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Task-Related EEG Source Localization via Graph
Regularized Low-Rank Representation Model

Feng Liu, Jay Rosenberger, Jing Qin, Yifei Lou, Shouyi Wang

Abstract—To infer brain source activation patterns under
different cognitive tasks is an integral step to understand how our
brain works. Traditional electroencephalogram (EEG) Source
Imaging (ESI) methods usually do not distinguish task-related
and spurious non-task-related sources that jointly generate EEG
signals, which inevitably yield misleading reconstructed activa-
tion patterns. In this research, we argue that the task-related
source signal intrinsically has a low-rank property, which is
exploited to to infer the true task-related EEG sources location.
Although the true task-related source signal is sparse and low-
rank, the contribution of spurious sources scattering over the
source space with intermittent activation patterns makes the
actual source space lose the low-rank property. To reconstruct a
low-rank true source, we propose a novel ESI model that involves
a spatial low-rank representation and a temporal Laplacian
graph regularization, the latter of which guarantees the temporal
smoothness of the source signal and eliminate the spurious ones.
To solve the proposed model, an augmented Lagrangian objective
function is formulated and an algorithm in the framework of al-
ternating direction method of multipliers is proposed. Simulation
results illustrate the effectiveness of the proposed method in terms
of reconstruction accuracy.

Index Terms—EEG Source Imaging, Low-Rank Representa-
tion, Graph Regularization, Alternating Direction Method of
Multiplier (ADMM)

I. INTRODUCTION

As a direct measurement modality of neural electrical firing
patterns, electroencephalogram (EEG) has a higher temporal
resolution up to millisecond compared to positron emission
topography (PET) and functional magnetic resonance imaging
(fMRI) [1]–[3]. However, a limitation of EEG is its low
spatial resolution since the measurement is on the scalp rather
than inside the brain. Given the recorded scalp EEG data,
to reconstruct of the brain sources signal inside the brain
is known as EEG inverse problem or EEG source imaging
(ESI) [4]. ESI technique has been widely used in the study of
language mechanisms, cognition process, sensory function, as
well as the localization of epileptic seizure [1], [5].

Since the number of electrodes usually outnumbers that
of brain sources, the ESI problem is highly ill-posed or
mathematically underdetermined. A variety of methods have
been proposed to address this challenging problem with dif-
ferent neurophysiological assumptions,formulated by various
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regularization techniques [4], [6]. There are two main types of
inverse solvers for ESI: dipole fitting and distributed inverse
solvers [7]. Dipole fitting empirically solves the MEG/EEG
forward and inverse problems by characterizing the neural
generators responsible for electrical potential detected on the
scalp sensors [4], [8]. The algorithms proposed in recent years
to solve the ESI problem within distributed dipoles paradigm
can be further summarized into three categories in general,
which are the (1) Bayesian framework [9]–[13], (2) state-
space based algorithms [14]–[18], (3) models using sparse
representation technique [19]–[22], [7], [23].

In many sensory or cognitive studies, the underlying acti-
vated cortical responsible for the signal processing are rela-
tively focal and thus sparse, which makes the spatial sparse
constrain not only mathematically necessary but also neurolog-
ically reasonable [1]. One widely accepted assumption is that
a sparse spatial structure is favored than a complicated source
configuration to explain the same data [24]. An representative
early pioneering work is the `2-norm based minimum norm
estimate (MNE) inverse solver [25]. Based on MNE algo-
rith, Pascual-Marqui et al. later proposed standardized low-
resolution brain electromagnetic tomography (sLORETA) [26]
that enforces spatial smoothness of the neighboring sources
and normalizes the solution with respect to the estimated
noise level. Some algorithms proposed to use combined
multiple solvers, e.g., Weighted minimum norm-LORETA
(WMN-LORETA) which combines the LORETA solver and
a weighted minimum norm to compensate for deeper sources
originate from the subcortical regions [27]. As the above men-
tioned algorithms are based on `2-norm to different extents, the
estimated source area is over-diffuse. By replacing `2-norm by
`1-norm, minimum current estimate (MCE) [28] is proposed
to overcome overestimation of active area sizes incurred by `2-
norm. Recent development of compressive sensing algorithm
proved the `p (p ≤ 1) regularization on the original source
signal usually provides a set of discrete sources distributed
across the cortex due to high coherence of lead field matrix, in
order to encourage reconstruction of extended source patches,
it has been found that by enforcing sparsity in a transformed
domain, e.g., total variation (TV) regularization [29], [30],
[22], [31], focal source extents can be better estimated.

The aforementioned algorithms estimate source location at
each time point independently, leading to discrepancy along
the time direction. To encourage temporal smoothness, a
number of regularization techniques based on spatiotemporal
mixed norms have been developed, including the famous
Mixed Norm Estimates (MxNE) which uses `1,2-norm regu-
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larization [20], and time-frequency mixed-norm estimate (TF-
MxNE) which uses structured sparse priors in time-frequency
domain for better estimation of the non-stationary and transient
source signal [19]. The disadvantage of MxNE is imposing `2
norm can’t guarantee the temporal smoothness in neighboring
time points when the source signal is corrupted, while the
limitation of TF-MxNE is the lost of high temporal resolution
by using of STFT Gabor matrix as a dictionary for time-
frequency coefficients. Due to the existence strong sponta-
neous background source activations, discriminative source
activation pattern corresponding to different cognitive tasks
which provide more insights shall be reconstructed, Liu et al
proposed to use label information of EEG data to find those
discriminative source activation pattern [40], [32], [33].

