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 388	
Fig. 6. vSrc modulates cell cycle regulators CDK1 and Pp2a. (A) A schematic model of Src interference 389	
with cell cycle regulation. (B) Immunofluorescence images of CDK1 pY15 (purple) in the EVL cells 390	
expressing the mKO2-CDK1-pep (red) alongside EGFP or EGFP-vSrc (green). Scale bar, 10 µm. (C) The 391	
effect on phosphorylation of CDK1 after 8 hours from Src activation in MDCK cells. MM – MDCK cells alone, 392	
SS – Src cells alone, MS – cultures mixed 1:1, MM+HU – MDCK cells treated with 2mM hydroxyurea (HU). 393	
(D) Quantification of the mean normalised signal ± s.d. in western blotting with the anti-CDK1-pY15 antibody 394	
after 8 hours from Src activation in MDCK cells from 3 independent experiments. 395	
 396	
vSrc modifies adherens junctions to recruit Anillin. At this point, the means by which 397	
vSrc hijacked the cytokinetic machinery were still unclear. In a dividing cell positioning of 398	
the mitotic plane is determined by the mitotic spindle21,23; however, the spindle and its cues 399	
for cytokinetic ring assembly were absent in a vSrc cell undergoing extrusion (Fig. S4F). 400	
This raised the possibility that the Anillin ring may be involved in extrusion via junctional 401	
constriction. Since RhoA activation promotes Anillin recruitment to the mitotic plane20,22,24 402	
and modulates junctional integrity48, we investigated the effects of constitutively active and 403	
dominant negative RhoA on extrusion. Surprisingly, expression of either of these forms 404	
supressed vSrc-mediated increase in height (rounding-up), but not extrusion itself (Fig. 405	
7A). Moreover, RhoA activation without vSrc did not trigger extrusion (Fig. S7A). These 406	
results imply that focal RhoA activation at the junctions is necessary for the assembly of 407	
the contractile Anillin ring, but that widespread activation or inactivation of RhoA 408	
presumably inhibits this process. 409	
 410	
What mediates coupling of the cytokinetic machinery with the junctions? A recent study on 411	
the regulation of cytokinetic ring assembly identified p120-catenin, a component of the 412	
AJs, as a scaffold that restricts RhoA activation zone to the constricting ring49. This 413	
prompted us to hypothesise that p120-catenin, a well-known target of the Src kinase50, 414	
could be the factor that delocalises Anillin to the junctions in the absence of cues coming 415	
from the mitotic spindle. To test this hypothesis, we attempted to modulate the p120-416	
catenin function in extruding vSrc cells. Two tyrosine residues Y217 and Y228 of p120-417	
catenin when phosphorylated by Src are known to promote the interaction between the Src 418	
kinase and RhoA51. Therefore, we created a phosphomimetic mutant versions of p120-419	
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catenin in which these tyrosine residues were replaced with phenylalanines (FF) to mimic 420	
lack of phosphorylation (Fig. 7B). Interestingly, expression of the p120-catenin FF mutant 421	
together with vSrc already significantly attenuated extrusion, presumably acting as a 422	
dominant negative form in this context (Fig. 7C). This suggests that vSrc modulates 423	
adherens junctions to couple with the cytokinetic machinery. 424	
 425	
We then sought if modified p120-catenin could link the cytokinetic ring to the junctions in a 426	
cell cycle-dependent manner, mimicking vSrc-like activity during cell extrusion. Expression 427	
of the p120-catenin EE mutant, in which the Src-dependent phosphorylation sites are 428	
replaced with glutamic acids to mimic a permanent state of phosphorylation, with 429	
concomitant expression of the Wee1 kinase and CA-Cdc25 phosphatase resulted in a 430	
G2/M arrest phenotype in normal EVL. In the presence of these three factors, we indeed 431	
observed Anillin-GFP recruited to the junctions. In some cases, the cells expressing these 432	
factors underwent basal extrusion accompanied by immediate cell death (Fig. 7D, Movie 433	
9). Importantly, without the EE mutant of p120-catenin, expression of Wee1 and CA-Cdc25 434	
was not sufficient to recruit Anillin-GFP to the junctions in cells arrested at the G2/M 435	
transition (Fig. 7E). In rare cases of basal extrusion due to protein overexpression in these 436	
embryos, Anillin was not recruited to the junctions and this type of extrusion appeared to 437	
be Anillin-ring independent (Fig. S7B). Finally, when p120-mutant-FF, instead of p120-438	
mutant-EE, was expressed alongside Anillin-GFP in cells arrested at the G2/M transition, 439	
