
Noise propagation in an integrated model of bacterial gene expression
and growth

Istvan T. Kleijn*† , Laurens H. J. Krah* , and Rutger Hermsen‡

Theoretical Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The
Netherlands

Abstract

In bacterial cells, gene expression, metabolism, and growth are highly interdependent and tightly coordinated. As a result,
stochastic fluctuations in expression levels and instantaneous growth rate show intricate cross-correlations. These correlations are
shaped by feedback loops, trade-offs and constraints acting at the cellular level; therefore a quantitative understanding requires an
integrated approach. To that end, we here present a mathematical model describing a cell that contains multiple proteins that are
each expressed stochastically and jointly limit the growth rate. Conversely, metabolism and growth affect protein synthesis and
dilution. Thus, expression noise originating in one gene propagates to metabolism, growth, and the expression of all other genes.
Nevertheless, under a small-noise approximation many statistical quantities can be calculated analytically. We identify several
routes of noise propagation, illustrate their origins and scaling, and establish important connections between noise propagation
and the field of metabolic control analysis. We then present a many-protein model containing > 1000 proteins parameterized by
previously measured abundance data and demonstrate that the predicted cross-correlations between gene expression and growth
rate are in broad agreement with published measurements.
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Few processes are more fundamental to life than the growth
and proliferation of cells. Bacterial cells in particular are
highly adapted to grow rapidly and reliably in diverse habi-
tats [1]. Yet, the composition of individual bacteria grown in a
constant environment is known to fluctuate vigorously, in part
due to the stochastic nature of gene expression [2–5]. Many
experimental and theoretical studies have shed light on the
origins, characteristics and consequences of this “noisy” ex-
pression [2–17]. Still, it remains unknown to what extent, and
by what routes, noise in gene expression propagates through
the cell and affects the rate of growth [5,18,19], which is often
considered a proxy for its fitness [18, 20].

Recently, important progress towards understanding noise
propagation in single cells has been made through experi-
ments in which the instantaneous growth of individual Es-
cherichia coli cells was monitored in real time under fixed
growth conditions [5, 21]. Such experiments have revealed
large fluctuations in the growth rate, with coefficients of vari-
ation of the order of 25%, which in part result from noise
in the concentrations of metabolic enzymes [5]. Conversely,
growth-rate fluctuations affect the concentrations of individ-
ual enzymes, because the cell’s constituents are diluted when-
ever the cell grows [22]. Such results emphasize that a clear

understanding of these processes is complicated by the fact
that gene expression, metabolism, and growth are highly in-
terdependent, involving multiple layers of feedback and cel-
lular constraints.

This interdependence is also central to a series of re-
cent studies that characterize the average composition and
growth rate of Escherichia coli cultures in balanced exponen-
tial growth under variation of the growth medium [23–29].
In particular, these experiments have revealed striking lin-
ear relations between their mean proteomic composition and
their mean growth rate [26–31]. Phenomenological mod-
els have demonstrated how such “growth laws” can be un-
derstood as near-optimal solutions to constrained allocation
problems [20, 32–34]. These results also stress that global
physiological variables and constraints strongly affect the ex-
pression of individual genes. As such, both these experiments
and the single-cell experiments mentioned above suggest a
“holistic” perspective: the behavior of individual components
cannot be understood without some knowledge of the cell’s
global physiological state [35, 36].

Here, we present a model of bacterial cells growing under
fixed external growth conditions, in which gene expression,
metabolism and growth are fully integrated. We offer a highly
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simplified description that nevertheless imposes several es-
sential global cellular constraints. Both gene expression and
growth rate fluctuate due to the stochastic synthesis of many
protein species that together control the rates of metabolism
and growth. Conversely, the rate of metabolism constrains
the protein synthesis rates and the growth rate sets the dilu-
tion rate of all proteins. As a result, noise in the expression
of each gene propagates and affects the expression of every
other gene as well as the growth rate—and vice versa.

Below, we first introduce the generic modeling framework
and its assumptions. We then make an excursion to the theory
of growth control, in order to define growth-control coeffi-
cients and establish connections between the propagation of
noise and the field of Metabolic Control Analysis. Next, we
discuss how the concentration of each protein is affected by
the synthesis noise in all other proteins; this exposes a hidden
assumption in a standard operational definition of intrinsic
and extrinsic expression noise. We subsequently explain the
noise modes that characterize the noise propagation between
gene expression and growth in the context of a toy model with
just two proteins. Lastly, we present a many-protein model
that includes 1021 protein species with experimentally mea-
sured parameters. We demonstrate that the cross-correlations
functions between expression and growth rate predicted by
this model capture the main features of published measure-
ments.

Results

Modeling framework

We here discuss the key assumptions of the modeling frame-
work (Fig 1); see S1 Text, pp. 1–6 for details. We consider
a culture of bacterial cells that has reached steady-state ex-
ponential growth under fixed external growth conditions. We
study fluctuations of gene expression within individual cells
in this steady state, and in particular how these fluctuations re-
verberate through the growing cell. Similar assumptions con-
necting the increase in biomass, the cellular growth rate, pro-
tein synthesis, and growth-mediated dilution were explored in
a recent review article [37].