One common drawback of the existing ESI algorithms is
that they only consider noises on the sensor level and ignore
the spurious noise from the cortex. If perfectly reconstructed,
the estimated source is aggregated by task-related source
and spurious noise in the source space. The true task-related
sources will be corrupted by spurious sources, which motivates
us to develop new algorithms to find true task-related source.
There are two commonly accepted assumptions (1) spatially
sparse (2) temporally continuous for the task-related source
activation pattern, which inevitably leads to the low-rank
property of the source space. To better discover the task-
related source, we impose the low-rank term in the goal
function as we consider it is a more direct constraint for spatial
sparse. Also, we use a more direct penalty term to temporal
smoothness, which is to penalize dissimilarity of temporally
neighboring samples based on manifold graph embedding. It
is worth-noting that we used the graph regularization term
in our previous paper, however the graph is defined to be
fully connected for all the points within one class [40], which
inevitably drive all the activate patterns at different time
points having the same magnitude, thus making the previously
defined graph regularization term rely on a strong assumption
and limit its future application for realistic cases.

In this paper, we propose a novel EEG source imaging
model based on temporal graph regularized low-rank represen-
tation. The model is solved based on the alternating direction
method of multipliers (ADMM) [34]. We conducted extensive
numerical experiments to verify the effectiveness on discover-
ing task related low-rank sources. The reconstructed solution
is temporally smooth and spatially sparse. The contributions
of our paper are summarized as follows:

1) We propose to consider the noise not only in the sensor
level, but also in the source space.

2) A low-rank representation model (LRR) is proposed
for the first time on EEG inverse problem inspired
by the low-rank property of true task-related source
configurations.

3) We redefined graph embedding regularization based on
our previous paper that utilizes temporal vicinity infor-
mation of samples to promote temporal smoothness.

4) A new algorithm based on ADMM is given which is
capable of extracting the low-rank task-related source
patterns.

II. INVERSE PROBLEM AND TEMPORAL GRAPH
STRUCTURES

In this section, we briefly review the inverse problem and
then discuss the design of temporal graph regularization.

A. The Inverse Problem

The cortex source activations propagate to EEG sensors
through a linear mapping matrix called lead field matrix, and
it can be described as the following linear model:

X = LS + E (1)

where X ∈ RNc×Nt is the EEG data measured at a set of Nc
electrodes for Nt time points, L ∈ RNc×Nd is the lead field
matrix which maps the source signal to sensors on the scalp,
each column of L represents the electrical field of a particular
source to the EEG electrodes, S ∈ RNd×Nt represents the
corresponding driving potential in Nd sources locations for
the Nt time instants. Since the number of sources is much
larger than electrodes, solving S given X is ill-posed with
infinite feasible solutions, which necessitates a regularization
term to be imposed. Generally, an estimate of S can be found
by minimizing the following cost function, which is composed
of a quadratic error and a regularization term:

arg min
S
‖E‖2F + γΘ(S) s.t. X − LS = E, (2)

where ‖·‖F is the Frobenius Norm. The penalty term Θ(S)
is to encourage neurophysiologically plausible solutions. The
regularization term take the form of `2, `1 or mixed norm.
For example, spatially smooth formulation as in LORETA
estimation or spatially sparse formulation with Least Absolute
Shrinkage and Selection Operator (LASSO) estimate.

B. Temporal Graph Embedding

An important assumption on the source signal is that two
temporal adjoint data points should have similar intrinsic
activation pattern. In computer vision community, a lot of
manifold learning methods have been proposed to find intrinsic
similar structure on low-dimensional sub-manifolds embed-
ded in a high dimensional ambient space, such as locally
linear embedding [35], Locality Preserving Projection [36],
Neighborhood Preserving Embedding [37]. A graph can be
viewed as geometric neighborhood relationship between each
vertex representing each data sample, the weight between
vertex represents similarity between two points [38]. Inspired
by the manifold theory [39], we use a regularization term
to penalize the difference of two neighboring source signal.
In our previous work, we use a graph regularization term
to promote intra-class consistency [40], but the assumption
is too strong by requiring all the reconstructed sources at
different time points has the same location as well as signal
magnitude as long as they belong to the same class. Now
define a temporal graph regularization as

Rt(S) =
N∑

i,j=1

‖si − sj‖22Wij , (3)
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where si is the i-th column of the matrix S, and a binary
matrix W is designed as follows

Wij =

{
1, if si ∈ Nk(sj) or sj ∈ Nk(si)
0, otherwise.

The graph embedding matrix W contains temporal vicinity
information. Nk(si) is the set containing k temporally closest
points to si. This formulation intends to force neighboring
source signal having similar pattern. The benefits are twofold,
one is for temporal smoothness, another advantage is to make
the reconstructed source denoised for intermittent spurious
source activates. By defining D as a diagonal matrix whose
entries are row sums of the symmetric matrix W , i.e., Dii =∑
jWij , and denoting G = D −W , Rt(S) can be rewritten

as:

Rt(S) =
N∑

i,j=1

(si
T si + sj

T sj − 2si
T sj)Wij (4)

=

N∑
i

sTi siwii −
N∑

i,j=1

sTi sjwij (5)

= 2 tr(SDST )− 2 tr(SWST ) = 2 tr(SGST ),

where tr(·) is the trace operator of a matrix, i.e., adding up
all diagonal entries of a matrix.