Anillin could not be stably recruited to the junctions, form a ring or facilitate cell extrusion 440	
(Fig. 7F). This last observation proved that phosphorylation of p120-catenin by vSrc on 441	
residues Y217 and Y228 was indeed responsible for the recruitment of Anillin to the 442	
junctions and drove the apicobasal split of vSrc cell during extrusion. 443	
 444	
Collectively, Src activation in the EVL leads to altered cell cycle progression, assembly of a 445	
contractile ring initially parallel to the surface of the embryo through AJs in the prolonged 446	
G2 phase of the cell cycle and extrusion via constriction of this ring in early mitosis. During 447	
extrusion, the misoriented ring constricts and separates the basal from the apical part of 448	
the cell releasing both from the epithelium. 449	
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 450	
Fig.7. Src-phosphorylated p120-catenin recruits Anillin to the junctions allowing formation of a 451	
contractile ring. (A) The effect of constitutively active RhoA and dominant negative RhoA expression on 452	
vSrc-driven extrusion. Embryos were injected with the following constructs: dUAS:EGFP-vSrc, dUAS:EGFP-453	
vSrc;CA-RhoA or dUAS:EGFP-vSrc;DN-RhoA. Data are presented in two graphs displaying cells “Apically 454	
extruded” (outside of the embryo) and “Tall” (remaining in the monolayer but taller and rounder than 455	
neighbours). Data are mean ± s.d. 3 independent experiments (total number of embryos: nSrc = 35; nSrc,CA-RhoA 456	
= 38; nSrc,DN-RhoA = 36). *P < 0.05. (B) A schematic model of the domain composition of p120-catenin. 457	
Highlighted in green are phosphorylation sites regulated by the Src kinase (from: PhosphoSitePlus 458	
database). In the bottom panel, a design of p120-catenin mutant with two sites, which regulate the interaction 459	
between p120-catenin and RhoA51. These Src-dependent phosphorylation sites are mutated from Y to F 460	
(p120-mutFF). (C) The effect of phospho-mimetic p120-mutFF on vSrc-driven extrusion. Embryos were 461	
injected with the following constructs: dUAS:EGFP-vSrc;p120-wt or dUAS:EGFP-vSrc;p120-mutFF. Data are 462	
mean ± s.d. 3 independent experiments (total number of embryos: nSrc = 34; nSrc,CA-RhoA = 42). *P < 0.05. (D) 463	
Time-lapse imaging of the effect of phospho-mimetic p120-mutEE on the localisation of Anillin-GFP in cells 464	
arrested at the G2/M transition. Embryos were injected with a combination of the following constructs: 465	
dUAS:Cherry-Wee1;CA-Cdc25 and dUAS:p120-mutEE;AnillinGFP. Movies were taken over 4 hours. Frames 466	
were extracted from a representative movie at indicated times from the tailbud stage. Scale bars, 25 µm. (E) 467	
Time-lapse imaging of Anillin-GFP localisation in cells arrested at the G2/M transition. Embryos were injected 468	
with a combination of the following constructs: dUAS:Cherry-Wee1;CA-Cdc25 and dUAS:myr-469	
Cherry;AnillinGFP. Movies were taken over 4 hours. Frames were extracted from a representative movie at 470	
indicated times from the tailbud stage. Scale bars, 50 µm. (F) Time-lapse imaging of the effect of p120-471	
mutFF on the localisation of Anillin-GFP in cells arrested at the G2/M transition. Embryos were injected with 472	
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a combination of the following constructs: dUAS:Cherry-Wee1;CA-Cdc25 and dUAS:p120-mutFF;AnillinGFP. 473	
Movies were taken over 4 hours. Frames were extracted from a representative movie at indicated times from 474	
the tailbud stage. Scale bars, 25 µm. 475	
 476	
vSrc promotes apical polarity shift and survival to enable extrusion. So far, we have 477	
identified crucial cellular process and property that need to be modified by the vSrc kinase 478	
for extrusion to occur: the cell cycle and AJs. However, when we tried to mimic vSrc-like 479	
changes in cells without the active kinase, extrusion occurred only occasionally, was basal 480	
instead of apical, and was associated with cell death (Fig. 7D). Hence, we wondered 481	
whether modulating cell polarity downstream of Src activation could lead to a change in 482	
directionality of extrusion. It has been shown that Src fine-tunes the activity of the small 483	
GTPase Cdc42 both directly and indirectly downstream of EGF stimulation52. Cdc42 has 484	
pivotal roles in establishing apicobasal polarity in all eukaryotic cells53,54 and in regulating 485	
the apical polarity complex aPKC-Par3-Par6 in a manner conserved among different 486	
