 15,16, which 

make use of experimentally derived Gibbs formation energies of natural compounds to increase 

prediction accuracy, are of no use for many of our reactions. 

The quantum chemical thermodynamic data shows that, across a range of pH and 

cofactor potential values, natural compounds have on average relatively lower Gibbs energies 
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that the set of non-natural molecules. Although our reaction networks is a toy model of redox 

biochemistry - albeit a complex one - our analysis provides quantitative evidence that molecules 

observed in nature’s metabolic toolbox are on average thermodynamically favored over the 

non-natural compounds. Thus our analysis supports the reasonable yet “highly speculative” 22 

argument put forward by Bloch that in the context of the origins of life “the thermodynamically 

most stable compounds had the best chance to accumulate and survive.” 

The resulting thermodynamic landscapes also reveals which compounds - both natural 

and non-natural - are energetic local minima as a function of pH and steady state cofactor 

potential E(cofactor). We observe that at a relatively reductive range of pH and E(cofactor) 

values (e.g. pH = 7, -500 mV < E(cofactor) < -100 mV), the natural metabolites succinate and 

butyrate (the 4-carbon fatty acid), are local minima. Regarding the short-chain fatty acid (SCFA) 

butyrate (as well as equivalent fatty acids with higher number of carbon atoms), it is tempting to 

offer this as evidence that, under redox potentials existing in prominent origins-of-life scenarios 

19,23 thermodynamics naturally leads to the accumulation of SCFAs. It is also of significant 

interest to note that SCFAs are a prominent bacterial fermentation product of dietary fibers by 

gut microbiota 24. 

The fact that succinate - a key component of the TCA cycle - is a thermodynamic local 

minimum implies that it accumulates at these values of pH and cofactor potential. This is 

consistent with the behavior of the TCA cycle under anaerobic conditions 25–27.  In such 

conditions, the cycle operates as a complete or incomplete fork, with a portion running in the 

reductive TCA modality (oxaloacetate sequentially reduced to malate, fumarate, and succinate), 

and leading to the accumulation succinate. In contrast, in oxidative conditions, the 
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thermodynamic driving force is in the direction of succinate oxidation and oxaloacetate 

formation. These two different thermodynamic regimes are captured in our Pourbaix phase 

diagram representation, where oxaloacetate appears as a local minimum in oxidative pH, 

E(cofactor) regions of phase space.  

We also note that succinate, in combination with glycine, is the starting building block 

for all porphyrins in one of the two known porphyrin biosynthetic pathways 28. In addition, 

acetoacetate appears at as a local minimum at slightly more oxidative conditions. Acetoacetate is 

the precursor for the immense set of isoprenoid compounds 29. Thus it is tempting to speculate 

that thermodynamics would naturally lead to the accumulation of these important precursor 

building-block metabolites.  

Our analysis demonstrates that certain compounds that are not part of the KEGG database 

(i.e. non-natural) are also local energetic minima at certain pH and cofactor potential values. 

Notably, at reductive cofactor potential/pH values, the fully reduced alkane butane is the global 

minimum in the energy landscape. Alkane biosynthesis can occur in bacteria 30,31. However, such 

pathways involve the reduction of fatty acids to fatty aldehydes, followed by the decarbonylation 

of the terminal carbon, resulting in alkanes with one carbon shorter than the original fatty acid. 

Alternatively, enzymes referred to as fatty acid acyl-CoA reductases (FARs) can reduce the fatty 

aldehydes to fatty alcohols 32,33, and alkanes are known to be a component of the surface waxes 

of the alga K. flaccidum 34.  

In future work, the network model could be expanded to include other types of 

biochemical transformations, such as keto-enol tautomerizations, double-bond formation, 

intramolecular redox reactions, or a detailed accounting of the different stereoisomers that 
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correspond to a given molecular oxidation state. It would be particularly interesting to include 

carboxylation and decarboxylation reactions (both reductive/oxidative and 

non-reductive/non-oxidative), which would effectively connect the different n-carbon redox 

networks to each other. These would result in more realistic redox networks but in a more 

complex analysis. Having said so, we believe that the results presented in this paper will provide 

a general guidance for more general models of the redox reaction networks. 
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Materials and methods :  

Generation of full redox networks using RDKit 

To generate the reactions, we used the RDKit cheminformatics software to design 

SMILES (simplified molecular-input line-entry system)35 reaction templates (reaction strings), 

which, when applied to a compound, will reduce it according to the functional groups detected. 