Fig. 1: Illustration of temporal smoothness. By design the
temporal graph matrix G, the reconstructed signal should have
consistent pattern within the same neighborhood window.

III. PROPOSED EEG SOURCE IMAGING MODEL

Before we present our low-rank model with temporal graph
structures, we comment on the limitations of traditional model
and come up with the decomposition of task-related source
with low-rank property and spontaneous non-task-related spu-
rious sources that is sparsely distributed spatially and with
transient patterns. We come up with a graph regularized low-
rank representation model and detailed discussion on the
purpose of each term in the goal function.

A. Decomposition of True and Spurious Sources

In general, two types of noises should be considered, one
originates from inaccurate measurement of the sensors mod-
eled by Guassian white noise, which is denoted as E in Eq.(1),

Fig. 2: Decomposition of true and spurious sources: The
task related true sources S1 have a low-rank property and
the spurious sources S2 are the sparse but not temporally
consistent.

the other type of noise is called biological noise that comes
directly from the spontaneous activations in the source space,
which are not task-related and termed as spurious source. The
second types of noise (spurious source) also contributes to
the EEG signal in the same way as ground truth source. A
drawback of traditional models is that they didn’t distinguish
the spurious sources from the true sources, and the estimated
source can be composed of both task-rated source and spurious
sources. To address the above mentioned problem, we propose
to use a decomposed source spaces, composed of a low-rank
source space and spurious sources originates from spontaneous
biological noises. The illustration of decomposition of source
space is given in Fig.2, where S1 has a low-rank property
and S2 is sparse, and sum of S1 and S2 is no long low-rank,
making X lose low-rank structure.

B. Basic Low-Rank Representation (LRR) Model

We argue that during a short period of task-related Evoked
Repose Potential (EPR), the number of corresponding acti-
vated sources is sparse and remain activated during this period
of time, which makes the EPR source matrix low-rank with
most rows being zero. However, the brain signal is known to
be heavy noisy, spontaneous activations are also active from
different source spots. The low-rank representation model for
the EEG inverse problem is introduced as follows:

min
S,E

rank(S) + β‖S‖1,1 + λ‖E‖1,1

s.t. X = LS + E,
(6)

where β, λ and γ are positive scalars to balance the rank
function, sparsity cost of sources and the reconstruction error.
It is pointed out that `1 on the error term is more robust to
outliers, we use `1 in the row-rank model [41]. The ‖E‖1,1 is
defined as

∑
j

∑
i |Eij |. Due to the discrete nature of the rank

function, it is a common practice to use a surrogate nuclear
norm ‖·‖∗ instead. The goal function is given as:

min
S,E
‖S‖∗ + β‖S‖1,1 + λ‖E‖1,1

s.t. X = LS + E,
(7)

The above formulation is a simple version trying to estimate
the task-related source activation pattern by using low-rank
constraint. To promote the temporal smoothness, the Laplacian
graph structure is included in the next section followed by the
optimization algorithm.
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C. LRR Model with Graph Regularization

Incorporating the previous temporal graph structures, we
introduce our proposed model called low-rank representation
with temporal graph structures ESI (LRR-TG-ESI). The model
is composed of data fitting term to explain the EEG data,
temporal graph embedding regularization term that promote
temporal smooth, and a `1 norm for sparsity penalty and
nuclear norm for the low-rank structure of ground true source.
By combining the low-rank prior and the temporal graph
regularization, we propose the following model for ESI:

min
S,E
‖S‖∗ + λ‖E‖1,1 + β‖S‖1,1 + α tr(SGST )

s.t. X = LS + E, (8)

where λ, β, α > 0 are tuning parameters to balance the trade-
off of different terms. Our proposed model is able to enforce
row-sparse via low-rank prior and temporal smoothness via
temporal graph regularization while fitting the EEG data X .
Compared to earlier works on the ESI problem, both the low-
rank prior and graph regularization is novel, although the graph
regularization term has been discussed in our early paper [40],
but it is not defined on the temporal manifold, and the previous
definition in [40] make the magnitude of source signal to
be equal intra-class, which is not realistic in real world. To
further consider the spatial smoothness, a total variation term
can be imposed as another penalty term, such as first order
total variation (TV) regularization in Ref. [30], [42], fractional
order TV in [29], [31], and similar algorithm can be derived
under the framework of ADMM, however further investigation
with constraints of TV is our future work.

IV. NUMERICAL ALGORITHM

To solve (8), an algorithm in the ADMM framework is
developed. The augmented Lagrangian function of (8) is

L(S,M,E, T1, T2, µ) = ‖S1‖∗ + λ‖E‖1,1
+ β‖M‖1,1 + α tr(SGST )

+ 〈T1, X − LS − E〉+ 〈T2,M − S〉

+
µ

2
× (‖X − LS − E‖2F + ‖M − S‖2F ) (9)

By some simple algebra, (9) can be reformulated as

L(S,M,E, T1, T2, µ) = ‖S‖∗ + λ‖E‖1,1 + β‖M‖1,1

+ α tr(SGST ) +
µ

2
× (‖X − LS − E +

T1
µ
‖2F

+ ‖M − S +
T2
µ
‖2F )− 1

2
µ(‖T1‖2F + ‖T2‖2F ), (10)

where T1 and T2 are Lagrangian multipliers and µ is a
parameter for the augmented Lagragian term. The variables are
updates alternately in a Gauss-Seidel manner by minimizing
the augmented Lagrangian function, with other variables fixed.

