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Abstract 12 

Background：Antibiotics have been spread widely in environments, asserting profound 13 

effects on environmental microbes as well as antibiotic resistance genes (ARGs) within these 14 

microbes. Therefore, investigating the associations between ARGs and bacterial communities 15 

become an important issue for environment protection. Ocean microbiomes are potentially 16 

large ARG reservoirs, but the marine ARG distribution and its associations with bacterial 17 

communities remain unclear. 18 

 19 

Methods: we have utilized the big-data mining techniques on ocean microbiome data to 20 

analysis the marine ARGs and bacterial distribution on a global scale, and applied 21 

comprehensive statistical analysis to unveil the associations between ARG contents, ocean 22 

microbial community structures, and environmental factors by reanalyzing 132 metagenomic 23 

samples from the Tara Oceans project. 24 

 25 

Results: We identified in total 1,926 unique ARGs and found that: firstly, ARGs are more 26 

abundant and diverse in the mesopelagic zone than other water layers. Additionally, ARG-27 

enriched genera are closely connected in co-occurrence network. We also found that ARG-28 

enriched genera are often more abundant than their ARG-less neighbors. Furthermore, we 29 

found that samples from the Mediterranean that is surrounded by human activities often 30 

contain more ARGs. 31 

 32 

Conclusion: Our research for investigating the marine ARG distribution and revealing the 33 

association between ARG and bacterial communities provide a deeper insight into the marine 34 

bacterial communities. We found that ARG-enriched genera were often more abundant than 35 
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their ARG-less neighbors in the same environment, indicating that genera enriched with 36 

ARGs might possess an advantage over others in the competition for survival in the oceanic 37 

microbial communities. 38 

 39 

Keywords: data-mining, marine microbiome, antibiotic resistance gene, human impact  40 
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Background 41 

Marine microbial communities represent one of the most abundant and complex 42 

communities on earth. Many studies on microbial communities of surface ocean waters [1, 2] 43 

have revealed a large reservoir of genes and functional modules [3]. These rich resources 44 

have been used for deep data mining [4, 5]. For example, by comparing the metagenomic 45 

data qualitatively and quantitatively, fluctuations in taxonomical composition and metabolic 46 

capabilities from various environments could be revealed [6]. In consideration of this 47 

valuable information, further investigations in complex integral biochemical metabolic 48 

processes reflecting the ways in which microbes are accustomed to changing environments 49 

should be collated and reported. 50 

The Tara Oceans project is so far one of the largest expeditions to collect marine 51 

samples [7]. Over the past few years, this project has collected over 30,000 samples from 52 

more than 200 sampling sites [8], more than 500 high quality samples have been sequenced 53 

by whole genome sequencing (WGS) [9]. These resources provide scientists with valuable 54 

information for exploring metabolic pathways involved in biogeochemical cycles at the 55 

sampling sites and revealing complex interplays within the microbial communities and 56 

between the communities as a whole and the surrounding environments [10]. 57 

Ocean microbiomes are potentially large pools of antibiotics and antibiotic resistance 58 

genes (ARGs) [11]. ARGs are important to protect bacteria from antibiotics produced by 59 

other bacteria and other organisms, and is a key determinant to the dynamic balance of the 60 

bacterial community [12, 13]. Antibiotics have been widely used not only in bacterial 61 

infection treatment, but also in agriculture and animal husbandry for quite some time [13]. 62 

Our research for investigating the marine ARG distribution and revealing the association between 63 

they 1) alter the community structure by killing some species that have no resistance to them 64 

[14]; other changes may follow because of complex interplays among species, and 2) 65 
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promote the exchange of ARGs among species [15, 16], which might in turn alter the 66 

community structure. Long-term impacts include faster evolution of ARGs [17, 18] and the 67 

rise of multidrug-resistance bacteria. Therefore research on antibiotic and ARGs have 68 

become more and more important worldwide [19, 20]. How to utilize antibiotics and control 69 

antibiotic resistance has become an increasingly important issue [21, 22], especially at 70 

industrial settings [23, 24]. 71 

Mechanisms of resistance to antibiotics in bacteria have only been revealed recently, 72 

thanks to the isolation and genetic characterization of bacteria with ARGs [25]. Many 73 

experimental and bioinformatics methods for identifying new antibiotics and ARGs have 74 

been developed [26, 27]. Further understanding of the functions of ARG products and their 75 

effects on the bacterial community may uncover new ways of the influence of antibiotics and 76 

ARGs on natural bacterial communities [16]. However, without advanced data-mining 77 

techniques, current studies on identification and annotation of ARG from ocean microbiome 78 

data remain illusive. 79 

In this study, in order to reveal the associations between microbiota community 80 

structures and ARGs, we have utilized data-mining techniques to reanalyze 132 metagenomic 81 

samples from the Tara Oceans project, and examined the taxonomical structures as well as 82 

functional profiles. The enrichment of ARGs in several marine genera was investigated. 83 