Reaction strings were created for the three redox categories of interest: reduction of carboxylic 

acids to aldehydes, reduction of ketones to alcohols, and reduction of alcohols to hydrocarbon. 
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These templates are designed to be generic enough that they can be applied to any compound 

with the target functional group, but also with enough specificity to only generate a reaction 

belonging to the correct redox category.  

As an illustrative example, we consider the reduction of pyruvate. Pyruvate contains two 

types of functional groups that can be reduced: a carboxylic acid and a ketone. The carboxylic 

acid can be reduced to an aldehyde, or the ketone can be reduced to a hydroxyl. To accomplish 

this we applied the appropriate SMILES reaction strings. The SMILES reaction string used for 

the ketone reduction of pyruvate to lactate is shown below. This reaction string can be visualized 

as a generic reduction of a ketone to a hydroxyl. The ReactionFromSmarts function in RDkit is 

used to generate a reaction object from the reaction string.  

 

 

 

The molecular transformation encoded by the SMILES reaction string. The substrate and            

compound of each reaction are represented as strings and concatenated into a reaction string as               

follows:   [#6:1][CX3:2](=O)[#6:3]>>[#6:1][CX4H1:2]([#6:3])[OX2H1] 

 

This reaction object can be applied to any compound with a ketone functional group in 

order to reduce it to a hydroxyl. For cases in which the compound contains multiple target 

functional groups (e.g. dicarbonyls), every possible product will be generated. To generate the 
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full network or redox reactions, these reaction strings were run iteratively, starting with the fully 

oxidized unbranched, carbon chain compounds of length 2 to 6 carbons. For example the seed 

compound for the full redox network of 6-carbon straight-chain molecules is shown below:  

 

 

The fully oxidized 6-carbon linear chain seed compound.  

 

Once fully oxidized seed compound had been reduced one step at every possible carbon 

atom in the initial iteration, the function was repeatedly applied on the resulting products. This 

continued iteratively until, the fully reduced n-carbon hydrocarbon chain is obtained. Any 

duplicate reactions and products generated from this approach were eliminated during each 

iteration. Thus, a network of all possible redox reactions originating from the fully oxidized seed 

compound can be generated.  

SMILES reaction strings 

Reaction category Reaction strings 

Carboxylic acids to aldehydes [CX3:1](=O)[OX2H1]>>[CX3H1:1](=O) 

Aldehydes to alcohols [CX3H1:2](=O)[#6:1] 

>>[#6:1][CX4H2:2][OX2H1] 
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Ketones to alcohols [#6:1][CX3:2](=O)[#6:3]>>[#6:1][CX4H1:2]([#6:

3])[OX2H1] 

Alcohols to hydrocarbons 

(middle) 

 [CX4H2:2][OX2H1]>>[CX4H3:2] 

Alcohols to hydrocarbons (edge) [#6:1][#6H1:2]([#6:3])[OX2H1]>>[#6:1][#6H1:2]

[#6:3] 

 

Computing the network degree distributions 

The degree of a compound in the redox network is defined as the number of redox 

reactions - oxidations and reductions - that connect it to molecules with higher or lower 

oxidation state. We used the network analysis library NetworkX36 in Python to compute the 

degree distribution of compounds in the full redox networks.  

 

Comparison against KEGG database 

In order to classify compounds in the full redox networks as natural or non-natural, we 

looked for matches in the KEGG database of metabolic compounds. We did this in several steps.  

In order to match natural compounds against the n-carbon network, we filtered out 

metabolites in KEGG containing n-carbon atoms. Then, using the RDKit toolbox, we matched 

molecules in the networks against KEGG metabolites using their canonicalized smiles string 

representation 37. In order to additionally capture KEGG compounds that have alcohol functional 

groups substituted by amine or a phosphate functional groups, we visually inspected all 
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remaining n-carbon molecules in KEGG.  Finally, to capture compounds with carboxylic acids 

activated by Coenzyme A, we generated a list of all KEGG compounds with n-carbon atoms plus 

a covalently attached Co-A molecule. Manual search of this list led to the final set of natural 

metabolites matching compounds in our full redox networks. 

