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ABSTRACT

Variance in reproductive success is a major determinant of the degree of genetic driftin a
population. While many plants and animals exhibit high variance in their number of progeny,
far less is known about these distributions for microorganisms. We quantified the distribution
of descendants arising from stochastically germinating Streptomyces spores by applying a novel
and generalizable method. The distribution is heavy-tailed, with a few cells effectively “winning
the jackpot” to become a disproportionately large fraction of the population. This not only
decreases the effective population size by many orders of magnitude but can lead to its sub-
linear scaling with the census population size. Furthermore, incorporating the empirically
determined distribution into population genetics simulations reveals allele dynamics that differ
substantially from classical population genetics models with matching effective population size.
These results demonstrate that stochastic exists from dormancy can have a major influence on

evolution in bacterial populations.
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INTRODUCTION

Since the dawn of population genetics, it has been clear that the distribution of the number of
offspring per parent is central to developing a quantitative understanding of the evolution of
genetic variants (1-5). The offspring distribution provides a mapping between generations and
directly determines the extent to which genetic drift affects allele frequencies in a population
(6). Specifically, the effective population size, which is often used to quantify genetic drift, is
inversely proportional to the variance of the offspring distribution. In classical models of
population genetics, such as the Wright-Fisher model, the offspring distribution is Poisson
distributed (7, 8). However, for some animals there is high variance in reproductive success,
with a minority of males fathering a large fraction of the children in each generation (9-12).
Such highly-skewed offspring distributions have fundamental implications for how we predict
and interpret fluctuations in allele frequencies (6, 13, 14). These implications include: dramatic
(e.g., six orders of magnitude) discrepancy between census and effective population size (13),
genetic patchiness on small spatial scales despite long-range dispersal (12, 15, 16), and
dramatically altered effectiveness of selection compared with classical population genetics
models (6, 17, 18).

In contrast to plants and animals, the offspring distribution is largely unexplored for
microorganisms. One reason for this might be that the offspring distribution is seemingly
simpler for bacteria undergoing binary fission, since each cell can only leave behind 0 (death), 1
(no doublings), or 2 descendants. However, even clonal populations of bacteria display a
distribution of growth rates and lag times, causing them to yield a variable number of offspring

after some time (19-22). In particular, many microorganisms form spores or persister (non-
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growing) phenotypes to survive unfavorable environments or disperse (19, 23, 24), and exit
from dormancy is often a stochastic process that presumably evolved as a bet hedging strategy
to overcome environmental uncertainty (20, 25).

Importantly, it is unclear how stochastic variability in growth rates and lag times affects
genetic drift. One way to study this quantitatively is by examining the distribution of the
number of bacteria arising from a single bacterium after a given amount of time t, where the
time T is substantially longer than the standard doubling time (Fig. 1a). This is a stochastic
quantity which can be described by a probability distribution that we term here the
'distribution of descendants'. In a system with seasonality, for example, one might look at this
distribution after one season. Defined as such, the distribution of descendants is a fundamental
quantity of which little is known for bacteria. Quantifying this distribution and how it varies
across species and environments would likely improve our understanding of genetic drift in
microbial populations and, ultimately, our ability to correctly interpret the genetic variability
observed in sequence data.

Here we present a scalable methodology for quantifying the distribution of descendants
in clonal populations. We used a generalizable barcode tagging approach that enabled us to
track descendants from hundreds of sub-populations differing only by a short DNA barcode
inserted in their chromosome. We developed two analysis methods for determining the
distribution of descendants from barcode data, and applied these approaches to soil bacteria
from the genus Streptomyces. We focused on Streptomyces because they have complicated life-
cycles, and the impact of life-cycle stages on the distribution of descendants is particularly

poorly understood (26). Using the variability between replicates, we show that the distribution
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of descendants is heavy-tailed — that is some bacteria represent a far greater proportion of the
final population than their initial frequency. Furthermore, using microscope time-lapse imaging,
we demonstrate that the heavy-tailed nature of the distribution of descendants can, in our
case, be largely explained by phenotypic variability in lag time before exponential growth. We
then examine the implications of heavily-skewed distributions of descendants for the

population genetics of microorganisms.

