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12  Abstract

13 Background : Antibiotics have been spread widely in environments, asserting profound

14  effects on environmenta microbes as well as antibiotic resistance genes (ARGs) within these
15  microbes. Therefore, investigating the associations between ARGs and bacterial communities
16  become an important issue for environment protection. Ocean microbiomes are potentially
17  large ARG reservoirs, but the marine ARG distribution and its associations with bacterial
18  communities remain unclear.

19

20 Methods. we have utilized the big-data mining techniques on ocean microbiome data to
21 analysis the marine ARGs and bacterial distribution on a global scale, and applied
22 comprehensive statistical analysis to unveil the associations between ARG contents, ocean
23 microbial community structures, and environmental factors by reanalyzing 132 metagenomic
24  samplesfrom the Tara Oceans project.

25

26 Results: We identified in total 1,926 unique ARGs and found that: firstly, ARGs are more
27  abundant and diverse in the mesopelagic zone than other water layers. Additionally, ARG-
28 enriched genera are closely connected in co-occurrence network. We also found that ARG-
29 enriched genera are often more abundant than their ARG-less neighbors. Furthermore, we
30 found that samples from the Mediterranean that is surrounded by human activities often
31  contain more ARGs.

32

33 Conclusion: Our research for investigating the marine ARG distribution and revealing the
34  association between ARG and bacterial communities provide a deeper insight into the marine

35 bacterial communities. We found that ARG-enriched genera were often more abundant than
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their ARG-less neighbors in the same environment, indicating that genera enriched with
ARGs might possess an advantage over others in the competition for survival in the oceanic

microbial communities.
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41  Background

42 Marine microbial communities represent one of the most abundant and complex
43  communities on earth. Many studies on microbial communities of surface ocean waters [1, 2]
44  have revealed a large reservoir of genes and functional modules [3]. These rich resources
45  have been used for deep data mining [4, 5]. For example, by comparing the metagenomic
46 data qualitatively and quantitatively, fluctuations in taxonomical composition and metabolic
47  capabilities from various environments could be revealed [6]. In consideration of this
48 valuable information, further investigations in complex integral biochemical metabolic
49  processes reflecting the ways in which microbes are accustomed to changing environments
50 should be collated and reported.

51 The Tara Oceans project is so far one of the largest expeditions to collect marine
52  samples [7]. Over the past few years, this project has collected over 30,000 samples from
53  more than 200 sampling sites [8], more than 500 high quality samples have been sequenced
54 by whole genome sequencing (WGS) [9]. These resources provide scientists with valuable
55 information for exploring metabolic pathways involved in biogeochemical cycles at the
56 sampling sites and revealing complex interplays within the microbia communities and
57  between the communities as awhole and the surrounding environments [10].

58 Ocean microbiomes are potentially large pools of antibiotics and antibiotic resistance
59 genes (ARGs) [11]. ARGs are important to protect bacteria from antibiotics produced by
60 other bacteria and other organisms, and is a key determinant to the dynamic balance of the
61 bacterial community [12, 13]. Antibiotics have been widely used not only in bacterial
62 infection treatment, but also in agriculture and animal husbandry for quite some time [13].
63  Our research for investigating the marine ARG distribution and revealing the association between
64 they 1) ater the community structure by killing some species that have no resistance to them
65 [14]; other changes may follow because of complex interplays among species, and 2)
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66 promote the exchange of ARGs among species [15, 16], which might in turn alter the
67 community structure. Long-term impacts include faster evolution of ARGs [17, 18] and the
68 rise of multidrug-resistance bacteria. Therefore research on antibiotic and ARGs have
69  become more and more important worldwide [19, 20]. How to utilize antibiotics and control
70  antibiotic resistance has become an increasingly important issue [21, 22], especiadly at
71 industrial settings [23, 24].

72 Mechanisms of resistance to antibiotics in bacteria have only been revealed recently,
73 thanks to the isolation and genetic characterization of bacteria with ARGs [25]. Many
74  experimental and bioinformatics methods for identifying new antibiotics and ARGs have
75  been developed [26, 27]. Further understanding of the functions of ARG products and their
76  effects on the bacterial community may uncover new ways of the influence of antibiotics and
77 ARGs on natural bacterial communities [16]. However, without advanced data-mining
78  techniques, current studies on identification and annotation of ARG from ocean microbiome
79 dataremainillusive.