 

Computing the null distribution for the expected number of n-gram (single, pair and 

triplet) functional group patterns 

Borrowing terminology from natural language processing, we call the set of all possible 

sequences of one, two, and three carbon functional groups the set of oxidation state n-grams. The 

goal is to count the number of times that each n-gram appears in the set of natural (or non 

natural) compounds (where N is the total number of natural compounds), and compare that 

against properly generated random sets of compounds (the null distribution).  

 

The analytical null distribution for single functional group patterns (1-grams): 

We first note that a given n-gram can appear more than once in a single molecule. For 

example, the metabolite succinate has the functional group sequence {carboxylic acid, 

hydrocarbon, hydrocarbon, carboxylic acid}. Thus it contains two instances of the {carboxylic 

acid, hydrocarbon} 2-gram. In general, a 4-carbon linear-chain compound can have up to 4 

instances of a 1-gram, up to 3 instances of a 2-gram, and up to 2 instances of a 3-gram. 

Let be the number of molecules in the full redox network with k instances of(k; )n g  

1-gram g. For example, is the total number of compounds in the network with a(1; ydroxyl)n h  

single hydroxyl functional group. Assume a set of N molecules are randomly sampled without 
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replacement from the network. Let be the total number of instances of the 1-gram  in this(g)m g  

random set. These instances can come from different sampling configurations of molecules,(g)m  

each with instances of the 1-gram . We call   be the number of molecules in thek g (k; )m g  

random sample with instances of the 1-gram .k g  

To give a concrete example, assume a random set of size molecules contains 160N = 3  

instances of the n-gram g; thus . One of the very many sampling configuration that(g) 6m = 1  

can lead to this value of is sampling 17 molecules with zero instances of , 10 molecules(g)m g  

with 1 instance of , and 3 molecule with two instances of . Thusg g   

(0; ) 7, m(1; ) 0, m(2; )m g = 1  g = 1  g = 3  

The total number of instances of the 1-gram  in the sample is given by:g   

(g) 0 (0; ) (1; ) (2; ) (3; ) 16m =  · m g + 1 · m g + 2 · m g + 3 · m g =    

Note that the following constraint is satisfied:  

(0; ) (1; ) (2; ) (3; ) 0 m g + m g + m g + m g = 3  

In order to compute the probability of having  instances of the 1-gram , we need(g)m g  

to account for all such possible sampling configurations that add up to . The number of(g)m  

ways of sampling  molecules with  instances of  is given by . In general,(k; )m g k g ( )n(k;g)
m(k;g)  

given a sample size  and value of  for n-gram , the number of all possible samplingN (g)m g  

configurations that lead to that value of m(g) is given by:  

(m(g), N ) ( )P  =  ∑
 

constraints
∏
 

k
 n(k;g)

m(k;g)   

Where the summation is over terms that satisfy the following two constraints:  

(g) (0; ) 1 (1; ) (2; ) (3; )m = 0 · m g +  · m g + 2 · m g + 3 · m g  
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 (0; ) (1; ) (2; ) (3; ) N = m g + m g + m g + m g  

Normalizing each value of  over the sum of all values leads to the probability of(m(g), N )P   

observing  instances of the 1-gram g in a sample of size , . We numerically(g)m N (m(g), )p N  

obtain the value of  for  and g = {carboxylic acid, carbonyl, hydroxyl,(k; )n g  0, 1, 2, 3, 4k =       

and hydrocarbon}. We then numerically compute the value of by obtaining all(m(g), N )P   

sampling configurations that satisfy the constraints. We take to be equal to the number naturalN  

compounds in the full redox network.  

 

The empirical null distributions for functional group pair and triplet patterns (2- and 

3-grams) 

Obtaining the proper null distribution for oxidation state pair and triplet patterns (2-grams 

and 3-grams) requires accounting for (or normalizing) for the observed single functional group 

statistics (1-grams). For example, the 2-gram pattern [carbonyl-carbonyl] seems to appear 

infrequently in the natural set of metabolites. Is this due to selection against this specific 2-gram 

pattern, or is it simply due to the general depletion of carbonyls (the 1-gram pattern) in the 

natural compounds?  