Firstly, we identified in total 1,926 unique ARGs and found that the ARG contents were 84 

strongly associated with the depth: ARGs were more abundant and diverse in the 85 

mesopelagic zone than other water layers. Secondly, ARG-enriched genera, including 86 

Flavobacterium, Alteromonas, Pseudoalteromonas were closely connected in co-occurrence 87 

network and are biomarkers of their respective environments. Thirdly, ARG-enriched genera, 88 

such as Alteromonas, Pseudoalteromonas, Marinobacter, and Flavobacterium, were often 89 

more abundant than their ARG-less neighbors. Finally, the relationship between taxonomical 90 
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structures and ARGs was exemplified in Flavobacterium, a common marine genus which 91 

was identified as a hub node in species-species co-occurrence network. We detected the 92 

enrichment of a resistance type (bacA) against bacitracin in Flavobacterium using 93 

computational approaches and validated the results using statistical tests. Inspired by this 94 

example, we attempted to interpret how ARG enrichment occurred in many organisms and 95 

thus affected the bacterial community structure, and we hypothesized the significance of 96 

human involvement in this, and densely populated Mediterranean was exemplified to prove 97 

the ARG effect on bacterial community structure. 98 

 99 

Results and Discussions 100 

 101 

Taxonomical analysis revealed key determinants of community compositions 102 

To facilitate the identification of ARGs and the comparison of ARG contents within 103 

and between communities (i.e. samples), we first identified the community compositions (i.e. 104 

the number of species and relative abundance of each species) for all the oceanic samples we 105 

obtained from the Tara Ocean project, and characterized the correlations between community 106 

structure and environmental factors, as well as between community structure and species co-107 

occurrence patterns.  108 

Microbial community composition and function analysis. We obtained in total 36, 109 

356 microbial OTUs including 715 archaeal and 35,641 bacterial OTUs, respectively. 110 

Microbial community profiles at phylum and genus level were illustrated in Supplementary 111 

Fig. S1. We identified in total 15 phyla and 24 genera that were relative abundant, i.e. with 112 

relative abundance above 0.1% (for details please check Supplementary Table S1). 113 

Functional analyses on specified KEGG pathway [28] level 2 and level 3 were illustrated in 114 

Supplementary Fig. S2 115 
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Species co-occurrence network analysis. To better understand the interactions and 116 

associations within the microbial communities, we constructed species co-occurrence 117 

networks at genus and OTU level (Fig. 1a and 1c). We obtained a network at the genus level 118 

(Pearson threshold ±0.1) consisting 20 nodes and 130 edges, with a clustering coefficient of 119 

0.744 and a network density of 0.684. With depth-related information and their first neighbor 120 

in network on genus level, a sub-network (Fig. 1b) with 11 nodes (6 in surface water layer 121 

and 5 in mesopelagic zone) and 52 related edges was selected to exemplify the validity of the 122 

network (Fig. 1a). The 6 surface nodes and the 5 mesopelagic nodes had strong negative 123 

correlations, but in contrast, the nodes within surface water layer or mesopelagic zone 124 

showed strong positive correlations. These differences are reasonable, as symbiosis plays a 125 

leading role in the same environment, yet such symbiosis patterns might differ greatly in 126 

different environments [29]. On OTU level, a connected network with 130 nodes and 3,101 127 

edges was constructed, which had a clustering coefficient of 0.63 and a network density of 128 

0.3 (Fig. 1c). The largest cluster colored in black was mainly composed of species from 129 

phylum Proteobacteria, which was the most abundant phylum in the ocean [10]. We 130 

identified four hub nodes in this network, among which two were unclassified species of 131 

genera Flavobacterium and Polaribacter and the other two belonged to phylum 132 

Proteobacteria. 133 

Genus Flavobacterium has been identified as a biomarker (depth- and oxygen-related 134 

strategies, p-value=5.96e-5 and 2.08e-7, respectively) and a hub node in co-occurrence 135 

network, the importance of which was confirmed by previous studies: it is strictly aerobic and 136 

tended to live in surface water with high-concentration of chlorophyll and phytoplankton [30, 137 

31], and played an important role in carbon cycling in bacterial communities [32]. 138 

 139 

Distribution of antibiotic resistance genes across water layers 140 
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By searching 81,850,381 protein sequences from 132 samples against the ARDB 141 

database [33], 1,926 unique ARGs were detected (Supplementary Table S2). These 142 

sequences account for only 0.024‰ of all predicted proteins, which is much lower than that 143 

of the human gut microbiome [27]. The 1,926 unique ARGs were classified into 70 different 144 

types according to their gene names. This resulted in 27 multidrug types (efflux-mediated), 145 

38 single-drug types (non-efflux), and 5 target-specific types (efflux-mediated). Of the 132 146 

samples, 126 (95.4%) contain at least one ARG sequence (Supplementary Table S3). 147 

We correlated the ARG-contents with water layers in order to investigate how ARG 148 

distribution was affected. The samples were collected from three layers: surface water layer 149 

(SRF), deep chlorophyll maximum layer and subsurface epipelagic mixed layer (DCM/MIX), 150 

and mesopelagic zone (MES). We found that among three water layers, SRF and DCM/MIX 151 

harbored 44 and 39 resistance types, respectively, while MES harbored 59 resistance types 152 