For symbolic simplicity, we rewrite Eq.(10) into the following
form:

L(S,M,E, T1, T2µ) = ‖S‖∗ + λ‖E‖1,1 + β‖M‖1,1

+ h(S,E,M, T1, T2, µ)− 1

2
µ(‖T1‖2F + ‖T2‖2F ), (11)

where

h(S,E,M, T1, T2, µ) = α tr(SGST ) +
µ

2

× (‖X − LS − E +
T1
µ
‖2F + ‖M − S +

T2
µ
‖2F ). (12)

If the augmented Lagrangian function is difficult to minimize
with respect to a variable, a linearized approximate surro-
gate function can used, hence the algorithm bears the name
Linearized Alternating Direction method [43], [38]. Updating
S by minimizing h(S,Ek,Mk, T k1 , T

k
2 , µ

k) (suppose we are
at iteration k) is equivalent to minimize the following goal
function with the other variables fixed:

LS = ‖S‖∗ + h(S,Ek,Mk, T k1 , T
k
2 , µ

k), (13)

which is approximated by optimizing its linearizion at Sk1 plus
a quadratic proximal term, given as:

S = argmin
S
‖S‖∗ +

〈
∇Sh(Sk), S − Sk

〉
+
η

2

∥∥S − Sk∥∥2
F
. (14)

Here η is a constant satisfying

η > 2α‖G‖2 + µ(1 + ‖L‖22), (15)

where ‖·‖2 is the spectral norm of a matrix, i.e, the largest
singular value. As long as (15) is satisfied, (14) is a good
approximate to (13). The solution to (14) has a closed form
using a singular value thresholding operator (SVT) [44] given
as:

Sk+1 = Θη−1(Sk −∇Sh(Sk)/η), (16)

where Θε(A) = USε(Σ)V T is the SVT operator, in which
UΣV T is the singular value decomposition of A and Sε(s) is
defined as sin(x) max(|x| − ε, 0). ∇S1

h(Sk1 ) is calculated as

∇Sh(Sk) = α(SkG+ SkGT ) + µLT (LS −X + E − T1
µ

)

+ µ(S −M − T2
µ

) (17)

To update M and E, it is equivalent to solve the following
problem:

argmin
M

µ

2
‖M − S +

T2
µ
‖2F + β‖M‖1,1 (18)

argmin
E

µ

2
‖X − LS − E +

T1
µ
‖2F + λ‖E‖1,1 (19)

The general form of (18)–(19) is a `1 norm proximal
operator defined as

proxµ(V ) = arg min
X

µ‖X‖1,1 +
1

2
‖X − V ‖2F , (20)
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Algorithm 1 Source Imaging Based on Spatial and Temporal
Graph Structures

INPUT: Lead field matrix L, preprocessed EEG signal
matrix X , graph matrix G, precalculated matrix Dα, pa-
rameters α, ζ > 0, and β > 0.
OUTPUT: Source matrix S.
Initialize: Set S = S0, J = 0,M = 0 .
while not converged do

update S according to
Sk+1 = Θ̃η−1(Sk −∇Sh(Sk)/η),

update M according to Equation (18),
update E according to Equation (19),
update T1, T2 according to Equation (21),
update µ = min(ρµ, µmax),

end while

with µ > 0. The above problem (20) has a closed form
solution, called soft thresholding, defined by a shrinkage
function,

shrink(V, µ) = (|V | − µ)+ sgn(V ),

where (x)+ is x when x > 0, otherwise 0. The shrinkage
function is defined as element-wise operator. Problem (18)–
(19) has a close form solution described with the shrinkage
function. After updating all the variables, these Lagrange
multipliers are updated by

T1 = T1 + µ(X − LS − E)

T2 = T2 + µ(M − S).
(21)

The parameter µ is updated by µ = min(ρµ, µmax). A
summarized algorithm is given as Algorithm 1. We initialize
the S with the estimate S0 from `1 solver.

It’s worth noting that the data fitting term we use is `1,1
norm of E in the model, and there are other options. Generally,
if the Gaussian noise E is small, then the norm ‖E‖F , is an
appropriate choice, but for random data corruption, `1,1 should
be used, and for sample specific data corruption, `2,1 [45] [46]
[47], should be used. It has been shown that `2,1 is more robust
to large outliers in some samples. Although the norm used in
Algorithm 1 is `1,1, it can be extended to `2,1 norm of E,
where ‖E‖2,1 is defined as

‖E‖2,1 =
∑
i=1

√∑
j=1

E2
ij .

In stead of solving (19) to update E, the following goal
function (22) needs to be solved to update E.

argmin
E

µ

2
‖X − LS − E +

T1
µ
‖2F + λ‖E‖2,1 (22)

By substituting K = X − LS + T1

µ , if E∗ is the optimal
solution of

min
E

λ

µ
‖E‖2,1 +

1

2
‖E −K‖2F (23)

Based on the Lemmas in Ref [48], the solution to (23) is

e∗i =

{
‖ki‖2−λ/µ
‖ki‖2

ki, if λ/µ 6 ‖ki‖2,
0, otherwise,

where e∗i and ki is the i-th column of matrix E∗ and K
respectively.