The mass density of E. coli cells is dominated by protein
content [38] and under tight homeostatic control [39]. We as-
sume that this homeostasis also eliminates long-lived protein-
density fluctuations in single cells. Then, the volume of a cell
is proportional to its protein mass M B

∑
i ni, where ni is

the abundance (copy number) of protein i. (We ignore that
different proteins have different molecular weights.) The in-
stantaneous growth rate is then defined by µ B Ṁ/M, and
the proteome fraction φi B ni/M of enzyme i measures its
concentration. Differentiation of φi with respect to time then
yields

φ̇i = πi − µφi, (1)

Fig 1. Integrated model of stochastic gene expression and
cell growth. The cell contains many protein species, with
proteome mass fractions φi that sum to 1. Mass fractions are
increased by protein synthesis but diluted by growth. The
synthesis rate πi of each species i is modulated by a noise
source Ni. The instantaneous growth rate µ reflects the total
rate of protein synthesis. Proteins affect metabolism and thus
the deterministic growth rate µd(φ), as quantified by
growth-control coefficients Cµ

i . A fraction fi of the total
metabolic flux is allotted to the synthesis of protein i. The
inherent noise in the expression of each gene reverberates
through the cell, affecting cell growth and the expression of
every other gene.

where πi is the synthesis rate per protein mass. (Here we ne-
glect active protein degradation, which on average amounts
to about 2% of the dilution rate [40].) By definition, pro-
teome fractions obey the constraint

∑
i φi = 1. Combined

with Eq. (1) this results in

µ =
∑

i

πi. (2)

That is, the growth rate equals the total rate of protein synthe-
sis.

Another key assumption of our model is that the cellular
growth rate is an intensive quantity. That is: given fixed mass
fractions, the growth rate does not depend on the cell size,
as suggested by the observation that individual E. coli cells
grow approximately exponentially within their cell cycle [5,
41]. Based on this, we express the synthesis rate of protein i
as:

πi = fi µd(φ) + Ni, (3)

in which
µd(φ) B J/M. (4)

The first term in equation (3) is an intensive function; it
captures the deterministic effect of the cellular composition
φ = (φ1, φ2, . . .) on the metabolic flux J that quantifies the
rate of biomass production, normalized by the protein mass
M. (Note that, here and below, we use the term metabolism
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in a broad sense; it is intended to encompass all catabolic and
anabolic processes required for biomass production and cell
growth, including protein synthesis.) The coefficients fi spec-
ify which fraction of this flux is allocated towards the synthe-
sis of protein species i. Because the fi are fractions,

∑
i fi = 1.

The second term of equation (3) couples each synthesis rate
πi to a zero-mean Ornstein–Uhlenbeck noise source Ni that
represents the stochasticity of both transcription and transla-
tion [42]. Each noise source is characterized by an amplitude
θi and a rate of reversion to the mean βi; the latter’s inverse
β−1

i characterizes the time scale of intrinsic fluctuations in
πi. The variance of Ni is given by Var(Ni) = θ2

i /(2βi). All
noise sources are mutually independent, and we neglect other
sources of noise, such as the unequal distribution of molecules
over daughter cells during cell division (see Discussion).

Combining equation (2) and (3) reveals that

µ = µd(φ) +
∑

i

Ni, (5)

which identifies µd(φ) as the growth rate afforded by a given
proteome composition φ in the zero-noise limit. Given a func-
tion µd(φ), equations (1)–(3) fully define the dynamics of the
cell.

Below, we focus on the simplest case where, under given
environmental conditions, the allocation coefficients fi are
constant. This means that the cell does not dynamically ad-
justs its allocation in response to fluctuations in expression
levels. We note, however, that such dynamical effects of gene
regulation could be included by allowing the fi to depend on
intra- and extra-cellular conditions, and in particular on the
cellular composition φ. (See S1 Text, p. 4.) We also stress
that the allocation coefficients may differ strongly between
growth conditions, as demonstrated by the growth laws men-
tioned above. For example, the fi’s of ribosomal proteins must
be considerably larger in media that support a fast growth
rate than in media with strong nutrient limitation, because
the mean mass fraction of ribosomal proteins increases with
the growth rate [30]. Here, however, we describe stochastic
cell growth under fixed environmental conditions, so that the
(mean) allocation of resources is well-defined and knowable
in principle—for example through proteomics data.

Fig 1 is an illustration of the modeling framework. Noise
in the synthesis of a protein species induces fluctuations in
its mass fraction (equation (1)). Through their effect on
metabolism, these fluctuations propagate to the deterministic
growth rate µd, which modulates the synthesis of all protein
species (equation (3)). In parallel, all noise sources directly
impact the growth rate µ (equation (5)) and thus the dilution
of all proteins (equation (1)).

Linearization under a small-noise approximation

The results below rely on the assumption that equations (1)–
(5) may be linearized around the time-averaged composition

φ0. This transforms equation (5) to

δµ

µ0
=

∑
i

Cµ
i
δφi

φ0,i
+

∑
i

Ni

µ0
, (6)

where δφi is the deviation of φi from its time average φ0,i and
δµ the deviation of µ from µ0 B µd(φ0). (See Text S1, p. 3
for derivations.) The coefficients Cµ

i are defined as

Cµ
i B

[
φi

µd

∂µd

∂φi

]
φ0

. (7)

In the terminology of linear noise models, the Cµ
i are transfer

coefficients: they quantify to what extent fluctuations in φi

transmit to µd. Equation (6) demonstrates that the growth rate
is affected by all noise sources, both directly (second term on
the right-hand side) and indirectly through fluctuations in the
protein mass fractions.

Transfer coefficients are growth-control coeffi-
cients
The transfer coefficients Cµ

i are reminiscent of the logarith-
mic gains defined in biochemical systems theory, which re-
late enzyme abundances to the metabolic flux in a given path-
way [43]. It has previously been shown that these gains are
relevant in the context of noise propagation [44]. Here, how-
ever, we consider the growth rate of the cell rather than the
flux through a distinct pathway. In this section, we connect
the transfer coefficients Cµ

i to the control of cellular growth
and the field of Metabolic Control Analysis (MCA) [45, 46].

In MCA, flux-control coefficients (FCCs) CJ
i are defined

that quantify to what extent an enzyme concentration φi limits
(controls) a metabolic flux J [45, 46]:

CJ
i B

[
φi

J
∂J
∂φi

]
φ0

. (8)

In direct analogy to this definition of FCCs, the transfer coeffi-
cients of equation (7) can be interpreted as growth-control co-
efficients (GCCs) that quantify each enzyme’s control of the
growth rate. From equation (4) a direct link between FCCs
and GCCs can be derived (see also [47], p. 7 of S1 Text, and
S1 Fig):

Cµ
i = CJ

i − φi. (9)

The GCCs are specified by the sensitivity of the growth rate
µd(φ) to changes in the proteome composition φ, evaluated
in the steady-state mean, φ0. Both the mean composition φ0

and the function µd clearly differ between growth conditions;
therefore, the GCCs depend on the growth conditions as well.