(Supplementary Table S4), suggesting there were more resistance types in the deeper water 153 

layer. For example, dataset ERS490633 from MES had 26 resistance types, which was the 154 

largest amount in a single dataset, while 11 datasets (9 from SRF, one from DCM/MIX and 155 

one from MES) had only one resistance type (Supplementary Table S3). To eliminate biases 156 

due to sequencing depths, we normalized the number of resistance types and ARG sequences 157 

in each dataset by the number of processed reads and the number of OTUs (Supplementary 158 

Table S3, Fig. 2a and 2b). The results showed that the mean of normalized number of 159 

resistance types in MES (0.000991) was significantly higher than that in SRF (0.000297) and 160 

DCM/MIX (0.000415), with p-value=4.251e-11 and 3.836e-9, respectively (Mann-Whitney 161 

test); but the difference between SRF and DCM/MIX was not significant (Mann-Whitney test, 162 

p-value=0.01429>0.01). The mean of normalized number of ARG sequences in MES 163 

(0.002439) was significantly higher than that in SRF (0.000525) and DCM/MIX (0.000875), 164 

with p-value=1.031e-11 and 8.843e-9, respectively (Mann-Whitney test); and the difference 165 
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between SRF and DCM/MIX was also significant (p-value=2.202e-3). Together, these results 166 

suggested that ARGs in MES were significantly more diverse; and the diversity increased 167 

when the sampling proceeds to deeper zones. And the increasing species richness was also 168 

detected when the sampling proceeds to deeper zones according to our biodiversity statistic 169 

and previous research for Tara Oceans analysis [10, 34]. With limited carbon source and high 170 

mobility of mesopelagic zone, the bacteria had a low growth speed but can escape the 171 

predator and viral infect [35].  172 

The 70 resistance types were unevenly distributed among the three water layers 173 

(Supplementary Fig. S7). For example, mexF was present in 41 out of 55 datasets (74.5%) 174 

in SRF, 40 of 42 datasets in DCM/MIX (95.2%), and all 29 datasets in MES (100%) 175 

(Supplementary Table S5), while 5, 2, and 17 types were found to be specific to SRF, 176 

DCM/MIX, and MES, respectively (Supplementary Table S4). The top 10 most abundant 177 

resistance types in each layer were plotted in Fig. 2c. All top 10 resistance types in MES 178 

were present in more than half of datasets, while only 2 and 4 of the top 10 resistance types in 179 

SRF and DCM/MIX were present in more than half of datasets, respectively 180 

(Supplementary Table S5). This result indicates the resistance types in MES are distributed 181 

more widely. The following multidrug resistance types, including mexF, mexB, acrB, ceoB, 182 

and mexW, were found in the top 10 of three layers, with a high abundance, which suggests 183 

that multidrug resistance types are abundant and common and have important contributions to 184 

antibiotic resistance [36]. 185 

To investigate the antibiotic resistance gene classification, the 1,926 unique ARGs 186 

were mapped according to WHOCC ATC/DDD Index 187 

(https://www.whocc.no/atc_ddd_index/?code=J01) and the relative abundances of types 188 

conferring resistance to the same antibiotic were calculated (Fig. 2d). Only 333 of the 1,926 189 
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ARG sequences were classified. The excluded sequences are 228 ksgA sequences, for which 190 

we cannot find a proper Index, and 1,365 multidrug efflux pumps. 191 

 192 

ARG-enriched genera and their connection with biomarkers and co-occurrence network 193 

As a result of taxonomical assignment of ARGs, we successfully assigned 1,659 194 

unique ARGs to 11 genera, which could be classified into 75 resistance types 195 

(Supplementary Table S6). The enrichment of ARGs at genus level was exemplified by the 196 

20 resistance types illustrated in Fig. 3 (see Supplementary Table S6 and S7 for all the 75 197 

resistance types). To determine whether a resistance type was enriched in a genus, univariate 198 

hypergeometric tests (Fig. 3a) were applied on each resistance type against each genus, with 199 

results showing that ARGs of 37 resistance types were found enriched in at least one genus 200 

(p-value<0.01). Meanwhile, to determine whether a genus was enriched with ARGs, 201 

multivariate hypergeometric tests were applied on all the resistance types against each genus, 202 

with results showing that 4 genera were well enriched with ARGs, including Marinobacter 203 

(p-value=6.82e-201), Alteromonas (p-value=8.28e-198), Flavobacterium (p-value=5.90e-204 

143), and Pseudoalteromonas (p-value=3.25e-101) (Fig. 3d), and these 4 genera indeed 205 

harbored most ARGs (435, 515, 101 and 602 respectively). To determine whether a 206 

resistance type is enriched in all genera, multivariate hypergeometric tests (Fig. 3b, 207 

Supplementary Table S8) on each resistance type was performed again, which revealed that 208 

bacA was the third enriched type in these genera (p-value=1.67e-63), behind mexF and ksgA 209 