species55-57. Therefore, Cdc42 could be a good candidate to link Src with polarity. When a 487	
dominant negative form of a downstream mediator of Cdc42, atypical protein kinase C 488	
(DN-aPKC), which contains only the N-terminal regulatory domain targeted to the 489	
membrane58, was expressed together with vSrc, it inhibited vSrc-driven extrusion (Fig. 8A). 490	
This suggests a role for the modulation of apicobasal polarity in vSrc-mediated extrusion. 491	
 492	
Apart from modulating the cell cycle, AJs and cell polarity, we speculated that Src 493	
activation involves promoting cell survival, as demonstrated previously59. To reconstitute 494	
vSrc-like cell extrusion, finally we expressed all the components: the cell cycle modulators 495	
Wee1 and CA-Cdc25, the AJs’ component recruiting Anillin p120-mutant-EE, the polarity 496	
modulator constitutively active membrane-bound aPKC (myr-aPKC) and the pro-survival 497	
protein XIAP together in EVL cells. Indeed, combining all the components that mimic Src 498	
activation in the EVL resulted in vSrc-like extrusion: apicobasal split, where extruded cells 499	
did not die immediately (Fig. 8B, C, Movies 10 and 11). Thus, we managed to pinpoint four 500	
effector pathways downstream of vSrc that coordinate apicobasal extrusion: cell cycle via 501	
modulating Cdk1 and Pp2a, AJs via p120 catenin, apicobasal polarity and cell survival 502	
(Fig. 8D, S8C). 503	
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 504	
Fig.8. vSrc-like extrusion can be reproduced by modulating the cell cycle, junctions and polarity in a 505	
vSrc-like manner. (A) The effect of dominant negative aPKC on vSrc-driven extrusion. Embryos were 506	
injected with the following constructs: dUAS:EGFP-vSrc and dUAS:EGFP-vSrc;DN-aPKC. Data are mean ± 507	
s.d. 3 independent experiments (total number of embryos: nSrc = 31; nSrc,DN-aPKC = 31). *P < 0.05. (B) Time-508	
lapse imaging of vSrc-like extrusion induced by coexpression of p120-mutEE, myr-aPKC and the apoptotic 509	
inhibitor XIAP in G2/M-arrested cells. Embryos were injected with a combination of the following constructs: 510	
dUAS:Cherry-Wee1;CA-Cdc25, dUAS:p120-mutFF;myr-aPKC and Krt18:XIAP. Movies were taken over 4 511	
hours. Frames were extracted from a representative movie at indicated times from the tailbud stage. Scale 512	
bars, 50 µm. (C) Time-lapse imaging of vSrc-like cell extrusion in (B) segmented using the Imaris software. 513	
The surface function was used to segment GFP positive cells over time. In this cross section of the embryo 514	
(xz view), a cell is undergoing an apicobasal split (apical part is marked with red arrows and the basal part 515	
with blue arrows). Scale bars, 25 µm. (D) A schematic model of vSrc-driven cell extrusion. vSrc interferes 516	
with the cell cycle, and modulates adherens junctions, cell survival and apicobasal polarity, leading to 517	
apicobasal extrusion. vSrc-expressing cell becomes taller than its neighbours. Cell cycle regulators are 518	
hijacked; Pp2A is inactivated earlier in the cell cycle, but counteracting Cdk1 inhibition results in G2/M arrest 519	
instead of mitosis. The nuclear envelope becomes partially permeable and Anillin is recruited to the 520	
adherens junctions by modified p120-catenin, presumably through active RhoA. A contractile junctional ring 521	
assembles parallel to the plane of the epithelium, constricts in early mitosis and releases the cell from the 522	
epithelium. vSrc-mediated modulation of the apicobasal polarity complex (e.g. aPKC) promotes the 523	
predominantly apical direction of extrusion. Immediate cell death is avoided due to vSrc promoting cell 524	
survival.	525	
 526	
Discussion 527	
 528	
In this report we have used the early zebrafish embryo to study oncogenic extrusion 529	
primarily based on high-resolution live imaging. We found that vSrc-mediated apicobasal 530	
extrusion is executed by hijacking the cell cycle and rewiring cytokinesis. vSrc drives EVL 531	
cells into the G2 phase of the cell cycle and initially blocks further progress. During this 532	
period, Src activation leads to the reorganisation of the zonula adherens (ZA) through 533	
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incorporation of Anillin recruited by vSrc-modified p120-catenin, a component of AJs. With 534	
a contractile junctional ring assembled, the cell enters mitosis and the ring constricts, 535	
facilitating apicobasal extrusion of the vSrc cell. During extrusion, the larger part of the cell 536	
containing the nucleus is released apically. Thus, premature and rewired cytokinesis 537	