As mentioned, studies on the resource allocation of cells
grown under different growth conditions have revealed strik-
ing empirical relations between the mean proteome compo-
sition and the mean cellular growth rate [26, 28–30]. Even
though these growth laws describe relations between growth
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rate and composition, they should not be confused with µd.
The growth laws describe correlations between the mean
composition and the mean growth rate under variation of
the growth conditions, whereas µd describes the determinis-
tic effect of the instantaneous composition on the instanta-
neous growth rate under a particular, fixed growth condition.
There is no direct relation between the two. By extension, the
growth laws do not directly translate into knowledge on the
GCCs.

Growth-control coefficients and their sum rule

An important difference between metabolic flux and cellular
growth rate lies in their behavior under a scaling of the sys-
tem size. It is routinely assumed that metabolic fluxes scale
linearly with the system size, meaning that an increase in
the abundances of all enzymes by a factor α increases the
metabolic flux J by the same factor α. That is, fluxes are
extensive variables. Based on this assumption, a famous sum
rule has been derived for FCCs [45, 46]:∑

i

CJ
i = 1. (10)

In contrast, we assumed the growth rate to be invariant under
scaling of the system size, i.e, that the growth rate is an inten-
sive variable. (Indeed, as equation (4) directly shows, if J is
extensive, µd must be intensive, and vice versa.) Under this
assumption, GCCs obey a markedly different sum rule:∑

i

Cµ
i = 0. (11)

This sum rules articulate a delicate trade-off: the excess of
one protein implies the lack of another.

Both sum rules are special cases of Euler’s homoge-
neous function theorem. Specific derivations are presented
in S1 Text on p. 7. In general, for an arbitrary function f with
a scaling relation f (αφ) = αk f (φ), a sum rule can be derived
by differentiating this equation with respect to α and evaluat-
ing the result in α = 1. The particular cases k = 1 (for the flux
J), and k = 0 (for the growth rate µd) lead to equations (10)
and (11).

In theory, all expression levels could be regulated such that
Cµ

i = 0 for all protein species i. In reality, however, many
protein species do not have a function within metabolism or
biomass growth. By definition, the metabolic flux J does not
depend on the expression levels of these proteins; therefore,
their FCCs are zero. The GCC of such a protein, with mass
fraction φh, then follows from equation (9):

Cµ
h = −φh. (12)

That is, the control of all non-metabolic enzymes on the
growth rate is negative. The sum rule then implies that the

sum of GCCs of all proteins that do contribute to biomass
growth must be positive and equal to∑

i<H

Cµ
i = −

∑
h∈H

Cµ
h =

∑
h∈H

φh = φH. (13)

where H denotes the set of non-metabolic proteins. This goes
to show that any system that bears the cost of producing non-
metabolic proteins must contain other proteins that have pos-
itive growth control.

This conclusion has implications for the propagation of
noise. We saw that the the noise transfer coefficients appear-
ing in the linear noise model are in fact GCCs. The analysis in
the previous paragraph demonstrates that these GCCs cannot
all vanish; it then follows that there must be linear-order noise
transfer from protein levels to the growth rate in all cells that
maintain non-metabolic proteins.

Non-metabolic proteins are common, both in wild-type
cells and in engineered constructs. In wild-type E. coli,
the expression level of proteins that do not contribute to
biomass growth were estimated recently in a study that com-
bined a genome-scale allocation model with proteomics data
sets [48]. Direct estimates of φH ranged from 25% to 40%,
depending on the precise growth conditions. Although not
directly beneficial to the growth of the cell in constant envi-
ronments, the non-contributing proteome fraction is thought
to provide fitness benefits to cells that encounter frequent
changes in growth conditions [48]. Furthermore, synthetic
biologists commonly study systems with a large expression
burden [49].

Separating in- and extrinsic noise components
Within the above framework, many statistical properties can
be calculated analytically [5,42]. In particular, the noise level
of the concentration of protein i, quantified by the coefficient
of variation ηi, can be expressed as:

η2
i =

(1 − φ0,i)2

φ2
0,i

Var(Ni)
µ0(µ0 + βi)

+
∑
j,i

Var(N j)
µ0(µ0 + β j)

. (14)

The derivation is provided in S1 Text, pp. 4–6. Equation (14)
shows that the coefficient of variation has two components:
the first term results from the noise in the synthesis of the
protein itself, the second from the noise in the synthesis of
all other proteins. Each term is proportional to the variance
of the corresponding noise source, but weighted by a factor
that decreases with the mean growth rate µ0 and the reversion
rate βi of that noise source. This analysis confirms that the
inherent noise in the synthesis of one protein affects all other
proteins.

A fundamental distinction is commonly made between in-
trinsic and extrinsic noise in gene expression [44]. Intrinsic
noise results from the inherently stochastic behavior of the
molecular machinery involved in gene expression; extrinsic
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noise from fluctuations in the intra- and extracellular envi-
ronment of this machinery. In this sense, the two terms in
equation (14) can be identified as intrinsic and extrinsic con-
tributions.