(p-value=3.84e-96 and 3.30e-72, respectively). 210 

In above-mentioned taxonomy and biomarker analysis, many of the 11 ARG-211 

containing genera were the members in the species co-occurrence network on genus level, 212 

indicating close connections among these genera. These genera had a clustering coefficient of 213 

0.875, which was higher than the whole network clustering coefficient 0.744. Interestingly, 214 
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Flavobacterium (ARG-enriched) and Polaribacter (ARG-containing) were identified as hub 215 

nodes in the co-occurrence network. Top 4 ARG-enriched genera were all important 216 

biomarkers, with an average relative abundance above 0.1% in the 132 samples 217 

(Supplementary Table S1).  218 

In the top 4 ARG-enriched genera, Flavobacterium was an important biomarker and 219 

hub node, it might have extensive interactions with other species, and the ARGs in 220 

Flavobacterium might protect it from antibiotics produced by other organisms in the same 221 

environment. Resistance type bacA was observed in several genera, but it drew our attention 222 

due to its enrichment in Flavobacterium, which was confirmed by both univariate and 223 

multivariate hypergeometric tests. We also found that 73.9% of all 66 bacA sequences were 224 

from Flavobacterium (Fig. 3c), and 41.58% of ARGs from Flavobacterium were bacA (Fig. 225 

3e). 226 

It has been shown that genus Flavobacterium plays an important role in community 227 

carbon cycling [31]. And the production of bacA shows undecaprenyl pyrophosphate (key 228 

component in cell wall biosynthesis) phosphatase activity and thus confers resistance to 229 

bacitracin that inhibits dephosphorylation [37]. With the metabolism production to develop 230 

the cell wall against the bacitracin, bacA shows the protective function as an ARG indirectly 231 

rather than inhibit the bacitracin itself. And as bacA gene was located on the chrome of 232 

Flavobacterium, which could encode protein effectively and was more stable than genes in 233 

plasmid [38] . Combing taxonomical analysis and ARG analysis, bacA might account for the 234 

role of Flavobacterium as a community hub and in carbon cycling, and previous genome 235 

analysis results showed that bacA indeed had been annotated in Flavobacterium [38]. 236 

 237 

ARG impact on microbial community structure 238 
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In order to further analyze how ARGs affected the bacterial community, we 239 

constructed a phylogenic tree of 1,405 marine microbial genera (Fig. 4a) that we have 240 

identified (see Supplementary File for details), including 82 archaea and 1,323 bacteria. 241 

Based on the resulting phylogeny, we extracted 8 subtrees for the 11 ARG-enriched genera 242 

and their closest neighbors (Fig. 4b); in total 42 genera were included in the 8 subtrees. 243 

Within each subtree, pairwise t-tests were used to compare the relative abundances between 244 

the two species of each possible pairs across all 132 samples. We found that these ARG-245 

enriched genera were all significantly more abundant than their ARG-less neighbors in the 246 

subtrees (p-value<0.01). 247 

More importantly, genera with close evolutionary relationship (i.e. neighbors in the 248 

subtrees) typically exist in similar environments [39]. However, on the 8 subtrees in Fig. 4b, 249 

the genera in the same subtree had a significant abundance difference in the marine bacterial 250 

communities (Fig. 4c). Combining the ARG distribution of the 37 genera, we found that 251 

genera with more ARGs had a higher abundance in the bacterial community (Fig. 4d). 252 

Therefore, our results indicated that ARG-enriched genera have a competitive advantage over 253 

ARG-less genera in the same environment.  254 

In ocean environment, the ARGs could not only confer the antibiotics, but also had 255 

specific metabolic functions for ARG-enrichment genera [40], such as enzymatic synthesis, 256 

protein modification and metabolites degration to protect the bacteria from outside attack. For 257 

example, the ARG bacA enriched in Flavobacterium and take part in the cell wall 258 

development.  259 

 260 

Abundance of ARGs in Mediterranean samples implies a human factor 261 

We next investigated if the abundances of ARGs in different samples could be (at 262 

least partially) influenced by human activities. Our hypothesis on how human activities could 263 
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impact ARG contents and the community structure is illustrated in Fig. 5a. As we mentioned 264 

earlier, antibiotics used in Antimicrobial-producing industries, agriculture and House-hold 265 

waste may partially end up in the ocean through drainage and rainfall. Aquaculture, 266 

Antimicrobial-producing industries wasted water may directly Increase the amount of 267 

antibiotics into the ocean. And Antibiotics can be diluted easily in the open ocean [41], but 268 

not so in more closed water such as Mediterranean, especially when the latter is surrounded 269 

by human activities. The presence of antibiotics in the ocean may change the dynamic 270 

balance between naturally occurring antibiotics and ARGs [42], and will change the 271 

community structure by either killing some species that have no resistance to them [14], or 272 

promoting the exchange of ARGs among species [15, 16] that will also alter the community 273 

structure in the long term, or both. Consistent to our hypothesis, previous studies reported an 274 

increased anthropogenic impact on the antibiotic resistance profile in river estuary [43],[44]. 275 

