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We present a theoretical study of the interaction between a protein (diffusing particle) with
chromatin (polymer chain). Each monomer is a trap where a particle can transiently bind. We derive
novel formulas for the transition rate between monomer sites, given a specific polymer configuration,
and find that a particle is likely to rapidly rebind many times to its release site, before moving to
another. The reattachment probability is larger when the local density around the release site is
smaller. Interestingly, for an equilibrated polymer, the transition probability decays as a power-law
for close monomer-to-monomer distances and reaches an asymptotic value for faraway ones. By
computing the transition rate between monomers, we show that the problem of facilitated search by
a protein can be mapped to a continuous time Markov chain, which we solve. Our findings suggest
that proteins may be locally trapped for a time much longer than their dissociation time, while their
overall motion is ergodic. Our results are corroborated by Brownian simulations.

The interaction of proteins with chromatin regulates
many cellular functions. Most DNA-binding proteins in-
teract both non-specifically and transiently [1] with many
chromatin sites as well as specifically and more stably
with cognate binding sites. These interactions and chro-
matin structure are important in governing protein dy-
namics [2, 3]. However, the effect of these transient inter-
actions on protein motion and distribution has yet been
shown from a first principle.

Some aspects of protein interactions with DNA have
been studied in the context of the search of a gene pro-
moter site by a transcription factor (TF) [4]. It was first
noted [5] that the search for a promoter site by a TF
would be faster if it involves 3d excursions, as well as
sliding of the protein along DNA [6], as was shown in
prokaryotes [7]. These different types of motion were
observed experimentally, leading to massive interest in
models of facilitated diffusion [8–15], and in the impact
of a regulating site’s position on transcription [16, 17]. In
current microscopy experiments, it is impossible to exam-
ine the search process to its fullest [18]. Thus, we con-
centrate here on modeling the experimentally observed
dynamics of the protein as a diffusing and interacting
particle.

We will show that proteins are likely to stay in the
proximity of a site for a time much longer than their
dissociation time from DNA due to reattachment. More-
over, we find that reattachment depends on the local den-
sity around the release site and that the precise config-
uration of the polymer impacts the interacting particle’s
dynamics. We further find the rates associated with the
transition between different monomer sites. Finally, we
show that the process as a whole is ergodic; it has no
long-time power law distribution of the residence time at
a site as has been previously suggested [20].

We consider a point particle (protein) placed at a dis-
tance a from monomer n (locus), part of a long flexi-
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FIG. 1. Transition between monomer sites. (a) A
particle (dark blue) representing a protein interacts with a
monomer site (cyan) that serves as a chromatin locus. It de-
taches from an initial monomer n (magenta) and reattaches to
site l with probability ul(n) without touching other sites along
the way. The polymer is inside a confining domain (yellow) of
radius A. b is the mean square displacement of a bond. (b)
The particle is released at distance a from the initial site, with
uniform angular distribution. It attaches to a site once it is at
distance ϵ from it. We depict chromatin as a coarse-grained
chain of beads, each of characteristic size b representing 3.2kb
and of size 30nm [19]. Hence, for ϵ = 0.03b = 0.9nm and
a = 0.3b = 9nm, the release and capture radii are of the or-
der of the size of a protein and the interaction distance. (c)
Trajectory of the particle interacting with the monomer sites
(cyan). The trajectory color changes with time from red to
green. The black dots are attachment points at the monomer
site (a = 0.5b, ϵ = 0.49b, N = 100, A = 6b).

ble polymer [21, 22] (chromatin) (Fig.1a). The particle
diffuses until encountering monomer l. Absorption oc-
curs at capture radius ϵ < a from l (Fig.1b), where it
remains bound for characteristic time T . Upon dissocia-
tion, the particle is placed at a distance a from monomer
l position (Fig.1b), with a uniform angular distribution
and starts diffusing again. While we postulate here two
radii: release (a) and capture (ϵ), the effective behavior
is equivalent to a model with one release radius, and a
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partially reflecting boundary condition on it. In a par-
tially reflecting model, the particle has a probability to
re-absorb immediately after release. Small re-absorption
probability corresponds to ϵ ≪ a. Thus, when the release
and capture radii are comparable, the particle spends
much time around one monomer cluster, then jumps to
another, only to come back to the first (Fig.1c).