Complications arise, however, if the standard operational
definition of these terms is applied [4,6]. This definition con-
siders two identical reporter constructs R and G expressed in
the same cell (Fig 2A). Noise sources extrinsic to both re-
porters affect both reporters identically, inducing positively
correlated fluctuations in the concentrations of the reporter
proteins. Intrinsic noise sources instead produce independent
fluctuations in each concentration. Extrinsic noise is there-
fore measured by the covariance between both expression lev-
els; intrinsic noise by their expected squared difference. This
operationalization, however, implicitly assumes that intrinsic
noise does not propagate between the reporters. This assump-
tion is violated in our model because the synthesis of reporter
R directly contributes to the dilution of protein G (Fig 2B).
Consequently, the covariance between the expression levels
has two contributions:

Cov(φR, φG)
φ2

0,b

= −
2(1 − φ0,b)

φ0,b

Var(Nb)
µ0(µ0 + βb)

transmission between R and G

+
∑

j,R,G

Var(N j)
µ0(µ0 + β j)

other sources

,

(15)
where the label ”b” indicates quantities that are by definition
identical for both expression systems. The second term on
the right-hand side is positive and stems from noise sources
that affect both reporters identically. The first term, however,
is negative; it reflects the transmission of noise between re-
porters R and G. It would be misleading to identify equa-
tion (15) as the extrinsic component of the noise—it is not
even guaranteed to be positive. We conclude that the oper-
ational definition is not suitable when noise propagates be-
tween arbitrary genes.

Expression–growth correlations in a two-protein
toy model

The circulation of noise in the cell can be studied by mea-
suring cross-correlations between expression and growth rate
in single-cell experiments [5]. Interpreting measured cross-
correlations, however, is non-trivial. To dissect them, we
now discuss a toy version of the model with just two pro-
tein species, X and Y. Despite its simplicity, it displays many
features seen in more realistic models.

Within the linear noise framework, φY–µ and πY–µ cross-
correlations, respectively denoted RφYµ(τ) and RπYµ(τ), can be
calculated analytically [42]. Up to a normalization, the results

πi

NG

πR

µ

Next,1

φR

φG
NG

NR

μd(φ)

πG

πR

1µ
+ +

φi
Ni

A B

Next,2

φR
NR

πG φG

Fig 2. Limitations of the operational definition of in- and
extrinsic expression noise. (A) Extrinsic noise is measured
by the covariance between the expression levels of two
identical reporter systems R and G. This presupposes that the
intrinsic noise NR of system R affects concentration φR but
not φG (orange outline), so that the covariance between φR
and φG quantifies the contribution of extrinsic sources Next,i.
(B) But in our model, NR affects the growth rate and thus the
dilution of φG. This adds a negative term to the covariance,
which no longer measures just the extrinsic noise.

can be written as:

RφYµ(τ) ∝ Cµ
YS Y(τ)

Control

+ φ0,YAY(τ)

Autogenic

−
∑

j=X,Y

φ0, j

[
Cµ

j S j(τ) + φ0, jA j(τ)
]

Dilution

;

(16)

RπYµ(τ) ∝ Cµ
YAY(−τ)

Control

+ φ0,YBY(τ)

Autogenic

+
∑

j=X,Y

Cµ
j

[
Cµ

j S j(τ) + φ0, jA j(τ)
]

Transmission

.

(17)

(For a full derivation, not limited to the two-protein case, see
S1 Text, pp. 5–6. The two-protein case is discussed further in
S1 Text, pp. 8–9.) These equations are plotted in Fig 3AB (see
caption for parameters). As the equations show, the cross-
correlation functions are linear combinations of three func-
tions S i(τ), Ai(τ), and Bi(τ), which are also illustrated in the
figure.

To aid interpretation, the cross-correlations can be decom-
posed into four noise modes, as indicated in equations (16)
and (17).

The control mode (Fig 3C) reflects the control of enzyme
Y on the growth rate. Noise NY in the synthesis of Y causes
fluctuations in φY, which transfer to the growth rate in pro-
portion with the GCC Cµ

Y. Because the effect of φY on µ is
instantaneous, the contribution to the φY–µ cross-correlation
is proportional to the symmetric function S Y(τ). In contrast,
the effect of πY on µ involves a delay; hence the contribution
to the πY–µ cross-correlation is proportional to the asymmet-
ric function AY(τ). In both cases, the amplitude scales with
Cµ

Y.
The autogenic mode (Fig 3D) is a consequence of equa-

tion (2). Because the growth rate matches the total rate of
protein synthesis, noise in the synthesis of Y instantly af-

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/246165doi: bioRxiv preprint 

https://doi.org/10.1101/246165
http://creativecommons.org/licenses/by/4.0/


 autogeniccontrolC D

φXπX

+

CX
μ

CY
μ

πY φY

1µ
+

NY

NX

μd(φ)

fX

fY

0
+

transmissiondilutionE F

πY

1

NY

fX

fY

+

CY
μ

0
+

φX

φY

µ
+

NX

μd(φ)

πX
CX
μ

NY
μ

+

φX

πY φY

1µ

NX

μd(φ)

fX

fY
πX

+

CX
μ

CY

0
+

φ
Y
-μ

cr
os

sc
or

re
la

tio
n

cr
os

sc
or

re
la

tio
n

π
Y
-μ

A

B
- 0.4

- 0.2

0.0

0.2

0.4

0.6

0.7

0.5

0.3

0.1

0.1-
- 4 - 3 - 2 - 1 0 1 2 3 4

total

autogenic

control

dilution

transmission

simulations

time delay τ (h)

+

φX

1

NX

fY

fX

0

πX

+
+πY φY

µ

NY

μd(φ)

CX
μ

CY
μ

+

 

AY(-τ)

BY(τ)

AY(τ)

SY(τ)

Fig 3. Noise modes in a toy model containing only two protein species, X and Y. (A) Analytical solution for the
cross-correlation between protein Y’s proteome fraction φY and growth rate µ (gray curve), verified by simulations (gray
diamonds, details in S1 Text, p. 9). The contributing noise modes are indicated (colored curves). (B) Same as (A), but for the
synthesis rate πY. The cross-correlation functions are linear combinations of three classes of functions, called Ai(τ), Bi(τ),
and S i(τ) (see S1 Text, equations (47)–(49) for their definitions). In panels (A) and (B), noise modes that are proportional to
just one of these functions are annotated accordingly. (C)–(F) Noise propagation routes underlying the noise modes. The
control mode and the autogenic mode arise from noise source NY alone. Both noise sources NX and NY contribute to the
dilution and transmission modes, but only the contribution of NX is illustrated in Fig (D) and (F). Parameters for (A) and (B):
Cµ

Y = 0.25; φ0,Y = 0.33; mean growth rate µ0 = 1 h−1; noise sources of NY and NX have amplitudes θY = 0.5 and θX = 0.5
and reversion rates βY = βX = 4µ0.

fects the growth rate, resulting in a noise mode in the πY–µ
cross-correlation that is proportional to the symmetric func-
tion BY(τ). With a delay, this noise also affects φY, adding an
asymmetric mode to the φY–µ cross-correlation. This mode
does not depend on the control of Y; instead, its amplitude is
proportional to the mean concentration φ0,Y.