In our study, we found that the average relative quantity (detailed normalization 276 

method in Materials and Methods) of ARGs detected in Mediterranean (the value is 7.18e-4) 277 

was noticeably higher than that in South Atlantic Ocean (the value is 2.13e-11). The reason 278 

behind might be that Mediterranean was enclosed water and near to the in-shore source of 279 

human-caused antibiotic content increase [45], while South Atlantic Ocean was more open 280 

and less impacted by human activities [46]. Alpha diversity analysis for species diversity of 281 

an environment also supported the potential effect of human-activity on in-shore ARGs: the 282 

average of both Shannon index and Simpson index are lower in Mediterranean than in South 283 

Atlantic Ocean (0.811 versus 0.906, and 0.333 versus 0.386 for the two indexes, respectively). 284 

As we have showed in Fig. 4, ARG-enriched bacteria could have competitive advantages 285 

over ARG-less species; this would be true especially when antibiotics are present (as 286 

illustrated in Fig. 5c and 5d). The difference indicated that environmental factors and human 287 
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activities might be a key factor affecting ARG contents as well as microbial community 288 

structures [47]. 289 

 290 

Conclusion 291 

In this work, we reanalyzed the 132 metagenomic samples from the Tara Oceans 292 

project. Firstly, datasets grouped by different strategies have been compared, with results 293 

showing that water temperature, geographical locations and depth have exerted significant 294 

effects on the structure and functional profiles of the communities. Secondly, we have found 295 

biomarkers that were highly related with temperature (Synechococcus and Prochlorococcus, 296 

tending to live in warmer places), locations (Planctomyces, enriched in Atlantic Ocean), and 297 

depth (Nitrospina and Alteromonas, enriched in deeper layers). Thirdly, the analysis of 298 

species-species associations has revealed that the species co-occurrence patterns were heavily 299 

dependent on their environments. Finally, thousands of unique ARGs were identified, whose 300 

distribution patterns differ greatly by geographical locations and temperature. We found that 301 

ARG-enriched genera, such as Alteromonas, Pseudoalteromonas, Marinobacter, and 302 

Flavobacterium, were often more abundant than their ARG-less members in the same 303 

environment. More interestingly, an ARG against bacitracin (bacA), which was found in 304 

genus Flavobacterium, is pervasive in various environments, indicating that genera enriched 305 

with ARGs might possess an advantage over others in the competition for survival in the 306 

oceanic microbial communities. 307 

Our study showed that deep mining of public marine metagenomic data could be 308 

useful for better understanding of the associations between community structures and 309 

functions of their key genes (e.g. ARGs). We believe that more profound associations and 310 

even causal relationships or patterns could be discovered by appropriate utilization of such 311 

resources and equally important by applying advanced data-mining techniques. In light of 312 
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this, such integration of biotechnology (metagenomics) and information technology (data 313 

mining) would still need more high-quality multi-scale omics data. For example, such 314 

approaches might help us for better understanding of the process and significance on how 315 

human activities might affect ARGs, and subsequently affect the bacterial communities. 316 

 317 

Abbreviation 318 

ARG: antibiotic resistance genes; WGS: whole genome sequence; bacA: Bacitracin 319 

Transport ATP-binding Gene; KEGG: Kyoto Encyclopedia of Genes and Genomes; OTU: 320 

Operational Taxonomic Unit; ARDB: Antibiotic Resistance Genes Database; SRF: Surface 321 

Water Layer; DCM/MIX: Subsurface Epipelagic Mixed Layer; MES: Mesopelagic Zone; 322 

mexF, mexB, ceoB: Multidrug Resistance Efflux Pump; acrB: Acriflavin Resistance; ksgA: 323 

Kasugamycin Resistance; EBI: The European Bioinformatics Institute; SPO: South Pacific 324 

Ocean; NPO: North Pacific Ocean; RS: Red Sea; MS: Mediterranean; SIO: South Indian 325 

Ocean; NIO: North Indian Ocean; NAO: North Atlantic Ocean; SAO: South Atlantic Ocean; 326 

PCC: Pearson Correlation Coefficient. 327 
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A total of 132 metagenomic samples of Tara Oceans Project ERP001736 hosted on EBI 337 

Metagenomics were downloaded (https://www.ebi.ac.uk/metagenomics/projects/ERP001736) 338 
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(https://www.ebi.ac.uk/metagenomics/projects/ERP001736) (Supplementary Table S9). 362 

These datasets were processed using the EBI Metagenomics pipeline 363 

(https://www.ebi.ac.uk/metagenomics/pipelines/2.0) prior to our downloading. The 364 

physical/chemical information was retrieved from the project site on EBI Metagenomics, and 365 

the geographical information was obtained from the supplementary file of ref. [10]. 366 