The probability of the particle to arrive at a certain
monomer site before another via 3d diffusion depends
on their respective initial distance [23]. The probability
ul(x) that a particle starting from x arrives at monomer
l before encountering any other monomer (see SM) is

ul(x) =
1

N
+ 4πϵ

[
G(x,Rl)−

∑N
j=1 G(x,Rj)

N

]
+ϵχl +O(ϵ2), (1)

where N is the polymer length, Ri is the position of
monomer i, G(x,y) is the Neumann Green’s function
of the Laplacian in a sphere of radius A, χl is a con-
stant that depends on the monomers’ positions but not
on the initial position x. In writing eq.(1), we assume
that the trapping monomers are well separated. When
the ϵ neighborhoods of two monomers merge, the equa-
tion can be modified [24].

Proteins move much faster in the nucleus than chro-
matin. The diffusion coefficient of a chromatin locus can
be estimated by inserting a fluorescent tag and following
its trajectory [25]. Assuming a coarse-grained model of
chromatin, it was found that a locus of size 3kb has a dif-
fusion coefficient of about D = 10−2µm2/sec [22], while
proteins move three orders of magnitude faster- For ex-
ample, 13.5µm2/sec for the c-Myc protein [26]. We thus
assume that the polymer is fixed at an equilibrium config-
uration inside the domain while the particle is diffusing.

Assuming that the polymer is equilibrated in the do-
main, we found the transition probability ul(n) that a
particle starting in the proximity of site n finds site l
first before encountering other monomers by averaging
eq.(1) with the equilibrium distribution of the polymer
in bulk (see SM):

ul(n) ≈
1

N

(
1− ϵ

a

)
+

4πϵ31/2

(2π)3/2b

[
|n− l|−1/2 − 2

N

(
− 35

24∑
k=l,n

(
(N − k)1/2 + (k − 1)1/2

)
− 4(N − 1)3/2

3N

)]
, l ̸= n,

un(n) ≈
1

N
+

ϵ

a

(
1− 1

N

)
−
(

3

2π

)1/2
8ϵ

bN

(
(N − n)1/2

+(n− 1)1/2 − 2(N − 1)3/2

3N
− 35

48

)
, (2)

where 2 < n, l < N , b is the standard deviation of a bond
length (Fig.1a) and we assume ϵ

(
N1/2/b+ Ca−1

)
≪ 1,

with C a numerical factor of order 1. The expres-
sion for the end monomers is different (see SM sec.4).

While we did not explicitly include a sliding state of
the protein along DNA [6], it could be included by
modifying the nearest-neighbors transition probability
(un−1(n), un+1(n)) and will not change qualitatively our
results.

b

c d
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FIG. 2. Transition between monomer sites. (a) The
transition probability starting from site 1 (turquoise), 5 (or-
ange) or 10 (purple). The polymer has 20 monomer sites
(N = 20), a = 0.3b, ϵ = 0.03b, A = 10b. The full lines are
the result of Brownian simulations, while the dashed lines are
computed using the analytical formula (2). (b) The site tran-
sition probability when the polymer is longer (N = 100). (c)
The polymer is of length N = 20. It is crowded in a small
domain A = 2b and the capture radius is ϵ = 0.12b. (d) The
mean first transition time τl(n) from site n to site l without
interacting with any other site along the way. The full lines
are the result of Brownian simulation and the dashed line is
computed using formula (5) with the same parameters as in
(a). A single time unit is equal to 1t.u = 10b2/D, with D the
diffusion coefficient of the particle.