Convergence: The convergence of Algorithm 1 can be
easily derived from [43]. Even though the update of M and
E is separated in Algorithm 1, they can be combined in
one step to become a larger block step and simultaneously
solving for (M,E) which is the same case described by
LADMAP algorithm [43]. The convergence analysis in [43]
can be applied to our case, thus the algorithm convergence is
guaranteed [38].

V. NUMERICAL EXPERIMENTS

In this section, we conducted several experiments to illus-
trate the effectiveness of our proposed method. Since both the
nuclear norm and the graph regularization is relative new for
the ESI problem, we started from the simple model (7) to help
the readers understand the property and impacts of low-rank
prior along with data fidelity term and sparsity term for source
reconstruction. In the first experiment, we did a comprehensive
exploration for different parameter settings by varying the
weights between low-rank term, data fitting term and sparsity
term. In the second experiment, we illustrate the temporal
smoothing functionality of the graph regularization term for
uncorrupted smooth source and corrupted source with abrupt
signal jumps. In the third experiment, we give comprehensive
numerical results by testing our algorithm against the bench-
mark algorithms to showcase the effectiveness of the proposed
method in reconstructing task-related source, where we show
that our algorithm can not only find the activated locations,
but also reconstruct the time-course of source activation with
high precision.

A. Head Model

A realistic head model, referred to as New York Head model
[49], is used in our numerical experiment. The New York
Head model is based on highly detailed MRI images derived
ICBM152 anatomy, which is a nonlinear average of the T1-
weighted structural MRI of 152 adults and calculated with
state-of-the-art finite element electrical modeling. The New
York Head model is considered to be highly accurate since
it considers six tissue types when conducting segmentation,
which is scalp, skull, CSF, gray matter, white matter, air
cavities, with a native MRI resolution of 0.5 mm3. The
dimension of the lead field matrix used in the numerical
experiment part is 2004 by 108, representing a linear mapping
from 2004 sources to 108 electrodes.

B. Experiment 1: Test on Simple Low-rank Model

To understand the property of low-rankness, we start from
a simple model to help the readers understand the property
of low-rank in the EEG source imaging and the validity of
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low-rank when recovering the accurate location as well as
time course of source signal. Like in [50], eight octants are
divided as regions of interest (ROI) are considered, which are
Right Anterior Inferior (RAI), Right Anterior Superior (RAS),
Right Posterior Inferior (RPI), Right Posterior Superior (RPS),
Left Anterior Inferior (LAI), Left Anterior Superior (LAS),
Left Posterior Inferior (LPI), Left Posterior Superior (LPI).
In the simple experiments, we selected 2 different ROIs and
randomly select one activated voxel in each of these ROIs,
and a 4th order moving average time series is generated, as
illustrated in Fig.3.

At each location, a time series with length of 500 were
generated to represent the source activation time-course. At
each time point, two randomly picked sources are activated
to simulate the non-task related spurious noise with mean
of 0 and variance to be 1. The task-related activate pat-
tern has low-rank property, however, the noise corrupted
source space is no longer low-rank. We repeated our ex-
periment 50 times for all the combinations of λ and β,
where λ = {0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5} and β =
{0.005, 0.01, 0.015, 0.02, 0.05, 0.1}. The reconstructed error
(RE) metric used here is

RE = ‖Ŝ − S‖2/‖S‖2, (24)

where Ŝ represents the reconstructed source. We define the
SNR = 10 log10

Ps

Pn
, where Ps and Pn are the power of signal

and noise respectively. The violin plot is used to visualize the
distribution of reconstruction errors, in corresponding to β and
λ respectively in Fig.4 and Fig.5. Increasing β will penalize
the strength of signal and make the reconstruction error to be
large when λ is small. However, When λ is set to be 0.5, the
weight of data fidelity is high, thus driving the solution have
a better data fidelity, which can balance off the increase of β.

The averaged reconstruction error of 50 experiments for all
of β and λ is given in Fig.6a and the averaged rank for the
estimated source for all the combination of β and λ is given
in Fig.6b. As we increase the value of λ, the rank is also
increasing, which underlies the trade-off between explaining
the data and finding the latent low-rank structure of the source
space. Increasing λ means more weight on the data fitting
term, and the spurious source can also be recovered, thus
increasing the rank of the reconstructed source.

Fig. 3: Illustration of two activated sources time series on two
different ROIs.