80 In this study, in order to reveal the associations between microbiota community
81  structures and ARGs, we have utilized data-mining techniques to reanalyze 132 metagenomic
82 samples from the Tara Oceans project, and examined the taxonomical structures as well as
83 functional profiles. The enrichment of ARGs in several marine genera was investigated.
84  Firstly, we identified in total 1,926 unique ARGs and found that the ARG contents were
85 strongly associated with the depth. ARGs were more abundant and diverse in the
86 mesopelagic zone than other water layers. Secondly, ARG-enriched genera, including
87  Flavobacterium, Alteromonas, Pseudoalteromonas were closely connected in co-occurrence
88 network and are biomarkers of their respective environments. Thirdly, ARG-enriched genera,
89 such as Alteromonas, Pseudoalteromonas, Marinobacter, and Flavobacterium, were often

90 more abundant than their ARG-less neighbors. Finally, the relationship between taxonomical
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91  dtructures and ARGs was exemplified in Flavobacterium, a common marine genus which
92 was identified as a hub node in species-species co-occurrence network. We detected the
93 enrichment of a resistance type (bacA) against bacitracin in Flavobacterium using
94 computational approaches and validated the results using statistical tests. Inspired by this
95 example, we attempted to interpret how ARG enrichment occurred in many organisms and
96 thus affected the bacterial community structure, and we hypothesized the significance of
97  human involvement in this, and densely populated Mediterranean was exemplified to prove
98 the ARG effect on bacterial community structure.
99
100  Resultsand Discussions
101
102  Taxonomical analysis revealed key determinants of community compositions
103 To facilitate the identification of ARGs and the comparison of ARG contents within
104  and between communities (i.e. samples), we first identified the community compositions (i.e.
105 the number of species and relative abundance of each species) for al the oceanic samples we
106  obtained from the Tara Ocean project, and characterized the correlations between community
107  structure and environmental factors, as well as between community structure and species co-
108  occurrence patterns.
109 Microbial community composition and function analysis. We obtained in total 36,
110 356 microbial OTUs including 715 archaeal and 35,641 bacterial OTUs, respectively.
111 Microbia community profiles at phylum and genus level were illustrated in Supplementary
112 Fig. S1. We identified in total 15 phyla and 24 genera that were relative abundant, i.e. with
113  relative abundance above 0.1% (for details please check Supplementary Table Sl).
114  Functional analyses on specified KEGG pathway [28] level 2 and level 3 were illustrated in

115  Supplementary Fig. S2
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116 Species co-occurrence network analysis. To better understand the interactions and
117  associations within the microbial communities, we constructed species co-occurrence
118  networks at genus and OTU level (Fig. 1a and 1c). We obtained a network at the genus level
119  (Pearson threshold £0.1) consisting 20 nodes and 130 edges, with a clustering coefficient of
120  0.744 and a network density of 0.684. With depth-related information and their first neighbor
121 in network on genus level, a sub-network (Fig. 1b) with 11 nodes (6 in surface water layer
122 and 5 in mesopelagic zone) and 52 related edges was selected to exemplify the validity of the
123 network (Fig. 1a). The 6 surface nodes and the 5 mesopelagic nodes had strong negative
124  correlations, but in contrast, the nodes within surface water layer or mesopelagic zone
125  showed strong positive correlations. These differences are reasonable, as symbiosis plays a
126  leading role in the same environment, yet such symbiosis patterns might differ greatly in
127  different environments [29]. On OTU level, a connected network with 130 nodes and 3,101
128  edges was constructed, which had a clustering coefficient of 0.63 and a network density of
129 0.3 (Fig. 1c). The largest cluster colored in black was mainly composed of species from
130  phylum Proteobacteria, which was the most abundant phylum in the ocean [10]. We
131  identified four hub nodes in this network, among which two were unclassified species of
132 genera Flavobacterium and Polaribacter and the other two belonged to phylum
133  Proteobacteria.

134 Genus Flavobacterium has been identified as a biomarker (depth- and oxygen-related
135 drategies, p-value=5.96e-5 and 2.08e-7, respectively) and a hub node in co-occurrence
136  network, the importance of which was confirmed by previous studies: it is strictly aerobic and
137  tended to live in surface water with high-concentration of chlorophyll and phytoplankton [30,
138  31], and played an important role in carbon cycling in bacterial communities [32].

139

140  Distribution of antibiotic resistance genes across water layers
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141 By searching 81,850,381 protein sequences from 132 samples against the ARDB
142  database [33], 1,926 uniqgue ARGs were detected (Supplementary Table S2). These
143 sequences account for only 0.024%o of all predicted proteins, which is much lower than that
144  of the human gut microbiome [27]. The 1,926 unique ARGs were classified into 70 different
145  types according to their gene names. This resulted in 27 multidrug types (efflux-mediated),
146 38 single-drug types (non-efflux), and 5 target-specific types (efflux-mediated). Of the 132
147  samples, 126 (95.4%) contain at least one ARG sequence (Supplementary Table S3).