The reattachment probability un(n) at the release site
is larger than the probability of attaching to far-away
sites (Fig.2a, eq.2), suggesting that once released, the
particle is likely to rebind at the same site. For a longer
polymer strand, the relative probability between reat-
tachment and attachment to a faraway site is larger
(Fig.2b). This result is contrary to previous studies that
assumed that the transition probability and the kon for
rebinding was equal between all monomers [13, 27–33],
or related to a Lévy type diffusion of the particle [31].
Interestingly, we find that the reattachment proba-

bility is minimal for the middle monomer (eq.2). To
clarify this effect, we estimated the expected number of
monomers in a ball around the release monomer, for dif-
ferent monomers along the chain (see SM Fig.1). This
quantity is akin to the local density around the release
site. The monomer density is highest around the mid-
dle monomer, which is closest to the polymer center of
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mass. Thus, the reattachment probability is sensitive to
the local density around the release site and not just to
the average monomer density in the domain.

Chromosomes’ segregation in the nucleus may be the
result of self-avoiding interaction (SAI) between them
[34]. To study how SAI between monomers would mod-
ify the behavior of ul(n), we performed Brownian sim-
ulation (BS) where the monomers interacted through
the Lennard-Jones potential [35] in addition to nearest-
neighbors spring interaction (see SM). The separation of
monomers due to SAI decreases the local monomer den-
sity around the release point, leading to a larger reattach-
ment probability un(n) compared to a phantom chain
(see SM Fig.2a).

The root mean square distance between monomers
scales with their distance along the chain (rmsd =√
⟨(Rn −Rl)2⟩ ∼ |n−l|ν). This results in the power-law

scaling ul(n) ∼ |n − l|−1/2 for proximal sites of a phan-
tom polymer (eq.2), for which ν = 1/2. To study the
behavior for a SA polymer, we computed ul(n) between
proximal sites from the BS, averaged over all release sites
n and fitted it: ⟨u|l−n|(n)⟩ ∼ A|l − n|−α + C. We found
the fitted exponent to be α = 0.59 (see SM Fig.2b) as
would be expected from the rmsd of a SA polymer, for
which ν = 0.6 is the Flory exponent [36]. When a and
ϵ are larger, α increases (see SM Fig.2c). This behavior
may be explained by studying high order expansions of
ul(x) in the parameter ϵ.
Computing ul(n), we assumed that the polymer con-

figuration is not much affected by confinement (the ra-
tio of gyration radius to the domain radius: Rg/A =

b
√
N/6/A = 0.18 and Rg/A = 0.4 for Fig.2a and b re-

spectively). Thus, its equilibrium distribution was well
approximated by the equilibrium distribution of a flexible
chain in bulk. Since one end of the polymer is anchored
at the origin of the domain, when the end-to-end distance
(Re2e = b

√
N) is of the order of the domain radius, the

polymer feels the effect of confinement.
In the nucleus, chromosomes are tightly packed and

are not in the dilute regime. We thus simulated a poly-
mer in a smaller domain for which Rg/A = 0.91 and
Re2e/A = 2.23 and computed ul(n) (Fig.2c). Interest-
ingly, eq.(2) still matches the transition probability even
for this moderately crowded polymer. Indeed, when the
target monomer l is close by, its distance distribution
from the release monomer is not affected much by the
presence of confinement. At the same time, the transi-
tion probability to far away monomers weakly depends
on the distance between the release site and the target.
Thus, it is not much affected by confinement. The va-
lidity of eq.(2) is expected to break for extreme packing
(A ≪ Rg).
To understand the rates involved in the encounters be-

tween proteins and chromatin, we computed the condi-
tional mean first passage time (MFPT) τl(x) of a parti-
cle from position x to site l without encountering other

monomers along the way. The conditional dynamics of
the particle obeys the Langevin equation [37]

dx = a(x)dt+
√
2Ddω, (3)

where dω is a white Gaussian noise, the drift a(x) =

D∇ul(x)
ul(x)