To empirically understand and explain the reconstruction
error in Fig.6a, we visualize the curve fitting performance for
truth source time series and the reconstructed source time-
course corresponding to different level of reconstruction error.
We picked the curve fitting cases when the reconstructed error
is 0.2, 0.4, 0.8 and 1 respectively. For error equal to 0.2, we
picked one experiment and plot the fitting of time series which
demonstrated a very good curve fitting of the ground truth vs
the reconstructed one as is shown in part (a) of Fig.7. Also we
picked another experiment whose error equal to 0.4 and it is
shown in part (b) of Fig.7. The curve fitting is slightly worse
than the previous one but it is hard to notice the difference
compared to the previous one, however according to our error
metric, the error is 0.4. One thing to notice is that in both
situations, the reconstructed rank equal to the ground truth
rank, which is equal to 2, moreover, the estimated two active
source location is exactly the ground true locations. We also
examined the case when error is up to 0.8, and the curve fitting
plot is given in part (c) of Fig.7. We examined this happened
when we set λ = 0.01 and β = 0.1. In this case, the penalty for
sparsity is 0.1, which means too much penalty for the sparse
term and the signal magnitude is reduced by the shrinkage
operation. We also notice than in the experiment, the error
can be up to 1 no matter what parameter settings are given,
as can be seen in the top region of Fig.4 and Fig.5. The curve
fitting plot for the failed case is given in part (d) of Fig.7.

Although the situation is very rare when RE = 1, we
want to visualize the activation pattern on the cortex to see
how discrepant the reconstructed location compared to the
true source location. For comparison, Fig. 8 is given when
RE = 0.4 and RE = 1. The reconstructed source locations
on two ROIs are exactly the same with the ground true
location when RE = 0.4, when RE = 1, one source location
is reconstructed perfectly while the other source location is
not accurately located, however the neighboring sources are
reconstructed.

To check how the rank of S evolve during the iterations,
the boxplot of the rank at selected steps are given in Fig.9.
Starting from an initial value with high rank, the rank of Ŝ
is decreasing as the iteration proceeds. We set the maximum
rank to be 20, during the iteration process, the rank of S is
converged to very small number for most of the cases.

C. Experiments 2: Test LRR with Temoral Graph Prior

In this section, we solve the LRR-TG-ESI problem (8)
with graph regularization term to test its impact on the
reconstructed signal. Under the same setting with Experiment
1, we assign different values {0.01, 0.02, 0.05, 0.1, 0.5} for the
graph regularization parameter α. The original source signal
was smooth, then it was corrupted with randomly number at
some time points. There are also 2 randomly picked activated
sources representing spurious sources with mean of 0 and
variance to be 1. The “temporal smoothing” impact of the
graph regularization is shown in Fig.10, where λ = 0.02 and
β = 0.01. In Fig.10, the original signal is corrupted and not
smooth at some time points, we set the neighbor size to be 2
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Fig. 4: Reconstruction errors varying β. Fig. 5: Reconstruction errors varying λ.

(the closest signal before and after the one to be estimated)
when calculating the Laplacian matrix. It is evident from the
formulation (3) that the graph regularization term will de-
crease the dissimilarity of temporally neighbored reconstructed
source. If α is set to be 0.5, the graph regularization term
penalized heavily on the curvature of the reconstructed signal
as is illustrated in Fig.10. We can see that with the temporal
graph prior, the reconstructed source is more smooth. It is
worth noticing that the main purpose of temporal graph prior
is not to smooth the time course for the activated locations,
the main purpose is to filter out the spurious activations
that are short transients with abrupt jumps. Combined with
the low-rank prior, the temporal graph prior can filter the
spurious activations and reconstruct the task related activated
source. The randomly planted spurious sources are filter out
by penalizing the graph regularization and nuclear norm, and
in most of the cases, the final rank is 2 can be achieved
within a wide range of parameters. The time series plots of
original EEG signal, corrupted EEG signal, and EEG signal
recovered from the reconstructed sources from (8) by setting
λ = 0.02 and β = 0.01, as well as the topoplots at 42 ms
is given in Fig.11. To illustrate again the impact of the graph
regularization, α is chosen from {0.01, 0.02, 0.05, 0.1, 0.5}.
The first row is the EEG data generated from the task-related
sources (persistent and low-rank), the second row is the EEG
data from the task-related sources and the spurious source,
the SNR is −0.72 dB, which means the energy of spurious
source is slightly larger than the task-related sources. The 3rd
row is the EEG data calculated from forward model after
the source is reconstructed from our proposed model with
α = 0.01. The 4th-7th row is the time series plots when
α = 0.02, 0.05, 0.1, 0.5 respectively. The topoplots on the right
part of Fig.11 is are sampled from 42 ms of the EEG data on
the left.

D. Experiments 3: Comprehensive Comparison with Bench-
mark Algorithms

The purpose of previous numerical experiments is to val-
idate each term of the goal function and to understand their
properties. The trade-off between low-rankness, data fidelity,
sparsity, temporal smooth are fully discussed by varying
different parameters. In this part, a comprehensive study is
conducted to compare the proposed algorithm with the popular

ESI algorithms such as MNE [25], sLORETA [26], MCE
and well as the state-of-art algorithm mixed-norm estimate
(MxNE) [20].

We generated independent sources in different ROIs for easy
validation purpose, the number of independent sources varied
from 2 to 4 corresponding to different rank of ground-truth
source, and the number of spurious source are generated by
randomly activating the sources on the cortex with a random
scalar whose mean value to be 0, and the variance is 1.
Moreover, the noise on sensor level is also added to the EEG
data. Two of the MCE algorithms are selected, which are
Homotopy and FISTA [51]. For MxNE algorithm, we choose
`2,1 to enforce `2 norm on the temporal time series of each
voxel and `1 norm to impose spatial sparsity.
To measure the performance, we introduced 5 metrics, includ-
ing 1) CPU time in seconds, 2) rank of the calculated source,
3) Sparsity, measuring the number of nonzero elements in
the source space at each time point, 5) Reconstruction Error
(RE) defined in Eq.(24), 5) Localization Error (LE), which is
calculated using the shortest path algorithm over the irregular
meshes from the reconstructed source location to the ground
truth location. The LE metric is the most important one, since
it measures the discrepancy in location, the other metrics
give information of the property of the rendered solution. To
calculate LE for each ROI with activated sources, we first
locate source with the largest activation magnitude in this ROI,
and calculate the shortest path distance from the located source
to the ground truth location. We conduct the same procedure
for all the activated ROI, and calculate the average value of all
the distances at each time point. The final LE is the averaged
distance value for all the 500 time points for each experiments.