The dilution mode (Fig 3E) pertains only to the φY–µ
cross-correlation. It reflects that the growth rate of the cell
is also the dilution rate of protein Y (equation (1)). With a de-
lay, upward fluctuations in µ therefore cause downward fluc-
tuations in φY. A subtle complication is that noise in the syn-
thesis rate of both proteins reaches µ via two routes: through
the immediate effect of πY on µ, and through the delayed ef-
fect of πY on φY, which in turn affects µ in proportion with Cµ

Y
(see in equation (6)). Together, these routes result in a mode
towards which each protein contributes both a symmetric and
an asymmetric function.

Lastly, the transmission mode (Fig 3F) is unique to the
πY–µ cross-correlation. It reflects that all noise sources affect
the cell’s composition φ and therefore µd; this in turn induces
fluctuations in the synthesis rate πY. The noise sources again
affect the growth rate via the two routes explained above,
causing a symmetric and an asymmetric component to the πY–
µ cross-correlation for each protein.

The above analysis shows that, even in a highly simplified
linear model, the cross-correlations are superpositions of sev-
eral non-trivial contributions. The intuitions gained from this

exercise will be used below when we present the results of a
more complex model.

The effects of gene regulation

Above, we assumed that the cell allocates a fixed fraction fi
of its metabolic flux towards the synthesis of protein i. Within
this two-protein model all cross-correlations can still be com-
puted if the fi are linear(ized) functions of the concentrations
φ (see S1 Text, pp. 8–9, and S2 Fig). The resulting feedback
regulation affects the decay of fluctuations: a negative feed-
back shortens the correlation time scales and reduces vari-
ance, whereas positive feedback lengthens them and increases
variance (cf. [3, 10, 50]).

Expression–growth correlations in a many-
protein model

In single E. coli cells, the cross-correlations between gene
expression and growth rate have been measured by Kiviet et
al. [5]. To test whether the above framework can reproduce
their results, we constructed a model that includes 1021 pro-
tein species with realistic parameters, based on an experimen-
tal data set [51].

In the experiments, micro-colonies of cells were grown on
lactulose (a chemical analog of lactose) and expression of the
lac operon was monitored using a green fluorescent protein
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Fig 4. Expression–growth cross-correlations in the many-protein model. (A) Cartoon of the noise propagation network.
(B) Monod curve describing the mean growth rate as a function of lac expression. Black dots indicate the operon mass
fractions and growth rate used to calculate the cross-correlations in (D)-(F). (C) Noise distribution of the proteome (gray
cloud) taken from Ref. [51], and the values chosen for proteins on the lac operon (black dots). Green dashed lines are guides
for the eye. (D)–(F) Experimental [5] (top panels) and theoretical (middle and bottom panels) cross-correlations for three
growth conditions. Proteome fraction–growth and production–growth cross-correlations are plotted as solid and dashed black
lines, respectively. As in Fig 3AB, colored lines show the contributing noise modes.

(GFP) reporter inserted in the operon. Because intrinsic fluc-
tuations in GFP expression affect the cross-correlations di-
rectly as well as indirectly, through their impact on the growth
rate and the expression of other genes, we modeled this re-
porter construct explicitly (see Fig 4A, and S1 Text, pp. 9–11).
Specifically, the lac operon O was represented as a collection
of three proteins Y, Z, and G (for LacY, LacZ, and GFP) af-
fected by a shared noise source NO in addition to their private
sources NY, NZ, and NG. The GCC of the operon as a whole
is the sum of the GCCs of its genes.

By varying the mean expression of the lac operon with
a synthetic inducer, Kiviet et al measured cross-correlations
in three growth states with different macroscopic growth
rates: “slow”, “intermediate”, and “fast” [5]. Empirically,
the macroscopic growth rate obeyed a Monod law [52] as a
function of the mean lac expression. We therefore mimicked
the three growth states by choosing their mean lac expression
levels and growth rates according to three points on a Monod
curve that approximates the empirical one (Fig 4B, labels D,
E, and F). Via equation (7), the same curve also is also used to
estimate the GCC of the lac operon in each condition. Under
“slow” growth conditions, the lac enzymes limit growth con-
siderably (large GCC); under “fast” conditions, lac activity is
almost saturated (small GCC).

To choose realistic parameter values for all other proteins,

we used a published dataset of measured means and variances
of E. coli protein abundances [51]. For each of the 1018 pro-
teins in the dataset, the model included a protein with the ex-
act same mean and variance (see Fig 4C). This uniquely fixed
the amplitudes of all noise sources. The GCCs of all pro-
teins were randomly sampled from a probability distribution
that obeyed the sum rule of equation (11). (See Materials and
Methods, and S1 Text, p. 10–11)

Comparison with measured cross-correlations

The experimental results on the cross-correlations between
GFP synthesis πG, GFP expression φG, and growth rate µ [5]
are reproduced in Fig 4D–F (top panels), together with the
model predictions (middle and bottom panels).

The predicted cross-correlations are linear superpositions
of the same noise modes as described for the two-protein
model. However, the dilution and transmission modes are
now driven by all 1022 noise sources, and there are two in-
stances of the control and autogenic modes: one associated
with the expression and GCC of the operon as a whole, and
one with the expression and GCC of GFP separately. (See
Equations (89)–(94) in S1 Text, p. 10.)