occurs in early prophase before NEB or mitotic spindle assembly. 538	
 539	
Such premature cytokinesis has been described in unfertilised syncytial eggs in 540	
Drosophila, which physiologically remain in the M-phase60, despite the fact that there are 541	
no microtubule bundles present in these eggs outside of a small peripheral meiotic spindle. 542	
When injected locally with CDK1 inhibitors or an active RhoA, the embryo forms de novo a 543	
premature contractile structure that resembles a cytokinetic ring with Actin, Myosin and 544	
Anillin at the site of injection. In our system in the absence of a mitotic spindle, vSrc 545	
appears to generate a narrow zone of active RhoA by modulating p120-catenin49-51. This 546	
modulation results in recruitment of the cytokinetic scaffold Anillin and assembly of a 547	
premature misoriented cytokinetic ring by rebuilding the already existing junctional 548	
Actomyosin ring. To resolve the dual roles of RhoA in mediating cytokinesis and junctional 549	
integrity in extruding vSrc cells, optogenetic approaches will be necessary in the future61. 550	
 551	
Transformation of a junctional Actomyosin ring into a contractile ring has been described 552	
previously in the context of apoptotic extrusion, where the ring was formed in the 553	
neighbours62. The process relies on the reorganisation of short into co-aligned peri-554	
junctional Actin bundles. This rearrangement is mediated by the Actin-binding protein 555	
Coronin B1 which is recruited to AJs by E-cadherin. Coronin B1 is not only required to 556	
assemble ZA in epithelial cells, but also to rearrange Actomyosin in the neighbours upon 557	
cell death. When a cell dies within an epithelium, two junctional Actomyosin rings can be 558	
seen at the level of AJs: one in the dying cell and the other in the neighbours. The 559	
neighbouring ring becomes thicker and relocalises basally to facilitate apical extrusion, 560	
while the ring in the dying cell remains stationary. In contrast, during vSrc cell extrusion, 561	
we observe that the autonomous ring changes in structure, becomes contractile and 562	
relocalises from the junctions to an oblique position. Despite being fundamentally different 563	
in terms of the mechanisms for generating force either autonomously or non-564	
autonomously, these two processes are also remarkably similar. Both rely on modification 565	
of the ZA into a fully contractile ring to facilitate extrusion, and appear to be regulated by 566	
RhoA63. While the Actomyosin ring in neighbours of the dying cell is controlled by 567	
p115RhoGEF64, nothing is known about regulators of the autonomous contractile ring, 568	
which remain to be identified in the future. 569	
 570	
Another issue to consider is the non-cell-autonomous contribution to apoptotic and 571	
oncogenic cell extrusion. Micheal et al.62 show that assembly of a contractile ring in 572	
neighbouring cells depends on apoptotic shrinkage of the dying cell, pulling on the 573	
neighbouring junctions and mechanosensing through E-cadherin. In case of vSrc-induced 574	
extrusion, a cell-autonomous active contraction via the pseudo cytokinetic ring generates a 575	
force that presumably pulls at the AJs of the neighbours. In this scenario, the direction of 576	
the forces that act on neighbouring AJs in dead and oncogenic extrusion is the same, but 577	
the strength would likely differ. Together, these findings raise the intriguing possibility that 578	
the pulling force on E-cadherin determines the mechanism used for extrusion by the 579	
neighbouring cells. Importantly, there is a difference in the non-cell-autonomous response. 580	
The Actin ring in the neighbours is less pronounced in Src-driven extrusion than in 581	
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apoptotic extrusion8,63. Instead, neighbours of transformed cells appear to employ the 582	
Actin cross-liking protein Filamin to facilitate this process3. Remarkably, non-autonomous 583	
recruitment of both Actin and Filamin is regulated by RhoA5,63. Since p115RhoGEF 584	
regulates RhoA in the neighbours of a dying cell and mediates Actomyosin ring 585	
assembly64, another RhoA GEFs/GAPs could be involved in the regulation of RhoA and 586	
Filamin in extrusion of transformed cells. In future studies, it will be crucial to clarify 587	
whether E-cadherin signalling that acts as part of a mechanosensor could be upstream of 588	
differential RhoA activation in the neighbours, and to separate regulators of RhoA 589	