RESULTS

High-throughput measurement of the distribution of descendants

Directly determining the distribution of descendants would require tracking each individual cell
and all of its offspring within a clonal population. Such a brute force strategy is exceedingly
difficult, if not impossible. Therefore, we developed an alternative method to track sub-
populations of cells and infer the shape of the distribution of descendants based on changes in
the relative abundance of sub-populations between replicates (Fig. 1bc). This method involves
tagging bacterial lineages of an otherwise clonal population with a unique 30 base-pair random
sequence inserted at a fixed site on the chromosome (Fig. 1d). A similar technique has been
used previously to tag yeast and Escherichia lineages (27, 28). After barcoding, we grew 5
different strains of Streptomyces in 8 separate replicate populations starting from 3 different
initial concentrations. Streptomyces strains first germinate and then grow as interconnected
filamentous colonies within liquid medium. After 7.5 days of growth, genomic DNA was
extracted and the barcoded region was amplified before sequencing (see Methods). We

observed between 211 and 2,534 unique barcoded lineages per strain across all replicates in
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79  the experiment. An example of the data collected for one of the five strains is depicted in Fig.
80 SIL.

81 Since our analysis methods are based on the variability between replicate populations,
82  they require that the technical variability due to the experimental procedure be far less than
83  the biological variability. To investigate both of these components of variability, we compared
84  the frequency distribution determined from technical (PCR) replicates to that originating from
85 distinct biological replicates. We found that technical replicates had substantially higher

86  correlation than biological replicates (Fig. S2), confirming that most of the variability is

87  biological in nature. This allows the shape of the distribution of descendants to be inferred from
88 fluctuations in the relative abundance of barcodes between biological replicates. However, it is
89  worth noting that we can only observe the right side of the distribution of descendants,

90  because the lower detection limit of our method is approximately 1 in 10° cells based on the
91 number of initial templates in PCR and sequencing reads. Therefore, we would not observe the
92  rarest barcodes if they decrease in relative frequency substantially during the course of the

93  experiment. Nonetheless, we are most interested in the right-tail of the distribution of

94  descendants because it might include lineages that increase considerably in relative abundance.

95 The distribution of descendants is skewed with a heavy tail

96 Two extremes of the barcode frequency distribution across replicates reveal characteristics of
97 the distribution of descendants (Fig. 2a). At one end, the abundance of a barcode present at
98 high frequency is expected to be normally distributed across replicates. This is because, for
99 abundant barcodes, each barcode represents a large number of initial cells and the final

100  barcode frequency is a sum of many realizations of the distribution of descendants. Based on
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101  the central limit theorem, the variation across replicates will approach normality, so long as the
102  underlying distribution of descendants has a tail that decays sufficiently fast. We tested

103  whether the relative frequencies of the 8 replicates belonging to the most abundant barcodes
104  could be normally distributed using the Shapiro-Wilk test. Each of these barcodes is estimated
105 to be shared by over 1,000 initial cells per replicate. For 4 out of 9 of these abundant barcodes
106  the normal distribution was rejected with p-value < 0.02 (Fig. 2b). Moreover, the fact that we
107  could repeatedly reject a normal distribution even with a small number of replicates indicates
108 that the deviations from normality are strong. Thus, this analysis suggests that the underlying
109  distribution of descendants is heavy-tailed.

110 At the other extreme, as the initial frequency of a barcode approaches a single cell (Fig.
111  2a), the distribution of final barcode frequencies should approximate the distribution of

112  descendants. We made the approximation that barcodes appearing in only 1 out of 8 replicates
113  of a given initial concentration were sufficiently rare to have originated from a single cell. While
114  we would expect this assumption to be violated in about 10% of cases, the impact of starting
115  from 2 cells should be on the order of 2-fold. The resulting distribution of barcode frequencies
116  for these “singletons” is heavy-tailed and appeared broader than a log-normal distribution (Fig.
117  2c). Surprisingly, for many strains the distribution spanned over three orders of magnitude,
118 meaning that some barcodes were over-represented by more than 1000-fold that of a typical
119  barcode starting from an identical initial frequency (Fig. S3).

120 While the singleton distribution provides a model-free estimate of the distribution of
121  descendants, the downside of this approach is that it only uses a subset of the data, and it

122 requires the presence of many rare barcodes. For example, one of the barcoded strains, S.
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S26F9, had a diversity of barcodes, but only six were at low enough frequency to be observed in
a single replicate (Fig. S3c). Correspondingly, we wondered whether it would be feasible to
develop a more statistically robust procedure for determining the distribution of descendants

by fitting a growth model to all of the data points for each strain.