To analyze the correlations of environmental factors and taxonomical and functional 367 

profiles, we manually categorized the 132 samples into different groups according to their 368 

environmental attributes (Supplementary Table S9, Supplementary Fig. S8). We used 5 369 

different attributes, namely depth (L, H), temperature (L1, L2, H1, H2), chlorophyll 370 

concentration (L1, L2, H1, H2), oxygen concentration (L1, L2, H1, H2), and geographical 371 

locations to group the 132 samples into distinct subgroups. For each attribute, the number of 372 

subgroups was indicated in the parenthesis; for the geographical location, the 132 samples 373 

were first divided into two groups and then in total eight sub-groups: the first group included 374 

samples from South Pacific Ocean (SPO), North Pacific Ocean (NPO), Red Sea (RS), and 375 

Mediterranean (MS), while the second group included samples from South Indian Ocean 376 

(SIO), North Indian Ocean (NIO), North Atlantic Ocean (NAO), and South Atlantic Ocean 377 

(SAO); datasets without such information were removed from subsequent analysis. Each 378 

resulting group contains similar number of datasets, with one exception that only five datasets 379 

are in the group of shallow area with a low oxygen concentration due to high temperature. 380 

The detailed categorizing criteria and results are shown in Supplementary Table S10-S13. 381 

 382 

Taxonomical and functional profiling of metagenomic datasets 383 

Analysis of taxonomical and functional profiles. For each dataset, 16S rDNA 384 

sequence reads were extracted from processed reads using Parallel-Meta v3.2.1 [48]. The 385 

files containing the 16S rDNA sequences (in fasta format) were used as input data and 386 
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submitted to Parallel-Meta. By aligning non-chimeric reads to the Greengenes database 387 

(v13_5) [49], the OTUs were obtained based on a sequence similarity cut-off of 97%. 388 

Sensitive alignment mode and Fwd & Rev pair-end sequence orientation were used. Other 389 

parameters were kept default. Based on the taxonomical structures and relative abundance of 390 

communities, functional annotations at phylum, genus, and Operational Taxonomic Unit 391 

(OTU) levels were analyzed according to Kyoto Encyclopedia of Genes and Genomes 392 

(KEGG) [28]. Alpha diversity statistical methods including Shannon index, Simpson index 393 

were used for 132 samples.  394 

Construction of co-occurrence network on species level. To characterize the 395 

microbial communities comprehensively, network analysis was performed on phylum, genus, 396 

and OTU levels. As relative abundances of species were calculated by Parallel-Meta, only 397 

those with abundances above 0.01% were kept for network construction. Species co-398 

occurrence matrix was generated using in-house C++ scripts, calculated by making the 399 

quantitative comparison between species using the Pearson Correlation Coefficient (PCC) for 400 

each pair of bacteria. The PCC threshold at different levels was set to ±0.10, ±0.10, and ±0.50, 401 

respectively. For choosing reasonable method to calculate the species co-occurrence 402 

correlation, the alpha diversity in taxonomy analysis and abundance distribution on OTU 403 

level were considered [50]. With average Simpson index of 0.99 and more than 50% sparse 404 

after filtering to remove very rare OTUs, Pearson correlation was reasonable for bacteria data 405 

without time series. A species co-occurrence matrix including all qualified pairwise PCC was 406 

generated and imported to Cytoscape v3.4.0 for further analysis [51]. MCODE algorithm was 407 

used as a clustering method for network analysis [52]. When degree was >2 and node score 408 

was >0.2, the node was clustered. The largest depth for clustering was 100. Other parameters 409 

were set as defaults. 410 

 411 
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Metagenomic assembly and prediction of antibiotic resistance genes 412 

The processed reads were assembled and processed by using DESMAN [53], with 413 

nextflow pipeline to perform the reads assembly and contig binning. With a collection of 37 414 

genes from bacteria and archaea to identify contig bins, the species distribution in 132 415 

samples could be calculated.  416 

A protein reference file was downloaded from Antibiotic Resistance Genes Database 417 

(ARDB, http://ardb.cbcb.umd.edu/) [33]. Entries with 100% identical sequences were merged, 418 

and three nucleotide sequences that are not indexed in ARDB website were removed. After 419 

being cleaned up, the reference contained 2,893 translated sequences of ARGs. Blastx 420 

searching was performed with an e-value threshold of 1e-10. A query sequence was 421 

annotated as an ARG if the first high-score pair (HSP) of its top hit showed a percent identity 422 

≥60% and a query coverage ≥70%. 423 

The number of unique ARGs detected in each dataset was normalized by the number 424 

of reads (representing the data size of the sample) and the number of OTUs (representing the 425 

complexity of the sample) in that dataset. 426 

Relative quantity of ARGs = 
# of ARGs in a dataset

# of OTUs

1000
 × 

# of reads

1000000

. (1) 

The number of resistance types in each dataset was normalized according to equation. 427 

Relative quantity of resistance types = 
# of resistance types in a dataset

# of OTUs

1000
 × 

# of reads

1000000

. (2) 