upstream of either Actin or Filamin in each of these processes. 590	
 591	
It appears that RhoA GEFs/GAPs in transformed cells and their neighbours are also key in 592	
controlling the direction of extrusion: apical - outside of the embryo or basal - towards the 593	
deep cells of the embryo. It has been shown that p115RhoGEF plays a crucial role in 594	
determining where the Actomyosin ring is assembled in the neighbours of a dying cell64. 595	
Moreover, a recent study in oncogenic extrusion in the Drosophila wing imaginal disk 596	
implicates RhoGEF2, a fly homolog of p115RhoGEF, in determining directionality65. The 597	
presence of RhoGEF2 is linked to “tumour hotspots” with predominant apical extrusion 598	
whereas “tumour coldspots” is associated mostly with basal extrusion. However, our 599	
results (Figs. 8B,C) show that autonomous polarity change is sufficient to reverse the 600	
direction of extrusion. These seemingly opposing observations about whether directionality 601	
of extrusion is controlled cell-autonomously or non-cell-autonomously may be consolidated 602	
by the hypothesis that positioning of the ZA in the neighbours could be responsible for 603	
driving extrusion62. Since AJs connect transformed cells to their neighbours and give rise 604	
to the Actomyosin ring facilitating extrusion, positioning of the AJs should be crucial to 605	
determine the direction of extrusion and could in theory be regulated from both sides: the 606	
extruding cell and its neighbours. 607	
 608	
Our data reveal that autonomous regulation of apicobasal polarity is necessary for vSrc-609	
mediated extrusion (Fig. 8A) and may contribute to regulating its directionality. Recent 610	
findings on apical domain expansion in epithelial cells shed light on how this process could 611	
be involved in extrusion57,66. Dbl3 is a regulatory GEF of Cdc42, which has been shown to 612	
be necessary for oncogenic extusion7. Dbl3 is responsible for apical localisation and 613	
activation of Cdc42 and for expansion of the apical domain in epithelial cells through the 614	
regulation of the apical polarity complex aPKC-Par3-Par6. Downstream of Cdc42, the 615	
myosin kinase MRCK promotes myosin flow that separates apical aPKC-Par6 from 616	
junctional Par3, a step crucial for epithelial differentiation. Interestingly, MRCK was found 617	
differentially phosphorylated in H-RasV12 cells upon interacting with normal cells prior to 618	
extrusion6. It appears that overexpression of Dbl3 promotes apical expansion resembling 619	
rounding up prior to extrusion66. Hence, this pathway may play a role in promoting 620	
rounding alongside RhoA in cell cycle-dependent extrusion or possibly on its own in cell 621	
cycle-independent extrusion. Further studies will be necessary to clarify this point. 622	
 623	
During proliferation and crowding-induced extrusion, normal epithelia have an intrinsic 624	
mechanism of regulating their density, which dictates whether extrusion or division occurs. 625	
Preferential divisions occur in low-density epithelial sites (stretch), while crowding 626	
(squeeze) induces extrusion. This process is mediated by the stretch-activated calcium 627	
channel Piezo167. However, it remains unclear whether this mechanism also functions in 628	
some squamous epithelia, such as the EVL, where all the cells are constantly stretched 629	
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encasing the yolk and the deep cells. Even less is known as to whether Piezo1 mediates 630	
extrusion of transformed cells. Since vSrc-transformed cells become extruded instead of 631	
dividing, does that mean they somehow imitate crowding? We suspect that Piezo1 may 632	
not be involved in this type of extrusion, as our results indicate that the process of vSrc –633	
induced extrusion is primarily driven autonomously, thereby resulting in pulling of the 634	
neighbours rather than pushing, which is apparently different to Piezo1-mediated 635	
extrusion. In our view, extrusion of transformed cells resembles cell death-induced 636	
extrusion and, as mentioned above, may employ some of the mechanisms involved in this 637	
process, in regards to the response in the neighbours. Nevertheless, it remains to be 638	
elucidated whether Piezo1 mediates extrusion of transformed cells. 639	
 640	
Finally, it will be worth investigating whether cell extrusion induced by other oncogenes 641	
occurs in a cell cycle-dependent manner. If the mechanism is similar, blocking proliferation 642	