All the algorithms are implemented in Matlab except MxNE
which we call as a Python script (MultiTaskLasso.py) under
the linear model of scikit-learn library [52] from Matlab. The
formulation for MxNE is

||X − LS||2F + γ||S||2,1 (25)

We found that parameter tuning process for MxNE algorithm
is very time consuming, even though there is only one param-
eter for the unweighted version. If the parameter γ in Eq.(25)
is tuned for one experiment with good performance, and we
use the same setting of parameter and the same setting to
generate random source activation patterns, the reconstructed
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source matrix can be a zero matrix. We tuned the parameter γ
according to the best LE performance when the rank is 2 and
the number of spurious activated source is 2. By conducting
experiments for parameter tuning of MxNE, we set γ in
Eq.(25). For our proposed algorithm, we set λ = 0.01 and
β = 0.01, which were tested to have good performance
for the same case when the rank is 2 and the number of
spurious activated source is 2, and the graph parameter α is
also set to be 0.01. 10 experiments were conducted under the
same setting and the performance of all the algorithms are
summarized in Table I to Table III. The SNR is calculated
after the noise signal is generated and it was averaged from
10 experiments under the same experiment setting. As can
be seen from the tables, our algorithm is the most accurate
to locate the task related activated source. The CPU time of
our algorithm is between Homotopy and FISTA algorithm.
The running time for Python version of MxNE is much faster
than our proposed algorithm, but there are many cases that
MxNE algorithm failed, thus making the overall accuracy drop
significantly. Although our algorithm have more parameter, it
is a more sophisticated model that allows better controllability
to customize the weight of different terms in the goal function.
Although MxNE has large RE and LE, it is still worth noting
that the MxNE algorithm we used is a simple version with
`2,1 norm discussed in Ref. [20], and the algorithm to solve
the goal function 25 is coordinate descent, other algorithms
can be tested to solve the same problem. MCE model solve
using `1 algorithms Homotopy and FISTA can render good
LE accuracy, and Homotopy outperforms FISTA in all the
experiment with better speed, which confirms the comparison
discussed in [40] [48].

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose to consider the noise not only in
the sensor level, but also in the source space. we come up
with an EEG source imaging model based on temporal graph
structures and low-rank representation. The model is solved
with our proposed algorithm based on ADMM. Numerical
experiments are conducted to verify the effectiveness of the
proposed work on discovering task related low-rank source
extents. We delineate the discussion on the properties and
impacts for each term in the cost function to help better under-
stand our proposed graph regularized low rank representation
model. Compared the traditional model, our proposed one can
find the intrinsic task related activation patterns and suppress
the spurious source patterns.
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[28] K. Uutela, M. Hämäläinen, and E. Somersalo, “Visualization of mag-
netoencephalographic data using minimum current estimates,” NeuroIm-
age, vol. 10, no. 2, pp. 173–180, 1999.

[29] Y. Li, J. Qin, Y.-L. Hsin, S. Osher, and W. Liu, “s-SMOOTH: Sparsity
and smoothness enhanced EEG brain tomography,” Frontiers in Neuro-
science, vol. 10, p. 543, 2016.

[30] L. Ding, “Reconstructing cortical current density by exploring sparseness
in the transform domain,” Physics in Medicine and Biology, vol. 54,
no. 9, p. 2683, 2009.

[31] J. Qin, F. Liu, S. Wang, and J. Rosenberger, “EEG source imaging based
on spatial and temporal graph structures,” in International Conference
on Image Processing Theory, Tools and Applications, 2017.

[32] F. Liu, S. Wang, J. Rosenberger, J. Su, and H. Liu, “A sparse dictionary
learningframework to discover discriminative source activations in EEG
brain mapping.” in AAAI, 2017.

[33] ——, “A sparse dictionary learning framework to discover discriminative
source activations in EEG brain mapping.” in AAAI, 2017, pp. 1431–
1437.

[34] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[35] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[36] X. He, S. Yan, Y. Hu, P. Niyogi, and H.-J. Zhang, “Face recognition us-
ing laplacianfaces,” IEEE transactions on pattern analysis and machine
intelligence, vol. 27, no. 3, pp. 328–340, 2005.

[37] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving
embedding,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE Inter-
national Conference on, vol. 2. IEEE, 2005, pp. 1208–1213.

[38] M. Yin, J. Gao, and Z. Lin, “Laplacian regularized low-rank represen-
tation and its applications,” IEEE transactions on pattern analysis and
machine intelligence, vol. 38, no. 3, pp. 504–517, 2016.

[39] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative
matrix factorization for data representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1548–
1560, 2011.