At slow growth, the φG−µ cross-correlation is almost sym-
metrical (Fig 4D, middle panel). Here the control mode of
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the operon dominates due to its large GCC. At higher growth
rates, the autogenic modes become more prominent because
their amplitudes are proportional to the expression level of
the lac genes; at the same time, the amplitudes of the con-
trol modes decrease with the GCCs (Fig 4EF, middle panels).
As a result, the cross-correlation becomes weaker and more
positively skewed.

At slow growth, the πG–µ cross-correlation is negatively
skewed because the operon control mode is dominant (Fig 4D,
bottom panel). It also shows a notable transmission mode.
With increasing growth rate, the autogenic modes increase in
importance, which narrows the peak, increases its height, and
reduces its asymmetry (Fig 4EF, bottom panels). The patterns
seen in both cross-correlations are in good qualitative agree-
ment with the experimental data (Fig 4DEF, top panels).

Alternative dataset, similar results

In the dataset that we used to parameterize protein expres-
sion, the abundances are consistently low compared with
other studies [29, 53]. However, an alternative analysis based
on different abundance data [53] and sampled variances [16]
yielded similar results (S1 Text p. 11, and S3 Fig). We con-
clude that the qualitative trends are insensitive to the precise
dataset used.

Discussion
We have presented a model of stochastic cell growth in which
the growth rate and the expression of all genes mutually af-
fect each other. Systems in which all variables communicate
to create interlocked feedback loops are generally hard to an-
alyze. Analytical results were obtained by virtue of stark sim-
plifying assumptions. Nevertheless, the predicted and mea-
sured cross-correlations have similar shapes and show similar
trends under variation of the growth rate.

That said, a few differences are observed. Chiefly, at
slow and intermediate growth rates the model consistently un-
derestimates the decorrelation timescales (peak widths). In
the model, the longest timescale is the doubling time; this
timescale is exceeded in the experimental data. This suggests
a positive feedback that is not included in the model, possibly
as a result of gene regulation (also see S2 Fig), or else a noise
source with a very long auto-correlation time.

Alongside their measurements, Kiviet et al. published their
own linear noise model, which fits their data well. In fact, the
shapes of the noise modes emerging in that model are math-
ematically identical to those presented above [42]. Yet, the
models differ strongly in their setup and interpretation. Kiviet
et al. model a single enzyme E that is produced and diluted by
growth. It features only three noise sources: one directly af-
fects the production of E (“production noise”), one the growth
rate µ (“growth noise”), and one affects both simultaneously
(“common noise”). While these ingredients are sufficient to

fit the data, the interpretation and molecular origins of the
common and growth noise are left unspecified. In our model,
which includes many proteins, similar noise modes emerge
without explicit growth or common noise sources. Each en-
zyme perceives fluctuations in the expression of all genes as
noise in the growth rate; this results in a dilution mode sim-
ilar to that of Kiviet et al. Furthermore, noise in the syn-
thesis of each enzyme instantaneously affects the growth rate
(equation (2)) due to the assumed homeostatic control of pro-
tein density. Hence, this noise behaves as a common noise
source, which explains why the autogenic mode is mathemat-
ically identical to the common-noise mode of Kiviet et al. We
conclude that noise in the expression of many enzymes, com-
bined with homeostatic control of protein density, can con-
tribute to the observed but unexplained common- and growth-
noise modes.

Control coefficients are routinely used in metabolic control
analysis [45,46,54,55] and have also been studied in the con-
text of evolutionary optimization [47, 56]. In our linearized
model, GCCs emerged as transfer coefficients, indicating that
these quantities also affect the propagation of noise. Con-
versely, this suggests that GCCs could be inferred from noise-
propagation measurements. For example, the Pearson corre-
lation coefficient (cross-correlation at zero delay) between φi

and µ might be used as an indication of control. However, we
have seen in Fig 3 that the φ–µ correlation involves several
noise modes that are independent of the GCC. As a result, the
signs of the Pearson correlation and the GCC do not neces-
sarily agree (see Fig 5A). In addition, the intrinsic noise and
GCC of the reporter protein can result in a negative cross-
correlation even if the operon’s control is positive (Fig 5B).
Alternatively, the asymmetry of the control mode in the π–µ
cross-correlation could perhaps be exploited [5] (S4 Fig). Un-
fortunately, this asymmetry is also affected by other modes,
such as the transmission mode, which can mask the effect
(S4 Fig, panel C). We conclude that, in any case, such re-
sults have to be interpreted with great caution, ideally guided
by a quantitative model.

Future theoretical work should aim to relax assumptions
and remove limitations. The assumed strict control of pro-
tein density can be relaxed by allowing density fluctuations.
If these are long-lived, they will likely weaken the autogenic
mode and introduce new modes of their own. Also, additional
noise sources can be included that do not stem directly from
protein synthesis. In particular, we ignored noise originating
from cell division despite its importance [8, 57, 58]. In addi-
tion, gene regulation will affect some noise modes; this can be
studied by allowing the fi to depend on φ. It will also be in-
teresting to include non-protein components of the cell, such
as RNAs.

A further caveat is that the linear approximation used here
is only reasonable if the noise is sufficiently weak. In fact,
in the presence of strong non-linearities, the approach may
even break down completely. For instance, it has been shown
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Fig 5. Deceptive concentration–growth cross-correlations. (A) Positive Pearson correlation despite a negative operon
GCC, due to a dominant autogenic mode. Same parameters as Fig 4F, but with Cµ

O = −0.035. (B) Negative Pearson
correlation despite a positive operon GCC, due to noisy GFP expression. Same parameters as Fig 4F, but with operon noise
much smaller than GFP noise (see Materials and Methods).

that cellular growth can be stochastically arrested when an en-
zyme whose product is toxic to the cell is expressed close to
a threshold beyond which toxic metabolites build up to lethal
doses [59]. In such circumstances, expression level noise in
those enzymes can have a highly nonlinear effect on the cellu-
lar growth rate, resulting in subpopulations of growth-arrested
cells [59]. That said, under more ordinary conditions linear
models that describe noise in cellular networks have previ-
ously been used to great success [5, 42].