with drugs while treating carcinogenesis may impair the primary EDAC response and 643	
should be reconsidered. 644	
 645	
Overall, our study uncovers a novel mechanism underlying EDAC. Further investigation 646	
will allow us to identify regulators of GTPases (in particular, RhoA) that regulate different 647	
aspects of extrusion in both cell-autonomous and cell-non-autonomous mechanisms. 648	
Understanding the coordination of timing, apical polarity and junctional integrity may 649	
eventually lead to potential therapies to boost EDAC. 650	
 651	
Methods 652	
 653	
Generation and maintenance of transgenic fish lines. The maintenance of fish and the 654	
collection of embryos were performed as described before68. The line Tg(Krt18:KalTA4-655	
ERT2) was previously established3,10. To establish Tg(Krt18:Lifeact-Ruby) and 656	
Tg(Krt18:CcnB1-GFP) lines we used the vector pBR-Tol2-Krt18 generated previously8 and 657	
transferred Lifeact-Ruby69 and CcnB1-GFP (see Meterials), respectively, downstream of 658	
the Krt18 promoter. The resulting constructs (30 pg) were then coinjected with Tol2 RNA 659	
(7.5 pg) in the morpholino buffer (5 mM HEPES pH 7.5, 200 mM KCl) into one-cell wild 660	
type embryos. The embryos positive for RFP (Lifeact-Ruby) and GFP (CcnB1-GFP) 661	
expression at 10 hours post-fertilization (hpf) were raised to adulthood, and crossed with 662	
wild type fish to identify founder fish. Embryos from potential founders were imaged to 663	
select the optimal level of expression at which no overexpression phenotype could be 664	
observed. The founder fish were out-crossed with WT, and the F1 fish were selected on 665	
the basis of their fluorescent signal. All the embryos for experiments were obtained from 666	
crossing fish heterozygous with the Tg(Krt18:KalTA4-ERT2) line. 667	
 668	
Microinjection and confocal imaging of zebrafish embryos. Embryos were injected 669	
with a single construct (16–20 pg) or multiple constructs (combined amount of DNA was 20 670	
pg) and Tol2 RNA (5 pg) in the morpholino buffer (5 mM HEPES pH 7.5, 200 mM KCl) into 671	
the cell at one-cell stage, and treated with 0.5 mM 4-hydroxy tamoxifen (Sigma H7904, a 672	
stock of 5mM in ethanol) at 50-70% epiboly as described2. For live imaging, after 2 hours 673	
of treatment, embryos were mounted in 0.8% low-melting agarose in fish water prior to 674	
confocal analysis. For immunofluorescence and quantification of extrusion rates, they were 675	
fixed in 4% PFA/PBS at 2.5-3 h after induction, stained and mounted in 1% low-melting 676	
agarose in PBS prior to confocal analyses. Movies were taken over 4 hours or over 8 677	
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hours (cell cycle analysis with the Krt18:CcnB1-GFP line). Confocal images were taken 678	
using a 25x 0.95 NA water-immersion lens on a high-resolution single photon microscope 679	
Leica TCS SP8 and were analysed using the Imaris software (Bitplane). 680	
 681	
Immunostaining of fish embryos. At 10 hpf GFP- or RFP-positive embryos were 682	
selected and dechorionated in 1% agarose plates to avoid damage. Embryos were fixed in 683	
a fresh solution of 4% PFA/PBS overnight at 4oC and subsequently washed 3x in PBS. 684	
Permeabilisation was performed for 15 min in PBS/0.5%TritonX-100 (PBSTr). Blocking in 685	
PBSTr/10% Goat serum/1% DMSO (Blocking buffer) lasted >1 h. Embryos were incubated 686	
with 1st antibody in 200 µl in Blocking buffer @ 4oC O/N, then washed with PBSTr 3-6x for 687	
30 min in total. Incubation with 2nd antibody in 200 µl Blocking buffer lasted 3-4 hours at 688	
room temperature, followed by washes with PBSTr 3-6x for 30 min in total. Phalloidin 689	
staining was performed for 30 min in PBSTr/ 10% Goat serum. 690	
 691	
Cell culture experiments. MDCK cell lines were used in this study. The parental MDCK 692	
cells were a gift from Walter Birchmeier. MDCK and MDCK-pTR cSrc-Y527F-GFP lines 693	
were cultured as previously described7,70. To establish MDCK-pTR cSrc-Y527F-GFP line 694	
stably expressing FUCCI cell cycle markers mCherry-hCdt1(30/120) and mTurquoise-695	
hGem(1/110), MDCK-pTR-cSrc-Y527F-GFP cells were transfected with P2A 696	
Fucci2.2_pCSII-CMV vector (a kind gift from Dr. Miyawaki) together with a pcDNA3.1 as a 697	
selection vector using Lipofectamine 2000 (Life Technologies), followed by selection in the 698	
medium containing 800 μg/mL of G418 (Gibco), 5 μg/mL of blasticidin, and 400 μg/mL of 699	
zeocin. To induce Src-expression, 2 μg ml−1 of tetracycline (Sigma-Aldrich) was added to 700	
the medium. For immunofluorescence and time-lapse experiments, cells were cultured on 701	