148 We correlated the ARG-contents with water layers in order to investigate how ARG
149  distribution was affected. The samples were collected from three layers: surface water layer
150  (SRF), deep chlorophyll maximum layer and subsurface epipelagic mixed layer (DCM/MIX),
151  and mesopelagic zone (MES). We found that among three water layers, SRF and DCM/MIX
152 harbored 44 and 39 resistance types, respectively, while MES harbored 59 resistance types
153  (Supplementary Table $4), suggesting there were more resistance types in the deeper water
154  layer. For example, dataset ERS490633 from MES had 26 resistance types, which was the
155  largest amount in a single dataset, while 11 datasets (9 from SRF, one from DCM/MIX and
156  onefrom MES) had only one resistance type (Supplementary Table S3). To eliminate biases
157  due to sequencing depths, we normalized the number of resistance types and ARG sequences
158  in each dataset by the number of processed reads and the number of OTUs (Supplementary
159 Table S3, Fig. 2a and 2b). The results showed that the mean of normalized number of
160  resistance typesin MES (0.000991) was significantly higher than that in SRF (0.000297) and
161 DCM/MIX (0.000415), with p-value=4.251e-11 and 3.836e-9, respectively (Mann-Whitney
162  test); but the difference between SRF and DCM/MIX was not significant (Mann-Whitney test,
163  p-value=0.01429>0.01). The mean of normalized number of ARG sequences in MES
164  (0.002439) was significantly higher than that in SRF (0.000525) and DCM/MIX (0.000875),

165  with p-value=1.031e-11 and 8.843e-9, respectively (Mann-Whitney test); and the difference
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166  between SRF and DCM/MIX was also significant (p-value=2.202e-3). Together, these results
167  suggested that ARGs in MES were significantly more diverse; and the diversity increased
168  when the sampling proceeds to deeper zones. And the increasing species richness was also
169  detected when the sampling proceeds to deeper zones according to our biodiversity statistic
170  and previous research for Tara Oceans analysis [10, 34]. With limited carbon source and high
171 mobility of mesopelagic zone, the bacteria had a low growth speed but can escape the
172 predator and viral infect [35].

173 The 70 resistance types were unevenly distributed among the three water layers
174  (Supplementary Fig. S7). For example, mexF was present in 41 out of 55 datasets (74.5%)
175 in SRF, 40 of 42 datasets in DCM/MIX (95.2%), and all 29 datasets in MES (100%)
176  (Supplementary Table S5), while 5, 2, and 17 types were found to be specific to SRF,
177 DCM/MIX, and MES, respectively (Supplementary Table $4). The top 10 most abundant
178  resistance types in each layer were plotted in Fig. 2c. All top 10 resistance types in MES
179  were present in more than half of datasets, while only 2 and 4 of the top 10 resistance typesin
180 SRF and DCM/MIX were present in more than half of datasets, respectively
181  (Supplementary Table S5). This result indicates the resistance types in MES are distributed
182  more widely. The following multidrug resistance types, including mexF, mexB, acrB, ceoB,
183  and mexW, were found in the top 10 of three layers, with a high abundance, which suggests
184  that multidrug resistance types are abundant and common and have important contributions to
185  antibiotic resistance [36].

186 To investigate the antibiotic resistance gene classification, the 1,926 unique ARGs
187  were mapped according to WHOCC ATC/DDD Index
188  (https://www.whocc.no/atc_ddd_index/?code=J01) and the relative abundances of types

189  conferring resistance to the same antibiotic were calculated (Fig. 2d). Only 333 of the 1,926
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190 ARG sequences were classified. The excluded sequences are 228 ksgA sequences, for which
191  we cannot find a proper Index, and 1,365 multidrug efflux pumps.

192

193  ARG-enriched genera and their connection with biomarkers and co-occurrence networ k
194 As a result of taxonomical assignment of ARGs, we successfully assigned 1,659
195 unique ARGs to 11 genera, which could be classified into 75 resistance types
196 (Supplementary Table S6). The enrichment of ARGs at genus level was exemplified by the
197 20 resistance typesillustrated in Fig. 3 (see Supplementary Table S6 and S7 for al the 75
198  resistance types). To determine whether a resistance type was enriched in a genus, univariate
199  hypergeometric tests (Fig. 3a) were applied on each resistance type against each genus, with
200 results showing that ARGs of 37 resistance types were found enriched in at least one genus
201  (p-value<0.01). Meanwhile, to determine whether a genus was enriched with ARGs,
202  multivariate hypergeometric tests were applied on all the resistance types against each genus,
203  with results showing that 4 genera were well enriched with ARGs, including Marinobacter
204 (p-value=6.82e-201), Alteromonas (p-value=8.28e-198), Flavobacterium (p-value=5.90e-
205 143), and Pseudoalteromonas (p-value=3.25e-101) (Fig. 3d), and these 4 genera indeed
206 harbored most ARGs (435, 515, 101 and 602 respectively). To determine whether a
207 redistance type is enriched in al genera, multivariate hypergeometric tests (Fig. 3b,
208 Supplementary Table S8) on each resistance type was performed again, which revealed that
209 bacA was the third enriched type in these genera (p-value=1.67e-63), behind mexF and ksgA
210  (p-value=3.84e-96 and 3.30e-72, respectively).