, and ul(x) is given by eq.2. Since u(x) ap-

proaches zero when x approaches any monomer other
than l (see SM eq.5), the drift a(x) will diverge for
x → Ri (i ̸= l). Thus, moving according to eq.(3),
the particle experiences a drift pushing it away from all
monomers except for its final destination l.
τl(x) can be found by solving a boundary value prob-

lem (see SM eq.73). It has the approximate solution

τl(x) ≈ N−1+ϵχl

Dλ0,ϵ

[
1

ul(x)
− 4πCϵ

∑N
j=1

G(x,Rj)
ul(x)

]
, (4)

where λ0,ϵ is the eigenvalue of an associated eigenvalue
problem (see SM sec. 5).
Using the pre-averaging technique on eq.(4) with the

equilibrium polymer configuration, we find an asymptotic
formula for the mean conditional transition time starting
from monomer n

τl(n) ≈
N−1 + ϵχl

Dλ0,ϵ

[
1

ul(n)
− 4πϵN

(∑
j

G̃nj − 4πϵNG̃nn

[
G̃nl + χl −

1

N

∑
j

G̃nj

])]
, (5)

where Gnj is the Green’s function between monomers n
and j positions, averaged over the equilibrium distribu-
tion.
Compared to BS, formula (5) matches the simulation,

where the difference is up to about 20% of the MFPT (see
Fig.2d). Interestingly, τl(n) to the release site (l = n) is
much faster than to other sites and the MFPT converges
asymptotically when the target monomer is far from the
release site (|l − n| ≫ 0). When ϵ → a, the recapture
time is faster with respect to transition time to another
site. Indeed, when an interacting protein starts from
the boundary layer of the release site, the characteristic
recapture rate is significantly higher than the travel time
to other sites. Hence, we suggest that when a protein is
released from a chromatin site, it would quickly rebind
to it with high probability.
We find that the addition of SAI reduces τl(n) com-

pared to a phantom polymer (SM Fig.2d). The addition
of SAI increases the average distance between monomers.
Consequently, the eigenvalue λ0,ϵ is larger (see SM eq.87),
resulting in a smaller MFPT (eq.5). Therefore, the
monomers of a SA polymer fill the domain more opti-
mally than those of a phantom polymer, resulting in a
rapid capture.
Since the reattachment rate at a site is larger, we ex-

pect that when SAI are dominant, proteins will spend
a larger fraction of their time bound at monomer sites.
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Heterochromatin is considered to be denser than euchro-
matin [38]. However, the nature of proteins’ interaction
with heterochromatin it is still unclear. We would ex-
pect un(n) to be smaller in heterochromatin domains and
a protein to ”forget” faster its release position. Alter-
natively, if reattachment occurs with higher probability
(ϵ → a) in heterochromatin, un(n) will be larger in these
domains.

a

site 1

site 2

in

transit

2->1

in

transit

2->2

in

transit

1->2

in

transit

1->1

T1
-1u1(1)

T2
-1u2(2)

T1
-1u2(1)

T2
-1u1(2)

τ1(1)
-1

τ2(2)
-1

τ2(1)
-1

τ1(2)
-1

1 50 100
0

0.3

0.6

p
(S

,t
|n
,0
)

1 50 100
0

0.02

0.04

p
(S

,t
|n
,0
)

b

c

FIG. 3. Site-site transition time and particle distribu-
tion in the domain. (a) Formulating the behavior of a par-
ticle (protein) that interacts with the polymer (chromatin),
inside a domain (nucleus) as a continuous time Markov chain.
We illustrate it for the case of two binding monomer sites. The
particle can be bound at site 1 or 2 and is released with Pois-
sonian dissociation rates T−1

1 and T−1
2 . While diffusing to

bind to a site, it is “in-transit” and arrives at its destination
with probability one and rate τl(n)

−1. (b-c) The monomer is
bound for a characteristic time T = 1t.u at a site. The prob-
ability p of the particle to be in a bound state at monomer
after 1T (b) or 10T (c), is computed by solving numerically
eq.(6). The monomer start at the a-neighborhood of either
monomer 2, 50 or 99. ul(n) and τl(n) were estimated from
Brownian simulation: N = 100, a = 0.5b, A = 10b, ϵ = 0.49
(orange) or ϵ = 0.3b (purple). For N = 100 there are 100
bound states and 104 in-transit states.