type-I collagen gels from Nitta Gelatin (Nitta Cellmatrix type 1-A; Osaka, Japan) as 702	
previously described 7. For immunofluorescence, mixed cultures of cells (MDCK : Src = 50 703	
: 1) were plated and incubated for 8 hours, before adding tetracycline. To avoid differences 704	
in cell density which could affect extrusion rates, proliferation inhibitors were added to the 705	
medium 16 hours after tetracycline at following concentrations: hydroxyurea (2 mM) or Ro-706	
3306 (10 µM). Cells were fixed and stained as described previously6. Immunofluorescence 707	
images were taken with the Olympus FV1000 or FV1200 system and Olympus FV10-ASW 708	
software. Images were analysed with MetaMorph software (Universal imaging). For time-709	
lapse imaging, following a 4 hour-tetracycline treatment, small groups of GFP-positive cells 710	
were chosen for imaging with Olympus IX81-ZDC”(Olympus) and images were taken and 711	
analysed with Metamorph software (Molecular Devices). For Western blotting cells were 712	
plated in plastic dishes and induced with tetracycline for 8 hours before lysis. Western 713	
blotting was carried out as previously described71. Primary antibodies were used at 714	
1:1000. The western blotting data were analysed using ImageJ (NIH). For FACS analysis, 715	
MDCK cells were incubated with or without proliferation inhibitors as before for 16 hours 716	
prior to staining with Hoechst 33342 dye (1 ug/uL; ThermoFisher Scientific). After 717	
trypsinisation and straining, cells were counted, resuspended in 2% FBS/PBS, stained with 718	
propidium iodide and analysed for DNA content using FACSAriaTM Ⅱ (BD Biosciences). 719	
 720	
Data analysis. For data analyses, two-tailed Student’s t-tests were used to determine P-721	
values. P-values less than 0.05 were considered to be significant. Extrusion rates in fixed 722	
embryos were expressed as the number of “extruded” and “tall” cells (unless indicated 723	
otherwise) by the total number of GFP- or RFP-positive cells in the embryo. As “extruded” 724	
we classified cells that are no longer a part of the monolayer (their junctions closed off or 725	
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nearly closed off up to 90%). As “tall” we classified cells that were at least double the 726	
height of an average EVL cell, displaying signs of early extrusion, such as rounding. Only 727	
embryos with between 5-50 GFP- or RFP-positive cells were taken into consideration.	728	
Proliferation rates in living embryos were expressed as the number of divisions over 4 729	
hours by the total number of cells at the beginning of the movie. Only embryos with 730	
between 5-35 GFP- or RFP-positive cells were taken into consideration. To measure 731	
chromatin volume, H2B-GFP signal was used to segment the GFP-positive region in the 732	
cell undergoing division or extrusion over time using the surface function of Imaris 733	
software. A constant threshold was used to avoid bias between different movies. The 734	
moment of mitosis or extrusion was set as point 0 and volumes from different movies were 735	
aligned according to time before and after extrusion and averaged to create graph Fig. 3G. 736	
To measure the intensity of the CcnB1-GFP signal, segmentation was performed in the red 737	
channel on the basis of the signal from the cell surface marker myr-Cherry using the 738	
surface function of the Imaris software. The segmented cell surface was then used to 739	
calculate the average intensity of the green channel and cell volume (Fig. 4D, E, F). To 740	
define the position of the Anillin ring, Imaris spot function was used to determine points 741	
within the plane of the ring and the plane of the surface of the embryo. Extracted 742	
coordinates of the spots where then fed into a MATLab function (based on affine_fit(X)) to 743	
calculate the angle between two planes (Fig. 2E). 744	
 745	
Data availability statement. The datasets generated and/or analysed during the current 746	
study are available from the corresponding author on reasonable request. 747	
 748	
Code availability statement. MatLab code used to quantify the angle of the Anillin ring 749	
will be released upon publication. 750	
 751	
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Materials 978	

Constructs. All the constructs used for experiments were based on the pBR-Tol2 vector 979	
with either Krt18 promoter or the 5xUAS element driving expression in one (UAS, Krt18) or 980	
both (dUAS, dKrt18) directions3,8,10. To generate the dKrt18 vector, we placed the 981	