In order to address this, one needs to generate random sets of compounds that controlN  

for or conserve the 1-gram statistics of the natural set of compounds. We numerically generate 

random molecules that conserve 1-gram statistics. In the case of 4-carbon linear chain molecules, 

we randomly choose the identity of the functional group at positions by sampling1, , , )n = ( 2 3 4  

from a discrete distribution  

g / (4N )pg =  N  
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Where is the number of instances of 1-gram in the natural set, and  is the number ofgN g N  

molecules in the natural set. Importantly, in order to avoid sampling carboxylic acids in the inner 

carbon atoms of a molecule (positions ), we obtain separate functional group and 3n = 2  

distributions for the inner and the outer carbon atom positions.  

 

Cheminformatic prediction of solubility (logS) 

We used the cheminformatics software ChemAxon (Marvin 17.7.0, 2017, ChemAxon) to 

predict the pH-dependent solubility, logS(pH), of natural and non-natural compounds in the full 

redox networks. Specifically, we use the calculator plugin cxcalc logs. The cxcalc solubility 

calculator is based on a parametrized fragment-based model (the atom-contribution approach) fit 

to sets of experimental logS data 38,39.  

 

Predicting standard redox potentials with calibrated quantum chemistry approach 

Our method relies on computing the electronic structure and energy of the fully 

protonated species of each metabolite. We obtain the smiles string for the fully protonated 

species and generate initial geometric conformation (with up to 10 initial conformers per 

metabolite) using ChemAxon (Marvin 17.7.0, 2017, ChemAxon). 

All quantum chemistry calculations were performed using the Orca quantum chemistry 

software 40 version 3.0.3. We first perform a geometry optimization using density functional 

theory with the B3LYP functional 41, with Orca’s DefBas-2 basis set, COSMO implicit solvation 

42, and D3 dispersion correction 43. We then perform an additional electronic single point energy 

(SPE) using the double-hybrid functional B2PLYP 9,10 (with the DefBas-5 Orca basis set, 
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COSMO implicit solvation 42, and D3 dispersion correction 43). We note that the model chemistry 

selected - the combination of DFT functional, basis set, implicit solvent model, and dispersion 

correction for both the geometry optimization and the single point energy - was done based on a 

combinatorial exploration of different options.  

We Boltzmann average the electronic energies of compounds, and obtain the difference 

in electronic energies of products and substrates for all redox reactions in the full redox 

networks. Every redox reaction (in the direction of reduction) was balanced by a hydrogen 

molecule H2 in the substrate side of the equation. Reductions of carboxylic acids to aldehydes 

and reductions of alcohols to hydrocarbons were balanced with a water molecule H2O in the 

product side of the equation.  

The difference in product and substrate electronic energies is an estimate of the chemical 

redox potential for the fully protonated species, Eo(fully protonated species). In order to convert 

this chemical potential to the biochemical potential at pH = 7, Eo’(pH=7), we use pKa estimates 

from Chemaxon (cxcalc, pKa) and the Alberty Legendre transform.  

Our approach relies on several approximations, such as ignoring vibrational enthalpy and 

entropy contributions to the formation Gibbs energy of compounds. In order to correct for 

systematic in the quantum chemistry methodology and the empirical pKa estimates used, we 

calibrate predictions against available experimental data using linear regression.  

 

Predicting standard redox potentials with the group contribution method 

The group contribution method relies on a fragment-based decomposition of compounds 

into group, each of which is assigned a group energy based on available experimental data 13–16. 
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Reaction energy estimates are obtained by taking the difference of the group energy vectors of 

products and substrates. We used the group contribution method as implemented by Noor et al. 16 

to estimate the redox potentials of the set of linear-chain carbon redox reactions with 

experimental values.  