 428 

Antibiotic resistance gene enrichment in marine microbial genera 429 

Twenty-four genera were selected for this analysis, each having an average abundance 430 

above 0.1% among samples. Of these genera, “HTCC” and “SargSea-WGS” were abandoned 431 

due to their ambiguous names. Records related to the remaining 22 genera in the NCBI nr 432 

database (retrieved on 24th Nov, 2016) were extracted and filtered, and 2,919,490 unique 433 
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accessions were obtained. BLASTp searching against the NCBI nr database was performed 434 

and restricted among these accessions. The e-value threshold was set to 1e-10. For each query 435 

sequence, the organism name of its top hit subject sequence was assigned to it, if the percent 436 

identity is ≥40%. In cases where the subject sequence has multiple organism names on record, 437 

the first one was selected. 438 

The enrichment analysis was performed as below. 1) To determine whether a 439 

resistance type is enriched in a genus, we performed univariate hypergeometric test on each 440 

resistance type against each genus using Scipy module in Python (http://www.scipy.org/). 2) 441 

To determine whether a resistance type is enriched in all genera (p-value<0.01), we 442 

performed multivariate hypergeometric test on each resistance type against all genera using R 443 

package BiasedUrn v1.05 (https://cran.r-project.org/web/packages/BiasedUrn/). Central 444 

multivariate hypergeometric distribution model was used in the calculation of p-values. 3) To 445 

determine whether a genus is enriched with ARGs of all resistance types when compared 446 

with other genera, we performed multivariate hypergeometric test on each genus against all 447 

resistance types using BiasedUrn based on central multivariate hypergeometric distribution 448 

model. 4) To determine among all genera containing bacA, which one is more bacA-enriched, 449 

we introduced a relative proportion calculation method: The quantity of bacA sequences in 450 

each bacA-containing genus was counted, and the results were normalized (dividing the 451 

number of bacA sequences of this genus, by the total number of bacA sequences for all 452 

genera) and illustrated. 5) To determine among all resistance types enriched in genus 453 

Flavobacterium, we again used the relative proportion calculation method in 4). The quantity 454 

of all ARGs from Flavobacterium were counted, and the results were normalized (dividing 455 

the number of bacA sequences of Flavobacterium, by the total number of ARG sequences of 456 

Flavobacterium) and illustrated. 457 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2018. ; https://doi.org/10.1101/246033doi: bioRxiv preprint 

https://doi.org/10.1101/246033
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

In order to uncover the association of human activities, ARGs, and microbial 458 

communities, a phylogenetic tree including 1,405 detected marine genera in 132 samples was 459 

constructed at genus level, then the abundance and ARG distribution of ARG-enriched genus 460 

and their neighbors in the same subtree were compared. There are in total 1,664 genera 461 

identified by Parallel-Meta; after removing genera with multiple taxonomy IDs from the 462 

NCBI taxonomy database [54] and manually adding some genera with conflicting names in 463 

Parallel-Meta and NCBI taxonomy database, we obtained 1,405 genera with a validated 464 

NCBI taxonomy ID (detailed genera and taxa ID see Supplementary File). PhyloT 465 

(http://phylot.biobyte.de/) was used to map the 1,405 taxonomy IDs to the NCBI common 466 

tree (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi), and 467 

subsequently the results were visualized and modified by an online tool iTOL [55] and 468 

Evolview [56]. 9 subtrees containing the ARG-enriched genera (42 genera) were selected. 469 

Boxplots that show the abundance distribution of the 42 genera across the 132 datasets were 470 

plotted next to the subtrees. A heatmap of ARG count distribution in all the 42 genera was 471 

plotted and the values in each column were normalized using z-score. 472 

  473 
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Figure Legends 617 

 618 

Figure 1. Global views at genus level and OTU level and a subnetwork at genus level. (a) 619 

The global species co-occurrence network at genus level. Red and green edges represent 620 

positive and negative correlation between two linked genera (nodes), respectively. Genera in 621 

a cluster were colored in green, while singletons were colored in blue. (b) A sub-network 622 

related to depth variable at genus level. Depth was an important environment factor and had 623 

certain correlations with temperature, oxygen and chlorophyll concentration, so this depth-624 

related sub-network was exemplified the validity for our network. Each node represents a 625 

genus and each edge presents a co-occurrence relationship. Color of edges present the 626 

relationship strength (calculated by Pearson Correlation Coefficient) of species-species (or 627 

genus-genus) co-occurrence relationship. The cluster from surface water contained 6 genera 628 

that were highly positively related, and the cluster from deep sea contains 5 genera that were 629 

highly positively related. (c) The global view of species co-occurrence network at OTU level. 630 

7 clusters labeled in different colors were produced by using MCODE cluster algorithm. Each 631 

node represents a selected OTU, and edges in red and green represent positive and negative 632 

correlation between two connected OTUs, respectively. The four triangle-shaped nodes were 633 

identified as hub nodes in the network. 634 

 635 

Figure. 2. Distribution and classification of detected ARGs. (A) and (B) Boxplots of the 636 

distribution of ARG sequences and ARG types in three water layers, respectively. The 637 

normalization method was described in section “Materials and Methods”. (C) A heatmap of 638 

the Top 10 abundant ARG types in each water layer. A white tile means that this ARG type 639 

was not detected in this water layer. (D) The classification of ARGs sequences. The ARGs 640 

sequences are classified according to WHOCC ATC/DDD Index. Amphenicols was the most 641 
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abundant antibiotic class. Abbreviations used: SRF, surface water layer; DCM, deep 642 

chlorophyll maximum layer; MIX, subsurface epipelagic mixed layer; MES, mesopelagic 643 

zone. The data used for plotting was exhibited in Supplementary Table S10. 644 

 645 

Figure 3. Enrichment analysis of ARGs in marine microbial genera. A total of 20 out of 646 