Proteins in the nucleus can either be bound to chro-
matin, to other nuclear compartments or stochastically
moving between association events. We denote the un-
bound state as in-transit from one monomer site to an-
other. We assume that at site n, the particle remains
bound for a characteristic time Tn, and leaves with a
Poissonian rate. We thus formulated the transition be-
tween the different states using a continuous time Markov
chain (CTMC) (Fig.3a). We constructed the rate matrix
Q between bound states and transit-states that depend
on ul(n), τl(n) and Tn (see SM). We used Q to find the
time evolution of the probability distribution function of
the particle

p(S, t) = eQtp(S, 0), (6)

where S is the state vector of the CTMC and p(S, 0) is
the initial particle distribution.

We performed BS and estimated numerically ul(n) and
τl(n), taking Tn = T (n = 1...N) and estimated p(S, t)
starting from site n using eq.(6). When the reattachment
probability is high, the particle remains in proximity to
its initial site for a long time (Fig.3b,c) compared with
T . Thus, the equilibration time of the protein in the do-
main is much longer than its disassociation rate from a
site (koff = 1/T ). When the reattachment probability is
smaller, the particle diffuses farther from its initial site
(Fig.3c). Interestingly, the residence probability at the
original site is not uniform along the chain. Since the
middle monomer resides where monomer density is high-
est, the reattachment probability uN/2(N/2) is minimal
(eq.2) for the middle monomer.
Using the long-time behavior of p(S, t), we estimated

the fraction f of bound particles. For high reattachment
probability f ϵ=0.49b,a=0.5b ≈ 0.93, while the rest of the
probability is in the unbound (in-transit) states. For
smaller reattachment probability f ϵ=0.3b,a=0.5b ≈ 0.6. In
the SM we plotted f for different values of ϵ (see SM
Fig.3). f estimated using eq.6 corresponds to the bound
fraction estimated directly with BS.
A naive estimate for the bound fraction, that does not

take into account reattachment, can be found through
the ratio of the off-rate koff and on-rate starting from
the bulk (kon = 4πϵND

|Ω| [37]): fbulk = kon

kon+koff
. We found

that the bulk estimate greatly underestimates the bound
fraction found from the BS or using the CTMC formalism
(see SM Fig.3). Thus, starting at the boundary layer of
the initial monomer site can impact significantly proteins
bound fraction. This may be the origin of the observed
non-uniform distribution [39] and protein clusters [40] in
the nucleus.
To conclude, there is a finite probability, after each re-

lease, that the protein diffuses away to another remote
site, given that there is a trajectory between them. Thus,
the process is ergodic. When the ϵ-neighborhoods of
many traps overlap around the released site, such that
the particle cannot find a path out, it will be quenched
in this area.
Our findings can explain the long residence time dis-

tributions that are observed experimentally [20] without
the need for a power law waiting time distribution as as-
sumed in a CTRW model. As we have shown, escaping
a binding site involves several dissociation and associ-
ation events, with different characteristic rates. Hence,
the localization time distribution may not appear to have
exponential distribution in experiments.
Since the 3d organization of chromatin guides search of

TFs through transient interactions, the number of pro-
teins and their interaction strength is not sufficient to
understand their collective behavior. To fully model pro-
teins behavior at chromatin loci, one has to study the
nature of the local interactions around the site of inter-
est. Based on our model, we can extract directly from
microscopy data the interaction parameters of proteins
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at specific chromatin domains. Thus, we can understand
how different proteins “see” chromatin differently.
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