Stochastic exits from dormancy largely explain the heavy-tail

In order to develop a model for fitting the entire dataset, we first needed to establish the major
sources of growth variability among Streptomyces cells in a population. We reasoned that
growth variability would largely result from two sources: differences in lag time before growth
(driven by variability in germination times) or variability in growth rates that is auto-correlated
across divisions. To determine which source dominated growth variability in our experimental
system, we tracked strains under a microscope during their first day of growth on agar medium
containing the same nutrients as the liquid experiment. This resulted in large images (Fig. 3a)
that we aligned between time points to track the growth of each germinated spore (see
Methods). Colony growth was constrained to two dimensions for a long time, which allowed us
to estimate the number of genomes present from the area covered by the colonies. This
method provides a means of directly assessing the distribution of descendants until the time
the colonies intersect and can no longer be distinguished.

Three of the five strains mostly completed germination during the course of the
experiment, while two strains germinated too late to adequately track under the microscope.
All three early-germinating strains displayed wide variation in colony size after one day of
growth, with the largest colonies being almost 3-orders of magnitude larger in biomass than the

smallest (Fig. 3b, Fig. S4). This likely underestimated the extent of variability, as large colonies
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145  can easily overwhelm smaller colonies so that they cannot be identified at later time points and
146  because we sampled only hundreds of spores, thus missing rare instances of early germination.
147  Nevertheless, it was clear that variation in germination times might largely account for the

148  extreme variability observed in the distribution of descendants. Such lag time variability in

149  Streptomyces has recently been shown to be a phenotypic effect rather than a genotypic effect
150 (20). After germination, the colonies grew in size deterministically at nearly the same rate (Fig.

151  3b, Fig. S4). However, it is possible that minute differences in growth rate could compound the

152  initial variability to make the distribution even wider at time points beyond the duration of

153  colony tracking. Overall, the result from the time-lapse microscopy revealed that the growth of
154  our Streptomyces strains can be partitioned into stochastic germination and deterministic

155  growth for the utilized growth media.

156  Fitting the entire dataset supports distributions of descendants with fatter than log-normal
157  tails

158 Based on the microscope data, we constructed a model in which we partitioned growth into
159 two phases: an initial lag time drawn from a distribution, followed by exponential growth at a
160 fixed rate common to all cells. We wished to determine whether a model based on variability in
161  germination times alone could adequately recapitulate the entire dataset and, if so, determine
162  the distribution of descendants through parameter fitting without limiting ourselves to the

163  subset of the data representing rare barcodes. To this end, we simulated the entire

164  experimental process, starting from sampling an initial population of barcodes, then “growing”
165 each barcode according to the aforementioned growth model, and sampling the resulting

166  barcode frequencies for PCR amplification and sequencing steps (Fig. 4a). Since we know the
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167 initial census population size from plate counting, the number of initial templates per replicate
168  based on quantitative PCR, and the number of reads obtained in sequencing, the entire

169  simulation depends only on the shape of the distribution of lag times relative to a time scale set
170 by the fixed exponential growth rate. Since the fraction of germinated spores as a function of
171  time follows a sigmoidal curve (20), we compared two families of commonly used sigmoidal
172 curves: the generalized logistic function and the cumulative distribution function of the skew
173  normal distribution, which respectively lead to power-law and log-normal tails for the

174  distribution of descendants (Fig. S5).

175 Each of the two sigmoidal families was controlled by two parameters, r and «, that allow
176  independent adjustment of the distribution of descendants' width and skew (i.e., left-right

177  asymmetry) (Fig. 4a). We used the results of 1000 simulations to quantify the fit of each

178  parameter combination that was tested (Methods). Briefly, the optimality criterion (w?) was
179  based on the sum-of-squared differences between the cumulative distributions of the

180  simulations and the observed data (the Cramér-von Mises criterion). The value of w?was

181  calculated for many different combinations of the two parameters for the two families of

182  germination curves (Fig. S6), and the lowest value of w” was selected as the optimal

183  combination of rand a.

184 We found that, for 4 out of 5 species, the generalized logistic function yielded a better
185 fit (Table S1). The two distributions only had substantially different fits in the cases with the
186  greatest barcode diversity, suggesting that a large number of barcodes are required to

187 adequately discern the right-tail of the distribution. Thus, in agreement with observations from
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188  singleton barcodes (Fig. 2c), the results from using all of the barcode data further support

189  distributions of descendants with fatter than lognormal tails.