211 In above-mentioned taxonomy and biomarker analysis, many of the 11 ARG-
212 containing genera were the members in the species co-occurrence network on genus level,
213 indicating close connections among these genera. These genera had a clustering coefficient of

214 0.875, which was higher than the whole network clustering coefficient 0.744. Interestingly,
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215  Flavobacterium (ARG-enriched) and Polaribacter (ARG-containing) were identified as hub
216 nodes in the co-occurrence network. Top 4 ARG-enriched genera were all important
217  biomarkers, with an average relative abundance above 0.1% in the 132 samples
218 (Supplementary Table S1).

219 In the top 4 ARG-enriched genera, Flavobacterium was an important biomarker and
220 hub node, it might have extensive interactions with other species, and the ARGs in
221  Flavobacterium might protect it from antibiotics produced by other organisms in the same
222 environment. Resistance type bacA was observed in several genera, but it drew our attention
223 due to its enrichment in Flavobacterium, which was confirmed by both univariate and
224  multivariate hypergeometric tests. We aso found that 73.9% of all 66 bacA sequences were
225  from Flavobacterium (Fig. 3c), and 41.58% of ARGs from Flavobacterium were bacA (Fig.
226 3e).

227 It has been shown that genus Flavobacterium plays an important role in community
228  carbon cycling [31]. And the production of bacA shows undecaprenyl pyrophosphate (key
229  component in cell wall biosynthesis) phosphatase activity and thus confers resistance to
230  bacitracin that inhibits dephosphorylation [37]. With the metabolism production to develop
231  the cell wall against the bacitracin, bacA shows the protective function as an ARG indirectly
232 rather than inhibit the bacitracin itself. And as bacA gene was located on the chrome of
233 Flavobacterium, which could encode protein effectively and was more stable than genes in
234  plasmid [38] . Combing taxonomical analysis and ARG analysis, bacA might account for the
235 role of Flavobacterium as a community hub and in carbon cycling, and previous genome
236  analysis results showed that bacA indeed had been annotated in Flavobacterium [38].

237

238 ARG impact on microbial community structure
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239 In order to further analyze how ARGs affected the bacterial community, we
240  constructed a phylogenic tree of 1,405 marine microbial genera (Fig. 4a) that we have
241 identified (see Supplementary File for details), including 82 archaea and 1,323 bacteria.
242  Based on the resulting phylogeny, we extracted 8 subtrees for the 11 ARG-enriched genera
243 and their closest neighbors (Fig. 4b); in total 42 genera were included in the 8 subtrees.
244 Within each subtree, pairwise t-tests were used to compare the relative abundances between
245  the two species of each possible pairs across all 132 samples. We found that these ARG-
246  enriched genera were all significantly more abundant than their ARG-less neighbors in the
247  subtrees (p-value<0.01).

248 More importantly, genera with close evolutionary relationship (i.e. neighbors in the
249  subtrees) typically exist in similar environments [39]. However, on the 8 subtreesin Fig. 4b,
250 the generain the same subtree had a significant abundance difference in the marine bacterial
251  communities (Fig. 4c). Combining the ARG distribution of the 37 genera, we found that
252  genera with more ARGs had a higher abundance in the bacteriad community (Fig. 4d).
253  Therefore, our results indicated that ARG-enriched genera have a competitive advantage over
254  ARG-less generain the same environment.

255 In ocean environment, the ARGs could not only confer the antibiotics, but also had
256  specific metabolic functions for ARG-enrichment genera [40], such as enzymatic synthesis,
257  protein modification and metabolites degration to protect the bacteria from outside attack. For
258 example, the ARG bacA enriched in Flavobacterium and take part in the cell wall
259  development.

260

261  Abundance of ARGsin Mediterranean samplesimplies a human factor

262 We next investigated if the abundances of ARGs in different samples could be (at

263 least partiadly) influenced by human activities. Our hypothesis on how human activities could
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264  impact ARG contents and the community structure isillustrated in Fig. 5a. As we mentioned
265 earlier, antibiotics used in Antimicrobial-producing industries, agriculture and House-hold
266 waste may partialy end up in the ocean through drainage and rainfal. Aquaculture,
267  Antimicrobial-producing industries wasted water may directly Increase the amount of
268  antibiotics into the ocean. And Antibiotics can be diluted easily in the open ocean [41], but
269 not so in more closed water such as Mediterranean, especially when the latter is surrounded
270 by human activities. The presence of antibiotics in the ocean may change the dynamic
271  balance between naturally occurring antibiotics and ARGs [42], and will change the
272 community structure by either killing some species that have no resistance to them [14], or
273 promoting the exchange of ARGs among species [15, 16] that will also alter the community
274  dructurein the long term, or both. Consistent to our hypothesis, previous studies reported an
275  increased anthropogenic impact on the antibiotic resistance profile in river estuary [43],[44].