Throughout this document we have considered noise
sources that act on each production rate independently. Al-
ternatively, one could hypothesize that the observed fluctua-
tions in protein concentrations might instead originate from
noise in the allocation of the flux—that is, from fluctuations
in the allocation coefficients fi. This would be expected un-
der the supposition that ribosomes are always fully occupied
and translating at a constant, maximal rate, so that the relative
rates of protein synthesis are determined solely by competi-
tion between different mRNAs based on their relative abun-
dances and their translation initiation rates. Protein synthe-
sis rates then become intrinsically correlated: an increase in
the synthesis rate of one protein requires an simultaneous de-
crease in the synthesis rates of other proteins. In future work,
such alternative models could be explored in detail. Prelim-
inary simulations, however, show a striking symmetry in the
φi–µ cross-correlation and a consistent asymmetry in the πi–
µ cross-correlation (for details see S1 Text pp. 12–13, and
S5 Fig). This can be understood as follows. If an increase in a
particular synthesis rate is always compensated by a decrease
in other production rates, the noise does not affect the sum
of all production rates nor the growth rate instantaneously.
Therefore, no autogenic mode should be present. Notably, in
our model it is the autogenic mode that explains the asymme-
try in the measured φi–µ cross-correlations as well as the dom-
inant symmetric mode in the πi–µ cross-correlations under the
fast growth condition. We conclude that noise on flux alloca-
tion alone cannot readily explain these experimental findings
and additional noise sources would have to be included, such
as the common noise as defined by Kiviet et al. [5].

Lastly, we hope that this work will inspire new experi-

ments that can confirm or falsify the assumptions and results
presented above. In particular, single-cell measurements of
mass-density of protein-density fluctuations [60,61] could es-
tablish whether our assumption of density homeostasis is war-
ranted. Also, additional single-cell measurements could de-
termine whether expression noise indeed propagates between
reporter proteins, adding to their covariance, and whether the
amplitude of the various noise modes scales with the GCCs
and mass fractions as predicted.

Materials and Methods
We here specify the parameters used for the many-protein
model; also see S1 Text, pp. 10–11.

Growth rates and protein abundances

The Monod curve (Fig 4B) is given by µ0 = µmaxφ0,O/(φhalf +

φ0,O), with µ0 the mean growth rate, φ0,O the mass fraction of
the lac-operon proteins, µmax = 0.8 h−1, and φhalf = 0.005.
The three growth states correspond to three points on this
curve, with φ0,O/φhalf = {0.3, 1.3, 15}; this mass is shared
equally among proteins Y, Z, and G. The mass fractions
of the remaining proteins matched the proportions of the
dataset [51].

Ornstein–Uhlenbeck noise sources

The amplitudes of all noise sources were uniquely fixed by
the constraints that (i) the CV of each Lac protein was 0.15,
(ii) the amplitude of NO was 1.5 times that of NG [4], and (iii)
all other CVs agreed with the dataset [51]. All noise reversion
rates were set to β = 4µmax.

GCCs

To select the GCCs, we first randomly assigned proteins (≈
25% of the total mass) to the non-metabolic sector H. After
the lac reporter construct was added, the GCC of each protein
h ∈ H was set by equation (12). In each growth state, the
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GCC of the lac operon was calculated from the Monod curve,
which yielded Cµ

O = {0.77, 0.43, 0.063}. Assuming GFP is
non-metabolic and the GCCs of Y and Z are equal, we set
Cµ

G = −φ0,G and Cµ
Y = Cµ

Z =
(
Cµ

O −Cµ
G

)
/2. The GCCs of

all other proteins were sampled from a probability distribu-
tion that respects equation (11) and assumes that proteins with
a larger abundance tend to have a larger GCC (see S1 Text,
p. 11).
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[18] Tănase-Nicola S, ten Wolde PR. Regulatory con-
trol and the costs and benefits of biochemical
noise. PLoS Comput Biol. 2008;4(4):e1000125.
doi:10.1371/journal.pcbi.1000125.

[19] Hashimoto M, Nozoe T, Nakaoka H, Okura R,
Akiyoshi S, Kaneko K, et al. Noise-driven
growth rate gain in clonal cellular populations.
Proc Natl Acad Sci USA. 2016;113(12):3251–3256.
doi:10.1073/pnas.1519412113.

[20] Bosdriesz E, Molenaar D, Teusink B, Bruggeman
FJ. How fast-growing bacteria robustly tune their
ribosome concentration to approximate growth-rate

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/246165doi: bioRxiv preprint 

https://doi.org/10.1101/246165
http://creativecommons.org/licenses/by/4.0/


maximization. FEBS J. 2015;282(10):2029–2044.
doi:10.1111/febs.13258.

[21] Taheri-Araghi S, Brown SD, Sauls JT, McIntosh DB,
Jun S. Single-cell physiology. Annu Rev Biophys.
2015;44(1):123–142. doi:10.1146/annurev-biophys-
060414-034236.

[22] Tsuru S, Ichinose J, Kashiwagi A, Ying BW, Kaneko
K, Yomo T. Noisy cell growth rate leads to fluc-
tuating protein concentration in bacteria. Phys Biol.
2009;6(3):036015. doi:10.1088/1478-3975/6/3/036015.

[23] Maaloe O. An analysis of bacterial growth. Dev Biol
Suppl. 1969;3:33–58.

[24] Tan C, Marguet P, You L. Emergent bistability by a
growth-modulating positive feedback circuit. Nat Chem
Biol. 2009;5(11):842–848. doi:10.1038/nchembio.218.

[25] Klumpp S, Zhang Z, Hwa T. Growth rate-
dependent global effects on gene expression
in bacteria. Cell. 2009;139(7):1366–1375.
doi:10.1016/j.cell.2009.12.001.