190 In all cases the simulations appeared to recapitulate the observed variability with high
191 fidelity (Fig. 4b). This indicated that the simple growth model was sufficient to capture most of
192  the variability between replicate populations. Impressively, the distribution of descendants

193  qualitatively matched the observed singleton frequencies for the three simulated strains with
194  the most singleton barcodes (Fig. 4c), thus providing a validation for our model-based approach
195 for deducing the distribution of descendants by using all the barcode data. Overall, these

196 results confirmed that variability in lag time between strains can explain the observed

197 "jackpots", established a robust procedure for deducing the distribution of descendants, and

198 indicated that the tail of the distribution of descendants is fatter than lognormal.

199  Selection is an implausible explanation for the observed distribution of descendants

200 A potential source of growth variation is the existence of genetic differences within the

201  population. One genetic basis for variation is that some barcodes have pre-existing mutations
202  thatimpart a higher growth rate, resulting in an exponential divergence in relative abundance
203  over time. However, the method we used to fit the data to the simulation (Fig. 4) is unaffected
204 by per-barcode selection coefficients because it relies on variability of fates among individuals
205  with the same barcode. We confirmed this by incorporating selection coefficients into our

206  stochastic simulation (see Methods) and observed negligible effect on the fitted distribution of
207  descendants. Another way to uncover differences in inter-barcode selection coefficients is to
208 look for correlations between the final relative frequencies of rare barcodes. We tested this by

209 plotting the relative frequency of barcodes that were only present in 2 of 8 replicates (Fig. S7).
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If jackpots within this set are due to selection, we would expect them to manifest in both
replicates. In contrast, the correlation between replicate barcodes was extremely low
(Pearson’s r = 0.08), indicating that inter-barcode selection coefficients are not a major source
of the observed variability between replicates.

These results do not rule out the possibility that there were rare individuals within a
barcode lineage with new or recently acquired beneficial mutations. Such mutants would likely
have had to arise after the start of the experiment in order to only be present in a minority of
replicates. Given the high number of positively-skewed replicates, it is implausible that so many
mutants of large effect size could occur so rapidly. Furthermore, we estimate that most cells
only doubled about 10-15 times over the course of the experiment, depending on each strain's
initial concentration. Even a large growth rate advantage of 10% would be expected to result in
at most a 3-fold variability in final abundances. Nonetheless, it is well known that mutation is a
major cause of fitness variation in populations, and we cannot rule out the fact that some of

the variance in the distribution of descendants was attributable to genetic differences.

The heavy-tailed distribution of descendants yields large deviations from classical population
genetics predictions

We next examined the population genetics consequences of the experimentally inferred heavy-
tailed distribution of descendants through population genetics simulations. We focused on S.
G4A3, for which the optimal fit was given by the generalized logistic germination curve with r =
0.2 and a = 0.28 (Fig. 4c, Table S1). We modeled a situation in which we start with N individuals,
let them grow exponentially to large numbers following a stochastic exit from dormancy, and

then sample N individuals at random to start the next ecological cycle (Fig 5a, Methods).
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Through a simulation of this process, we first determined the distribution of
descendants after one ecological cycle, i.e. the distribution, v(n), for the number of individuals,
n, descending from one individual after one cycle. Classical population genetics theory states
that the consequences of genetic drift can be captured by a Fisher-Wright model with a
(variance) effective population size N. = N / var(v). Strikingly, we found that N, scales sub-
linearly with N (Fig. 5b) for the empirically-derived distribution of descendants. That is, doubling
the population size does not double the effective population size. In fact, N, exhibited an
apparent power law scaling Ne ~ N®**. This counter-intuitive behavior stems from the fact that
var(v) does not converge to a constant as a function of N (see Methods) due to the heavy-tailed
nature of the distribution of descendants. Thus, even if individuals grow independently, a sub-
linear scaling of Ne with N can emerge for certain distributions of lag times, which leads to a
divergence between N and N, that grows with N. This result strictly holds only for a,/r < 2. For
o/r > 2 or descendant distributions with lognormal tails, significant deviations from N.~N would
still occur at low N, but the proportionality between N and N, would eventually be restored for
large enough N (Fig. S8a).