276 In our study, we found that the average relative quantity (detailed normalization
277 method in Materials and Methods) of ARGs detected in Mediterranean (the value is 7.18e-4)
278  was noticeably higher than that in South Atlantic Ocean (the value is 2.13e-11). The reason
279  behind might be that Mediterranean was enclosed water and near to the in-shore source of
280 human-caused antibiotic content increase [45], while South Atlantic Ocean was more open
281  and less impacted by human activities [46]. Alpha diversity analysis for species diversity of
282  an environment also supported the potential effect of human-activity on in-shore ARGs: the
283  average of both Shannon index and Simpson index are lower in Mediterranean than in South
284  Atlantic Ocean (0.811 versus 0.906, and 0.333 versus 0.386 for the two indexes, respectively).
285 As we have showed in Fig. 4, ARG-enriched bacteria could have competitive advantages
286 over ARG-less species; this would be true especially when antibiotics are present (as

287 illustrated in Fig. 5¢ and 5d). The difference indicated that environmental factors and human
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288  activities might be a key factor affecting ARG contents as well as microbial community
289  dructures[47].

290

291  Conclusion

292 In this work, we reanalyzed the 132 metagenomic samples from the Tara Oceans
293  project. Firstly, datasets grouped by different strategies have been compared, with results
294  showing that water temperature, geographical locations and depth have exerted significant
295  effects on the structure and functional profiles of the communities. Secondly, we have found
296  biomarkers that were highly related with temperature (Synechococcus and Prochlorococcus,
297  tending to live in warmer places), locations (Planctomyces, enriched in Atlantic Ocean), and
298  depth (Nitrospina and Alteromonas, enriched in deeper layers). Thirdly, the analysis of
299  species-species associations has revealed that the species co-occurrence patterns were heavily
300 dependent on their environments. Finally, thousands of unique ARGs were identified, whose
301 distribution patterns differ greatly by geographical locations and temperature. We found that
302 ARG-enriched genera, such as Alteromonas, Pseudoalteromonas, Marinobacter, and
303 Flavobacterium, were often more abundant than their ARG-less members in the same
304 environment. More interestingly, an ARG against bacitracin (bacA), which was found in
305 genus Flavobacterium, is pervasive in various environments, indicating that genera enriched
306 with ARGs might possess an advantage over others in the competition for survival in the
307  oceanic microbial communities.

308 Our study showed that deep mining of public marine metagenomic data could be
309 useful for better understanding of the associations between community structures and
310 functions of their key genes (e.g. ARGs). We believe that more profound associations and
311  even causa relationships or patterns could be discovered by appropriate utilization of such

312 resources and equally important by applying advanced data-mining techniques. In light of
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313  this, such integration of biotechnology (metagenomics) and information technology (data
314 mining) would still need more high-quality multi-scale omics data. For example, such
315  approaches might help us for better understanding of the process and significance on how
316  human activities might affect ARGs, and subsequently affect the bacterial communities.

317

318 Abbreviation

319 ARG: antibiotic resistance genes; WGS: whole genome sequence; bacA: Bacitracin
320 Transport ATP-binding Gene; KEGG: Kyoto Encyclopedia of Genes and Genomes; OTU:
321  Operational Taxonomic Unit; ARDB: Antibiotic Resistance Genes Database; SRF: Surface
322 Water Layer; DCM/MIX: Subsurface Epipelagic Mixed Layer; MES: Mesopelagic Zone;
323 mexF, mexB, ceoB: Multidrug Resistance Efflux Pump; acrB: Acriflavin Resistance; ksgA:
324 Kasugamycin Resistance; EBI: The European Bioinformatics Institute; SPO: South Pacific
325 Ocean; NPO: North Pacific Ocean; RS: Red Sea; MS: Mediterranean; SIO: South Indian
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362  (https://www.ebi.ac.uk/metagenomics/projects ERP0O01736) (Supplementary Table $9).
363 These datasets were processed using the EBI  Metagenomics  pipeline
364  (https://lwww.ebi.ac.uk/metagenomics/pipelines/2.0) prior to our downloading. The
365 physical/chemical information was retrieved from the project site on EBI Metagenomics, and
366  the geographical information was obtained from the supplementary file of ref. [10].