75 resistance types were selected as examples to show the enrichment of ARGs in genera (the 647 

complete set of data used was exhibited in Supplementary Table S7). (a) To determine 648 

whether a resistance type is enriched in a genus, univariate hypergeometric test is performed. 649 

The cell color is determined according to the p-values produced by univariate hypergeometric 650 

tests. Column names represent resistance types and row names represent genera. A “N/A” tag 651 

was assigned to a row that contains ARGs that are not identified in any of the 11 genera or 652 

the best hit did not meet the identity threshold of 40%. The horizontal and vertical rectangles 653 

highlight the number of ARGs in Flavobacterium and the number of bacA in genera, 654 

respectively. In the cell where two rectangles overlap, the number means that 42 bacA 655 

sequences were identified in Flavobacterium. (b) To determine whether a resistance type is 656 

enriched in all genera, multivariate hypergeometric test (the lower, the more significant) is 657 

performed. The background colors are determined by the p-values measured by multivariate 658 

hypergeometric tests. (c) To determine among all genera containing bacA, which one is more 659 

bacA-enriched, a relative proportion calculation method is performed. 73.9% of all bacA 660 

sequences were found in Flavobacterium. (d) To determine whether a genus is enriched with 661 

ARGs, multivariate hypergeometric test is performed on each genus against all resistance 662 

types. P-values representing very significant ARG enrichment (p-value<1e-100) in four rows 663 

were highlighted in bold font, and so were the corresponding genus names (Alteromonas, 664 

Pseudoalteromonas, Marinobacter, and Flavobacterium). (e) To determine among all 665 

resistance types detected in genus Flavobacterium, which one is most enriched, the relative 666 
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proportion calculation method is performed. The relative proportions of sequences of all 7 667 

resistance types found in Flavobacterium and bacA sequences make up 41.58% of them, and 668 

it is highlighted by a red rectangle. Abbreviation: aac3ia, aac6ig Aminoglycoside N-669 

acetyltransferase. acra, Resistance-nodulation-cell division transporter system. adeb, AdeB 670 

family multidrug efflux RND transporter permease. amrb, AmmeMemoRadiSam system 671 

protein B. ant3ia, Aminoglycoside O-nucleotidylyltransferase.aph33ib, streptomycin 672 

phosphotransferase. arna, Nucleoside-diphosphate-sugar epimerases. Baca, Undecaprenyl 673 

pyrophosphate phosphatase. bcra, Bacitracin transport ATP-binding gene. bl2a_nps, bl2b_tle, 674 

bl2c_bro, bl2d_oxa2, bl2e_y56: Class A beta-lactamase.catb1, catb2: Group B 675 

chloramphenicol acetyltransferase. 676 

 677 

Figure 4. Phylogenetic analysis of ARG-enriched genera and their corresponding 678 

relative abundance and ARG enrichment patterns. (a) A phylogenetic tree of 1,405 679 

detected marine genera, including archaea and bacteria. Branches colored red represent the 680 

phylogenetic locations of 11 ARG-enriched genera. (b) 8 subtrees containing the 11 ARG-681 

enriched genera (highlighted by red lines) were selected from the phylogenetic tree, which in 682 

total contains 37 genera. These genera are enriched with ARGs compared with their closest 683 

phylogenetic neighbors (*) or all in the whole sub-tree (**). (c) Relative abundance of each 684 

of the 37 genera in (b) in 132 datasets (horizontally aligned). (d) A heatmap of the relative 685 

abundance distribution of several resistance types in the 37 genera in (b) (horizontally 686 

aligned). Horizontal axis represents the resistance types mapped to the genera in (b). Panels 687 

(b), (c) and (d) together indicate that genera enriched with ARGs are significantly more 688 

abundant in a microbial community, as well as compared with their phylogenetic neighbors in 689 

the microbial community. 690 

 691 
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Figure 5. The hypothesis on possible involvement of human-activities in ARG influence 692 

on microbial community structures. (a) Possible antibiotic sources that are related with 693 

human activities. (b) ARGs might then become enriched in microbial communities under the 694 

selection pressure caused by antibiotics. (c) In an off-shore microbial community with little 695 

impact from antibiotics and human activities, the yellow colored genera in the green circle 696 

are not dominant. Genera shown here were identified as ARG-enriched by enrichment 697 

analysis (Alteromonas, Pseudoalteromonas, Marinobacter, and Flavobacterium, etc.). (d) An 698 

in-shore microbial community in which ARG-enriched genera (colored in yellow) become 699 

dominant. 700 
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