endogenous basal promoter (-150 bp from the transcription staring site of krt18 gene) to -982	
5kb upstream of the EVL-regulatory sequence of the Krt18 promoter in the reverse 983	
complementary orientation (see Fig S1). Previously published constructs used in this work 984	
were: dUAS:EGFP-vSrc10, UAS:EGFP-vSrc3,10, UAS:myr-Cherry-vSrc3. On the basis of the 985	
four basic pBR-Tol2 vectors with single or double promoters we created a number of new 986	
constructs using the InFusion system (Clontech). To make new constructs in most cases 987	
we used cDNA from zebrafish embryos unless otherwise indicated. The following 988	
previously cloned cDNAs were gifts: Wee1, p20 and p21 from David Whitmore72,73, CA-989	
Cdc25 (Cdc25-3S/T-A) from David Kimelman35, aPKC (rat) from Sergei Sokol74, Dcx-GFP 990	
from Marina Mione75, H2B-GFP from Jon Clarke, Anillin from Luccia Poggi26, p120-wt 991	
(mouse) from Roberto Mayor76, DAPK1 from Caroline Brennan. The following cDNAs were 992	
cloned from a cDNA library created using 24-hour old zebrafish embryos: Pp2a (ZDB-993	
GENE-050417-441), RhoA (ZDB-GENE-040426-2150), CcnB1 (ZDB-GENE-000406-10), 994	
Cdk1 (ZDB-GENE-010320-1), XIAP (ZDB-GENE-030825-7) based on the ZFIN database. 995	
Indicated point mutations and deletions were achieved using the InFusion method 996	
(Clontech) and confirmed by sequencing (Source BioScience). The specific created 997	
mutations were: Y307F in CA-Pp2a, Q63L in CA-RhoA, T19N in DN-RhoA, T14A and 998	
Y15F in CA-Cdk1, Δ(1-740) in DN-Anillin, Δ(201-591) in DN-aPKC, Y217,228F in p120-999	
mutFF, Y217,228E in p120-mutEE. nucGFP was created by fusing 2xNLS Sv40 with NLS 1000	
from Wee1 (RNNRKRSHWN), hmAzami-Green and EGFP. CDK1pep expressing 1001	
construct was created by fusing FLAG, mKO2 fluorophore, CDK1 peptide 1002	
(KIEKIGEGTYGVVYK) and 2xHA tag. 1003	
On the basis of the dUAS:EGFP-vSrc construct we created: dUAS:EGFP-vSrc;Wee1, 1004	
dUAS:EGFP-vSrc;CA-Cdc25, dUAS:EGFP-vSrc;p20, dUAS:EGFP-vSrc;p21, dUAS:EGFP-1005	
vSrc;Pp2a-Y307F, dUAS:EGFP-vSrc;CA-RhoA, dUAS:EGFP-vSrc;DN-RhoA and 1006	
dUAS:EGFP-vSrc;DN-aPKC. We also replaced the EGFP in the dUAS:EGFP-vSrc 1007	
construct with myr-Cherry to obtain dUAS:myr-Cherry-vSrc and subsequently used it to 1008	
make the following constructs: dUAS:myr-Cherry-vSrc;XIAP, dUAS:myr-Cherry-vSrc;Dcx-1009	
GFP, dUAS:myr-Cherry-vSrc;H2B-GFP, dUAS:myr-Cherry-vSrc;nucGFP, dUAS:myr-1010	
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Cherry-vSrc;Anillin-GFP,  dUAS:myr-Cherry-vSrc;DN-Anillin-GFP, dUAS:myr-Cherry-1011	
vSrc;p120-wt, dUAS:myr-Cherry-vSrc;p120-mutFF. We used the original pBR-Tol2-dUAS 1012	
vector to create the following constructs: dUAS:Cherry-Wee1;CA-Cdc25, dUAS:p120-1013	
mutEE;AnillinGFP, dUAS:myr-Cherry;AnillinGFP, dUAS:p120-mutFF;AnillinGFP, 1014	
dUAS:p120-mutFF;myr-aPKC, dUAS:myr-Cherry;GFP-Emerin, dUAS:Dcx-GFP;H2B-RFP, 1015	
dUAS:myr-Cherry;H2B-GFP, dUAS:myr-Cherry;Anillin-GFP, dUAS:GFP-CAAX;CA-RhoA, 1016	
dUAS:myr-Cherry;DAPK1. We used the pBR-Tol2-UAS to create: UAS:myr-Cherry. We 1017	
used pBR-Tol2-Krt18 to create the following constructs: Krt18:XIAP, Krt18:CcnB1-GFP. 1018	
We used the pBR-Tol2-dKrt18 to create the following constructs: dKrt18:H2B-GFP;myr-1019	
Cherry, dKrt18:myr-Cherry, dKrt18:Cherry-Wee1 and dKrt18:Cherry-Wee1;CA-Cdk1. 1020	
 1021	
Antibodies, morpholinos and inhibitors. Anti-GFP antibody was from Abcam (13970). 1022	
Anti-RFP antibody was from MBL (PM005). Anti-phospho-CDK1 Tyr15 antibody was from 1023	
Cell Signaling (4539). Anti-phospho-MLC2 Thr18/Ser19 antibody was from Cell Signaling 1024	
(3674). Anti-phospho-Histone H3 Ser10 antibody was from Upstate (MERCK: 06-570). 1025	
Anti-active Caspase 3 antibody was from BD Biosciences (559565). Secondary antibodies 1026	
were from Invitrogen Molecular Probes. Phalloidin-Atto 647N was from Sigma. 1027	
For knockdown experiments in zebrafish, we used Emi1 MO77, a gift from Jon Clarke. 1 nL 1028	
of 0.5 mM morpholino (Emi1 MO or control MO) solution was injected into the yolk 1029	
following a DNA injection. For chemical inhibition of proliferation, we used aphidocholin 1030	
(150 µM) and hydroxyurea (20 mM) from Sigma in fish water containing 4% DMSO. 1031	
Inhibitors were added together with tamoxifen, at 50-70% epiboly. To generate mitotic 1032	
spindle defects, Eg5 (Kif11) inhibitor STLC from Alfa Aesar was used at 0.874 mM added 1033	
together with tamoxifen, at 50-70% epiboly and during imaging. 1034	
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