367 To analyze the correlations of environmental factors and taxonomical and functional
368 profiles, we manually categorized the 132 samples into different groups according to their
369 environmenta attributes (Supplementary Table S9, Supplementary Fig. S8). We used 5
370 different attributes, namely depth (L, H), temperature (L1, L2, H1, H2), chlorophyll
371 concentration (L1, L2, H1, H2), oxygen concentration (L1, L2, H1, H2), and geographical
372 locations to group the 132 samples into distinct subgroups. For each attribute, the number of
373  subgroups was indicated in the parenthesis; for the geographical location, the 132 samples
374  werefirst divided into two groups and then in total eight sub-groups: the first group included
375 samples from South Pacific Ocean (SPO), North Pecific Ocean (NPO), Red Sea (RS), and
376  Mediterranean (MS), while the second group included samples from South Indian Ocean
377  (S10), North Indian Ocean (NIO), North Atlantic Ocean (NAO), and South Atlantic Ocean
378 (SAO); datasets without such information were removed from subsequent analysis. Each
379  resulting group contains similar number of datasets, with one exception that only five datasets
380 arein the group of shallow area with a low oxygen concentration due to high temperature.
381 Thedetailed categorizing criteriaand results are shown in Supplementary Table S10-S13.
382

383 Taxonomical and functional profiling of metagenomic datasets

384 Analysis of taxonomical and functional profiles. For each dataset, 16S rDNA
385  sequence reads were extracted from processed reads using Parallel-Meta v3.2.1 [48]. The

386 files containing the 16S rDNA sequences (in fasta format) were used as input data and
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387 submitted to Parallel-Meta. By aligning non-chimeric reads to the Greengenes database
388 (v13 5) [49], the OTUs were obtained based on a sequence similarity cut-off of 97%.
389  Senditive alignment mode and Fwd & Rev pair-end sequence orientation were used. Other
390 parameters were kept default. Based on the taxonomical structures and relative abundance of
391 communities, functional annotations at phylum, genus, and Operational Taxonomic Unit
392 (OTU) levels were analyzed according to Kyoto Encyclopedia of Genes and Genomes
393 (KEGG) [28]. Alpha diversity statistical methods including Shannon index, Simpson index
394  wereused for 132 samples.

395 Construction of co-occurrence network on species level. To characterize the
396 microbia communities comprehensively, network analysis was performed on phylum, genus,
397 and OTU levels. As relative abundances of species were calculated by Paralel-Meta, only
398 those with abundances above 0.01% were kept for network construction. Species co-
399 occurrence matrix was generated using in-house C++ scripts, calculated by making the
400 quantitative comparison between species using the Pearson Correlation Coefficient (PCC) for
401  each pair of bacteria The PCC threshold at different levels was set to £0.10, +0.10, and +0.50,
402 respectively. For choosing reasonable method to calculate the species co-occurrence
403  correlation, the alpha diversity in taxonomy analysis and abundance distribution on OTU
404 level were considered [50]. With average Simpson index of 0.99 and more than 50% sparse
405  after filtering to remove very rare OTUs, Pearson correlation was reasonable for bacteria data
406  without time series. A species co-occurrence matrix including all qualified pairwise PCC was
407  generated and imported to Cytoscape v3.4.0 for further analysis [51]. MCODE algorithm was
408 used as a clustering method for network analysis [52]. When degree was >2 and node score
409 was >0.2, the node was clustered. The largest depth for clustering was 100. Other parameters
410  were set as defaults.

411
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412  Metagenomic assembly and prediction of antibiotic resistance genes

413 The processed reads were assembled and processed by using DESMAN [53], with
414  nextflow pipeline to perform the reads assembly and contig binning. With a collection of 37
415 genes from bacteria and archaea to identify contig bins, the species distribution in 132
416  samples could be calculated.

417 A protein reference file was downloaded from Antibiotic Resistance Genes Database
418 (ARDB, http://ardb.cbcb.umd.edu/) [33]. Entries with 100% identical sequences were merged,
419  and three nucleotide sequences that are not indexed in ARDB website were removed. After
420 being cleaned up, the reference contained 2,893 translated sequences of ARGs. Blastx
421 searching was performed with an e-value threshold of 1e-10. A query sequence was
422  annotated as an ARG if the first high-score pair (HSP) of its top hit showed a percent identity
423  >60% and aquery coverage >70%.

424 The number of unique ARGs detected in each dataset was normalized by the number
425  of reads (representing the data size of the sample) and the number of OTUs (representing the

426  complexity of the sample) in that dataset.

Relative quantity of ARGs = ZoLARTs ina dataset 1)

1000 < 1000000

427 The number of resistance typesin each dataset was normalized according to equation.

# of resistance types in a dataset

Relative quantity of resistance types = T T 2
1000 1000000

428

429  Antibiotic resistance gene enrichment in marine microbial genera

430 Twenty-four genera were selected for this analysis, each having an average abundance
431  above 0.1% among samples. Of these genera, “HTCC” and “SargSeaWGS® were abandoned
432  due to their ambiguous names. Records related to the remaining 22 genera in the NCBI nr
433 database (retrieved on 24th Nov, 2016) were extracted and filtered, and 2,919,490 unique
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434  accessions were obtained. BLASTp searching against the NCBI nr database was performed
435  and restricted among these accessions. The e-value threshold was set to 1e-10. For each query
436  sequence, the organism name of its top hit subject sequence was assigned to it, if the percent
437  identity is>40%. In cases where the subject sequence has multiple organism names on record,
438  thefirst one was selected.