The heavy-tailed distribution of descendants affects the population dynamics beyond
reducing N, (29). Through simulations, we determined the fixation probability of beneficial
mutations with different selection coefficients, s. We observed (Fig. 5¢) that as s increases, the
probability of fixation increases much more rapidly than expected based on the classical

population genetics prediction (for haploid populations) (30), which states:

1_e—25Ne/N
Ple(S) = 1—6_25Ne .


https://doi.org/10.1101/246629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/246629; this version posted January 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

253  Infact, the probability of fixation increases faster than linearly and follows an apparent power
254  law as a function of s (Fig. S9a). The classical formula with matching N, only agrees with the
255  simulations for very small s (Fig. S9a). As a control, we verified that this formula agrees well
256  with simulations of the Fisher-Wright model with matching N, across the range of s values (Fig.
257  S9b). Therefore, although the role of stochasticity is amplified for heavy-tailed distributions of
258 descendants, it is partly counterbalanced by an increased efficiency of selection.

259 Finally, we examined whether purely neutral dynamics are also different from the

260  predictions of a Fisher-Wright model with the same N.. To this end, we computed the

261  distribution of fixation times for a neutral allele starting at 50% abundance (Fig. 5c). We found
262  that neutral mutations take significantly longer to fix with a heavy-tailed distribution of

263  descendants. Thus, the population genetic dynamics resulting from the experimentally

264  determined distribution of descendants is not captured by classical population genetic models
265  with equivalent variance effective population size. Importantly, these deviations are generic to
266  heavy-tailed distributions and would persist even for distributions of descendants with

267 lognormal tails, although the magnitude of the difference would be smaller (Fig. S8b).

268  DISCUSSION

269 In this study, we developed and applied a scalable procedure for determining the distribution of
270  descendants arising from a population of bacteria. Surprisingly, the distribution of descendants
271  was heavy-tailed, resulting in a wide range of relative abundances after only a short time (Fig.
272  2). This variation was largely explained by differences in lag time before exponential growth

273  (Fig. 3). We further showed that the observed variability in lag times and the resulting heavy-
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274  tailed distribution of descendants have non-trivial consequences for population genetics after
275  many cycles of growth and dormancy.

276 This work highlights a simple and potentially common mechanism for generating heavy-
277  tailed distributions of descendants in microbial populations. Such distributions would arise as
278  long as the exit from dormancy is stochastic and the variation in lag times is large compared to
279  the doubling time of actively growing cells. It is already well established that many bacteria taxa
280 have dormancy states that allow them to persist in unfavorable environments, and in fact

281  natural environments are often numerically dominated by dormant microorganisms (31). While
282  there are known examples of stochastic exit from dormancy in bacteria (20, 24, 25), it is still
283  unknown how common such stochasticity is among microorganisms. However, it has been

284  argued, for example in the context of desert plants (32), that stochastic exit from dormancy is a
285  bet hedging strategy that increases survival in uncertain environments. Given the generic

286  nature of this argument, it is likely that stochastic exists from dormancy are common across the
287  tree of life. We therefore expect that the findings described here will be relevant to many

288  microbial populations, and will simulate further work on stochastic germination.

289 Quantification of this stochasticity is important not only as a means of characterizing bet
290 hedging strategies but also for how we predict and interpret changes in allele frequencies. The
291  functional form of germination stochasticity determines how heavy-tailed the distributions of
292  descendants are. In particular, an exponential rise of the germination curve (Fig. 4a) can lead to
293 fat-tailed, power-law like distributions. In contrast, a Gaussian distribution of germination times
294  would lead to log-normal distributions, which are less extreme. Heavier tails result in greater

295  deviations from classical population genetics predictions. One intuitive way to think about this
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is that the variance of a distribution no longer summarizes it well if the distribution is heavy-
tailed. Thus, variance-based adjustments of the effective population size are insufficient to
capture the allele dynamics. In this way, luck might play a far greater role in evolution than
generally considered by classical population genetics models.