[40] F. Liu, J. Rosenberger, Y. Lou, R. Hosseini, J. Su, and S. Wang, “Graph
regularized eeg source imaging with in-class consistency and out-class
discrimination,” IEEE Transactions on Big Data, vol. 3, no. 4, pp. 378–
391, Dec 2017.

[41] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery of
subspace structures by low-rank representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 171–184,
2013.

[42] V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, “Total
variation regularization for fmri-based prediction of behavior,” IEEE
transactions on medical imaging, vol. 30, no. 7, pp. 1328–1340, 2011.

[43] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with
adaptive penalty for low-rank representation,” in Advances in neural
information processing systems, 2011, pp. 612–620.

[44] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM Journal on Optimization, vol. 20,
no. 4, pp. 1956–1982, 2010.

[45] F. Nie, H. Huang, X. Cai, and C. H. Ding, “Efficient and robust feature
selection via joint `2,1-norms minimization,” in Advances in neural
information processing systems, 2010, pp. 1813–1821.

[46] S. Du, Y. Ma, and Y. Ma, “Graph regularized compact low rank
representation for subspace clustering,” Knowledge-Based Systems, vol.
118, pp. 56–69, 2017.

[47] M. Yin, J. Gao, Z. Lin, Q. Shi, and Y. Guo, “Dual graph regularized la-
tent low-rank representation for subspace clustering,” IEEE Transactions
on Image Processing, vol. 24, no. 12, pp. 4918–4933, 2015.

[48] J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-
preserving variational multichannel image restoration,” SIAM Journal on
Imaging Sciences, vol. 2, no. 2, pp. 569–592, 2009.

[49] Y. Huang, L. C. Parra, and S. Haufe, “The New York Head – a precise
standardized volume conductor model for EEG source localization and
tES targeting,” NeuroImage, vol. 140, pp. 150 – 162, 2016, transcranial
electric stimulation (tES) and Neuroimaging.

[50] S. Haufe and A. Ewald, “A simulation framework for benchmarking
EEG-based brain connectivity estimation methodologies,” Brain topog-
raphy, pp. 1–18, 2016.

[51] A. Y. Yang, S. S. Sastry, A. Ganesh, and Y. Ma, “Fast ` 1-minimization
algorithms and an application in robust face recognition: A review,” in

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246579doi: bioRxiv preprint 

https://doi.org/10.1101/246579


MANUSCRIPT 10

Image Processing (ICIP), 2010 17th IEEE International Conference on.
IEEE, 2010, pp. 1849–1852.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine Learning
Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246579doi: bioRxiv preprint 

https://doi.org/10.1101/246579


MANUSCRIPT 11

(a) (b)

Fig. 6: Averaged reconstruction error and rank varying λ and β over 50 experiments.(a) average of reconstruction error for
different λ and β (b) average of rank for the source matrix S. Increasing λ means more weight on data fidelity and the rank
becomes higher. Our model works well with a wide range of parameter setting.

Fig. 7: Source time course fitting illustration: (a): ground truth time course vs reconstructed for two activated source at
different ROIs in one experiment when fitting error equal to 0.2. Here λ = 0.02 and β = 0.005.(b): ground truth time course
vs reconstructed for two activated source when fitting error equal to 0.4. Here λ = 0.5, β = 0.01. (c): ground truth time course
vs reconstructed for two activated source when fitting error equal to 0.8. Here λ = 0.01 and β = 0.1. (d): ground truth time
course vs reconstructed for two activated source when fitting error equal to 1. Here λ = 0.02 and β = 0.01. The curve fitting
of (b) is slightly worse than (a), corresponding to the RE= 0.2 and RE= 0.4. When the sparsity parameter is set too large,
the reconstructed magnitude is smaller than the ground truth as is shown in (c). For some cases, only the time course in one
source location is reconstructed shown in (d) with RE to be 1.0.
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(a)

(b)

(c)

Fig. 8: (a) Ground truth source activation pattern (b) Recon-
structed source activation when 0.4. This plot illustrates the
perfect localization of ground true sources. (c) Reconstructed
source activation when RE is 1. This plot illustrates when our
algorithm failed to recover one of the the exact locations of
two activated sources, while the other one can be recovered
perfectly. the pictures on the left is the reconstructed location,
but still close to the ground truth.

Fig. 9: Convergence of rank of S during iteration procedure:
In the first iteration, we set the maximum rank to be 20, and
in most case the rank will converge to 2.

Fig. 10: Illustration of the smoothing effect of temporal graph
regularization: reconstructed time courses from varied graph
regularization parameters.
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Fig. 11: EEG time series plot of the uncorrupted EEG signal, corrupted EEG signal vs the reconstructed EEG signal using the
proposed method and the corresponding topoplots at 42 ms: The 1st row is the time series plot of the original uncorrupted EEG
data, the 2nd row is the plots for corrupted EEG data, the 3rd row is the EEG data reconstructed by applying our algorithm
with α = 0.01, the 4th row is the reconstructed EEG data with α = 0.02, the 5th row is the reconstructed EEG data with
α = 0.05, the 6th row is the reconstructed EEG data with α = 0.10, the 7th row is the reconstructed EEG data with α = 0.5.
The spurious source in the source space corrupted the task-related EEG data, and by using our graph regularized LRR model,
the true EEG data can be recovered.
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