[26] You C, Okano H, Hui S, Zhang Z, Kim M, Gunder-
son CW, et al. Coordination of bacterial proteome
with metabolism by cyclic AMP signalling. Nature.
2013;500(7462):301–306. doi:10.1038/nature12446.

[27] Klumpp S, Hwa T. Bacterial growth: global ef-
fects on gene expression, growth feedback and pro-
teome partition. Curr Opin Biotechnol. 2014;28:96–102.
doi:10.1016/j.copbio.2014.01.001.

[28] Hui S, Silverman JM, Chen SS, Erickson DW, Basan M,
Wang J, et al. Quantitative proteomic analysis reveals a
simple strategy of global resource allocation in bacteria.
Mol Syst Biol. 2015;11(2):784.

[29] Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volk-
mer B, Callipo L, et al. The quantitative and condition-
dependent Escherichia coli proteome. Nat Biotechnol.
2016;34(1):104–110. doi:10.1038/nbt.3418.

[30] Scott M, Gunderson CW, Mateescu EM, Zhang
Z, Hwa T. Interdependence of cell growth
and gene expression: origins and conse-
quences. Science. 2010;330(6007):1099–1102.
doi:10.1126/science.1192588.

[31] Hermsen R, Okano H, You C, Werner N, Hwa T. A
growth-rate composition formula for the growth of E.
coli on co-utilized carbon substrates. Mol Syst Biol.
2015;11(4):801. doi:10.15252/msb.20145537.

[32] Molenaar D, van Berlo R, de Ridder D, Teusink
B. Shifts in growth strategies reflect tradeoffs in
cellular economics. Mol Syst Biol. 2009;5(1):323.
doi:10.1038/msb.2009.82.

[33] Scott M, Klumpp S, Mateescu EM, Hwa T. Emer-
gence of robust growth laws from optimal regulation
of ribosome synthesis. Mol Syst Biol. 2014;10(8):747.
doi:10.15252/msb.20145379.

[34] Maitra A, Dill KA. Bacterial growth laws re-
flect the evolutionary importance of energy effi-
ciency. Proc Natl Acad Sci USA. 2015;112(2):406–411.
doi:10.1073/pnas.1421138111.

[35] Berthoumieux S, de Jong H, Baptist G, Pinel C, Ran-
quet C, Ropers D, et al. Shared control of gene expres-
sion in bacteria by transcription factors and global phys-
iology of the cell. Mol Syst Biol. 2013;9(1):634–634.
doi:10.1038/msb.2012.70.

[36] Shahrezaei V, Marguerat S. Connecting growth
with gene expression: of noise and num-
bers. Curr Opin Microbiol. 2015;25:127–135.
doi:10.1016/j.mib.2015.05.012.

[37] de Jong H, Casagranda S, Giordano N, Cinquemani E,
Ropers D, Geiselmann J, et al. Mathematical mod-
elling of microbes: metabolism, gene expression and
growth. J R Soc Interface. 2017;14(136):20170502.
doi:10.1098/rsif.2017.0502.

[38] Bremer H, Dennis PP. Modulation of chemical compo-
sition and other parameters of the cell by growth rate.
In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC,
Low KB, Magasanik B, et al., editors. Escherichia coli
and Salmonella. vol. 2. 2nd ed. Washington, D.C.: ASM
Press; 1996. pp. 1553–1569.

[39] Kubitschek HE, Baldwin WW, Schroeter SJ, Graetzer R.
Independence of buoyant cell density and growth rate in
Escherichia coli. J Bacteriol. 1984;158(1):296–299.

[40] Maurizi MR. Proteases and protein degradation in
Escherichia coli. Experientia. 1992;48(2):178–201.
doi:10.1007/BF01923511.

[41] Iyer-Biswas S, Wright CS, Henry JT, Lo K, Burov
S, Lin Y, et al. Scaling laws governing stochas-
tic growth and division of single bacterial cells.
Proc Natl Acad Sci USA. 2014;111(45):15912–15917.
doi:10.1073/pnas.1403232111.

[42] Dunlop MJ, Cox RS III, Levine JH, Murray RM,
Elowitz MB. Regulatory activity revealed by dynamic
correlations in gene expression noise. Nat Genet.
2008;40(12):1493–1498. doi:10.1038/ng.281.

[43] Savageau MA. Biochemical Systems Analysis. Read-
ing: Addison-Wesley; 1976.

[44] Paulsson J. Summing up the noise in gene
networks. Nature. 2004;427(6973):415–418.
doi:10.1038/nature02257.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 23, 2018. ; https://doi.org/10.1101/246165doi: bioRxiv preprint 

https://doi.org/10.1101/246165
http://creativecommons.org/licenses/by/4.0/


[45] Kacser H, Burns JA, Fell DA. The control of
flux. Biochem Soc Trans. 1995;23(2):341–366.
doi:10.1042/bst0230341.

[46] Heinrich R, Schuster S. Metabolic Control Analysis.
In: The Regulation of Cellular Systems. New York, NY:
Chapman & Hall; 1996. pp. 138–291.

[47] Wortel MT, Bosdriesz E, Teusink B, Bruggeman FJ.
Evolutionary pressures on microbial metabolic strate-
gies in the chemostat. Sci Rep. 2016;6:29503.
doi:10.1038/srep29503.

[48] O’Brien EJ, Utrilla J, Palsson BO. Quantifi-
cation and classification of E. coli proteome uti-
lization and unused protein costs across environ-
ments. PLoS Comput Biol. 2016;12(6):e1004998.
doi:10.1371/journal.pcbi.1004998.

[49] Borkowski O, Ceroni F, Stan GB, Ellis T. Overloaded
and stressed: whole-cell considerations for bacterial
synthetic biology. Curr Opin Microbiol. 2016;33(Supp
C):123–130. doi:10.1016/j.mib.2016.07.009.

[50] Dublanche Y, Michalodimitrakis K, Kümmerer N,
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