439 The enrichment analysis was performed as below. 1) To determine whether a
440 resistance type is enriched in a genus, we performed univariate hypergeometric test on each
441 redistance type against each genus using Scipy module in Python (http://www.scipy.org/). 2)
442 To determine whether a resistance type is enriched in al genera (p-value<0.01), we
443  performed multivariate hypergeometric test on each resistance type against all generausing R
444  package BiasedUrn v1.05 (https://cran.r-project.org/web/packages/BiasedUrn/). Central
445  multivariate hypergeometric distribution model was used in the calculation of p-values. 3) To
446  determine whether a genus is enriched with ARGs of all resistance types when compared
447  with other genera, we performed multivariate hypergeometric test on each genus against all
448  redistance types using BiasedUrn based on centra multivariate hypergeometric distribution
449  model. 4) To determine among all genera containing bacA, which one is more bacA-enriched,
450 we introduced a relative proportion calculation method: The quantity of bacA sequences in
451 each bacA-containing genus was counted, and the results were normalized (dividing the
452 number of bacA sequences of this genus, by the total number of bacA sequences for all
453 genera) and illustrated. 5) To determine among all resistance types enriched in genus
454  Flavobacterium, we again used the relative proportion calculation method in 4). The quantity
455 of al ARGs from Flavobacterium were counted, and the results were normalized (dividing
456  the number of bacA sequences of Flavobacterium, by the total number of ARG sequences of

457  Flavobacterium) and illustrated.
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458 In order to uncover the association of human activities, ARGs, and microbial
459  communities, a phylogenetic tree including 1,405 detected marine generain 132 samples was
460  constructed at genus level, then the abundance and ARG distribution of ARG-enriched genus
461 and their neighbors in the same subtree were compared. There are in total 1,664 genera
462 identified by Parallel-Meta; after removing genera with multiple taxonomy IDs from the
463 NCBI taxonomy database [54] and manually adding some genera with conflicting names in
464 Paralel-Meta and NCBI taxonomy database, we obtained 1,405 genera with a validated
465 NCBI taxonomy ID (detailed genera and taxa ID see Supplementary File). PhyloT
466  (http://phylot.biobyte.def) was used to map the 1,405 taxonomy IDs to the NCBI common
467 tree (https://www.nchi .nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi), and
468  subsequently the results were visualized and modified by an online tool iTOL [55] and
469 Evolview [56]. 9 subtrees containing the ARG-enriched genera (42 genera) were selected.
470  Boxplots that show the abundance distribution of the 42 genera across the 132 datasets were
471  plotted next to the subtrees. A heatmap of ARG count distribution in all the 42 genera was
472  plotted and the values in each column were normalized using z-score.

473
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617 FigureLegends

618

619 Figurel. Global viewsat genus level and OTU level and a subnetwork at genuslevd. (a)
620 The global species co-occurrence network at genus level. Red and green edges represent
621  positive and negative correlation between two linked genera (nodes), respectively. Generain
622 a cluster were colored in green, while singletons were colored in blue. (b) A sub-network
623  related to depth variable at genus level. Depth was an important environment factor and had
624  certain correlations with temperature, oxygen and chlorophyll concentration, so this depth-
625 related sub-network was exemplified the validity for our network. Each node represents a
626 genus and each edge presents a co-occurrence relationship. Color of edges present the
627 relationship strength (calculated by Pearson Correlation Coefficient) of species-species (or
628  genus-genus) co-occurrence relationship. The cluster from surface water contained 6 genera
629  that were highly positively related, and the cluster from deep sea contains 5 genera that were
630 highly positively related. (c) The global view of species co-occurrence network at OTU level.
631 7 clusterslabeled in different colors were produced by using MCODE cluster algorithm. Each
632  node represents a selected OTU, and edges in red and green represent positive and negative
633  correlation between two connected OTUs, respectively. The four triangle-shaped nodes were
634 identified as hub nodesin the network.

635

636 Figure. 2. Distribution and classification of detected ARGs. (A) and (B) Boxplots of the
637  distribution of ARG sequences and ARG types in three water layers, respectively. The
638 normalization method was described in section “Materials and Methods’. (C) A heatmap of
639 the Top 10 abundant ARG types in each water layer. A white tile means that this ARG type
640  was not detected in this water layer. (D) The classification of ARGs sequences. The ARGs

641  sequences are classified according to WHOCC ATC/DDD Index. Amphenicols was the most
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642 abundant antibiotic class. Abbreviations used: SRF, surface water layer; DCM, deep
643  chlorophyll maximum layer; MIX, subsurface epipelagic mixed layer; MES, mesopelagic
644  zone. The data used for plotting was exhibited in Supplementary Table S10.