 

Determining statistical significance 

For all tests of statistical significance (i.e. differences in solubilities, n-gram counts, 

octanol-water partition coefficients, Gibbs energies of natural vs. non-natural compounds) we 

performed Welch’s unequal variance t-test, which is an adaptation of Student’s t-test that does 

not assume equal variance.  
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Figure Legends 

 

Figure 1. The structure of linear chain n-carbon full redox networks. a) The network of all 

possible 4-carbon linear-chain molecules obtained from the three different two-electron redox 

reactions considered: reduction of carboxylic acid to carbonyl, reduction of carbonyl to alcohol, 

and reduction of alcohol to hydrocarbon (and corresponding oxidations). Compounds within 

each column have the same molecular oxidation state. Carbon atoms are represented as colored 

circles, with color corresponding to oxidation state. b) The degree distributions for the 4-, 5-, and 

6-carbon linear chain molecules. Aldose sugars are the only compound with the maximal number 

of possible reductions and oxidations c) Number of reactions of each of the three redox 

categories considered in the 4-, 5-, and 6-carbon redox networks.  

 

 

Figure 2. Functional group enrichment and depletion, and physicochemical properties of 

natural compounds in the 4-carbon linear chain redox network . a) Molecules that match 

natural metabolites in the KEGG database. Compounds that only match KEGG metabolites with 

one or more alcohol groups substituted by an amine or phosphate are marked in black and red 

squares, respectively. b) Enrichment and depletion of functional groups in the natural 

compounds. Gray squares correspond to the analytically-derived null distributions for randomly 

sampled sets of molecules from the network. See Figure 4.3 for statistical analysis of 2-mer and 

3-mer functional group patterns. c) Comparison of predicted aqueous solubility log(S) at pH=7 
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for natural and non-natural compounds in the 4-carbon linear-chain redox network. Natural 

compounds have significantly higher solubilities than the non-natural set (p < 0.005). 

 

 

Figure 3. Accuracy of group contribution method and calibrated quantum chemistry redox 

potential predictions. Experimental data was obtained from the NIST database for 

Thermodynamics of Enzyme-Catalyzed Reactions (TECRDB) 17a) Group contribution method 

prediction accuracies for reduction potentials of carboxylic acids, carbonyls, and alcohol 

functional groups in  linear chain compounds. b) Calibrated quantum chemistry prediction 

accuracies for reduction potentials of carboxylic acids, carbonyls, and alcohol functional groups 

in linear chain compounds. Quantum chemistry calculations were performed using density 

functional theory with a double hybrid functional (B2PLYP)9,10, and calibrated against 

experimental data using linear regression.  

 

 

Figure 4. The 2-D representation of the thermodynamic landscape of the 4-carbon linear 

chain redox network at pH=7 and cofactor potential E(cofactor) = -300 mV. Gibbs energies 

are normalized relative to the metabolite with the lowest energy (butane). Thus the cumulative 

Gibbs energies of a metabolite is obtained by summing up the Gibbs reaction energies of all 

reactions leading to it from the reference metabolite. Compounds within a column (i.e. with the 

same molecular oxidation state) are sorted according to their energies. The three compounds - 

butane, butanoic acid, and succinate - which are local minima in the thermodynamic landscape 
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are shown. These local minima have lower energy than any of their neighboring molecules 

which are accessible by either a reduction or an oxidation.  

 

 

Figure 5. The thermodynamic landscape of the 4-carbon linear chain redox network in 

pH-E(cofactor) phase space. a) Relative Gibbs energies of natural and non-natural metabolites 

for a range of pH and E(cofactor) values. At each value of pH and E(cofactor), Gibbs energies 

are normalized relative to the compound with the lowest energy. b) The Pourbaix phase diagram 

of the 4-carbon linear chain redox network. Local minima in the energy landscape at each region 

of the pH, E(cofactor) phase space are shown. For instance, at low pH and E(cofactor) values, 

only butane is a local (global) minimum, while at high pH and E(cofactor) values, only the fully 

oxidized 4-carbon molecule is a local (global) minimum. Some non-natural metabolites which 

are also local minima in the yellow and green regions are not shown. c) The top panel shows the 

standard redox potentials of the three reducible functional groups at pH=7. The bottom panel 

shows a schematic representation of the relative functional group Gibbs energies at regions 

corresponding to different cofactor potential values.  
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Figure 1 
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