645

646  Figure 3. Enrichment analysis of ARGs in marine microbial genera. A total of 20 out of
647 75 resistance types were selected as examples to show the enrichment of ARGs in genera (the
648 complete set of data used was exhibited in Supplementary Table S7). (a) To determine
649  whether aresistance type is enriched in a genus, univariate hypergeometric test is performed.
650 Thecell color is determined according to the p-values produced by univariate hypergeometric
651  tests. Column names represent resistance types and row names represent genera. A “N/A” tag
652  was assigned to a row that contains ARGs that are not identified in any of the 11 genera or
653  the best hit did not meet the identity threshold of 40%. The horizontal and vertical rectangles
654  highlight the number of ARGs in Flavobacterium and the number of bacA in genera,
655  respectively. In the cell where two rectangles overlap, the number means that 42 bacA
656  sequences were identified in Flavobacterium. (b) To determine whether a resistance type is
657 enriched in all genera, multivariate hypergeometric test (the lower, the more significant) is
658  performed. The background colors are determined by the p-values measured by multivariate
659  hypergeometric tests. (c) To determine among all genera containing bacA, which one is more
660 bacA-enriched, a relative proportion calculation method is performed. 73.9% of all bacA
661  sequences were found in Flavobacterium. (d) To determine whether a genus is enriched with
662 ARGs, multivariate hypergeometric test is performed on each genus against all resistance
663  types. P-values representing very significant ARG enrichment (p-value<le-100) in four rows
664  were highlighted in bold font, and so were the corresponding genus names (Alteromonas,
665 Pseudoalteromonas, Marinobacter, and Flavobacterium). (€) To determine among all

666  resistance types detected in genus Flavobacterium, which one is most enriched, the relative
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667  proportion calculation method is performed. The relative proportions of sequences of al 7
668  resistance types found in Flavobacterium and bacA sequences make up 41.58% of them, and
669 it is highlighted by a red rectangle. Abbreviation: aac3ia, aac6ig Aminoglycoside N-
670 acetyltransferase. acra, Resistance-nodulation-cell division transporter system. adeb, AdeB
671  family multidrug efflux RND transporter permease. amrb, AmmeMemoRadiSam system
672 protein B. ant3ia, Aminoglycoside O-nucleotidylyltransferase.aph33ib, streptomycin
673  phosphotransferase. arna, Nucleoside-diphosphate-sugar epimerases. Baca, Undecaprenyl
674  pyrophosphate phosphatase. bcra, Bacitracin transport ATP-binding gene. bl2a nps, bl2b _tle,
675 bl2c bro, bl2d oxa2, bl2e y56: Class A betalactamase.catbl, catb2: Group B
676  chloramphenicol acetyltransferase.

677

678 Figure 4. Phylogenetic analysis of ARG-enriched genera and their corresponding
679 relative abundance and ARG enrichment patterns. (a) A phylogenetic tree of 1,405
680 detected marine genera, including archaea and bacteria. Branches colored red represent the
681  phylogenetic locations of 11 ARG-enriched genera. (b) 8 subtrees containing the 11 ARG-
682  enriched genera (highlighted by red lines) were selected from the phylogenetic tree, which in
683  total contains 37 genera. These genera are enriched with ARGs compared with their closest
684  phylogenetic neighbors (*) or al in the whole sub-tree (**). (c) Relative abundance of each
685  of the 37 generain (b) in 132 datasets (horizontally aligned). (d) A heatmap of the relative
686  abundance distribution of several resistance types in the 37 genera in (b) (horizontally
687  aligned). Horizontal axis represents the resistance types mapped to the genera in (b). Panels
688 (b), (c) and (d) together indicate that genera enriched with ARGs are significantly more
689  abundant in amicrobial community, as well as compared with their phylogenetic neighborsin
690 the microbia community.

691
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692 Figure5. The hypothesis on possible involvement of human-activitiesin ARG influence
693 on microbial community structures. (a) Possible antibiotic sources that are related with
694 human activities. (b) ARGs might then become enriched in microbial communities under the
695  selection pressure caused by antibiotics. (c) In an off-shore microbial community with little
696  impact from antibiotics and human activities, the yellow colored genera in the green circle
697 are not dominant. Genera shown here were identified as ARG-enriched by enrichment
698  analysis (Alteromonas, Pseudoal teromonas, Marinobacter, and Flavobacterium, etc.). (d) An
699  in-shore microbial community in which ARG-enriched genera (colored in yellow) become

700  dominant.
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