The heavy-tailed nature of the distribution of descendants is anticipated to have several
effects on bacterial populations. First, extreme stochastic variability can decrease the effective
population size dramatically below the census population size (13), even when the census size
is measured at population bottlenecks within ecological cycles. Moreover, our experimental
results supported a population genetics model in which the discrepancy between census and
effective population sizes increases with the number of individuals and, therefore, becomes
more important for large systems. Such processes can greatly amplify the effects of genetic
drift and lead to faster elimination of genetic diversity, larger fluctuations of allele frequencies,
and an increased lower-bound at which weak selective pressure can effectively act. In
particular, amplified genetic drift may influence microbial population dynamics on timescales
that are important to commercial biotechnologies or bacterial infections. Second, classical
population genetics models with matching variance effective population size do not adequately
represent dynamics in a population with a heavy-tailed distribution of descendants. We showed
that the probability of fixation of beneficial mutations increases faster than linearly with the
selection coefficient and that fixation times of neutral alleles are longer than expected given
the effective population size. Third, since many infections are caused by a small initial number
of cells or viruses, wide distributions of descendants may greatly influence the early burden on

the host and partly explain the variability in symptoms observed between patients with the
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same infection. Finally, our results offer support for the notion that true fitness, that is the long-
term propensity to have more descendants, is difficult to measure (33). Even the largest sub-
populations in our experiments exhibited variability in their relative abundance between
replicates due to jackpots. Owing to insufficient replication or low initial population size, this
variability could easily be interpreted as a long-term heritable fitness difference when
potentially none is present.

While, to our knowledge, this is the first measurement of a distribution of descendants
for bacteria, it is known that viruses also exhibit large variation in the number of progeny
generated from each infected cell. For example, human cells can differ by up to 300-fold in the
number of released viruses depending on the stage of the cell cycle in which the infection
occurs (34, 35). The methodology employed here for tracking Streptomyces could be extended
to study the distributions of descendants for other species and environments. It would be
particularly interesting to determine the distribution of descendants of bacterial populations in
their natural environment or as part of the human microbiome, where additional complexities
might further broaden the distribution relative to the homogeneous environment explored in

this study.

MATERIALS AND METHODS

Construction of barcoded strains of Streptomyces

Oligonucleotides 5’-GATCCACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ and 5’-520-N30-
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTG/3Phos/ were purchased from Integrated DNA
Technologies. The latter oligonucleotide is different for each strain library and contains a

unique 20-nucleotide strain barcode (520), a stretch of 30 random nucleotides that form the set
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of lineage barcodes (N30), and a 3’-phosphate modification. To permit robust identification of a
strain in the presence of sequencing errors, the S20 sequences were designed using EDITTAG
(36). The 34-nucleotide complementary region of the two oligonucleotides were annealed,
made double stranded using Klenow Polymerase (Promega), and then modified using T4
Polynucleotide Kinase (New England Biolabs), which removes the 3’-phosphate and adds 5’-
phosphates. Subsequently, this DNA insert was ligated into plasmid pSRKV004 cut with BamHI
and EcoRV (New England BiolLabs). The plasmid pSRKV004 is a derivative of the integrating
plasmid pSET152 (37) in which the orientation of EcCoRV and BamHI sites in the multiple cloning
site is reversed.

To reduce the background of pSRKV004 without inserts after ligation, the ligation
mixture was digested with EcoRV and Notl (New England BioLabs) and then transformed into E.
coli 10G ELITE cells (Lucigen) via electroporation. Transformants were selected on lysogeny
broth (LB) plates with 50 pg/ml Apramycin, and the pool of transformants underwent plasmid
preparation (miniprep) using a commercial kit (Promega). The miniprep was again digested with
EcoRV and Notl and the resulting library was introduced into the conjugation helper strain
ET12567-pUZ8002 (37) via chemical transformation. Transformants were selected on LB + 15
ug/ml Chloramphenicol + 50 pg/ml Kanamycin and 50 pg/ml Apramycin plates, pooled, and
grown in liquid LB containing 15 pg/ml Chloramphenicol, 50 pg/ml Kanamycin and 50 pg/ml
Apramycin for 2-3 hours in a 37°C shaker.

This E. coli culture was used for conjugation into the desired Streptomyces strain
according to a standard protocol (37). Briefly, the transformed conjugation helper strain was

mixed with Streptomyces spores, the bacterial mix was grown on mannitol-salt (MS) agar for 16
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hours and then overlaid with Apramycin (100 ug/ml) and Nalidixic acid (50 pg/ml). Strains
successfully undergoing conjugation integrate the plasmid at a phage attachment site in their
genomic DNA (38). Barcoded libraries were prepared by scraping spores from exconjugants and
selecting against E. coli carryover by propagating the spores on Streptomyces Isolation Medium
(37) supplemented with 50 pug/ml Nalidixic acid and 100 pg/ml Apramycin for two growth

cycles.

Strains and growth conditions

Five barcoded Streptomyces strains were chosen based on having more than 100 distinct
barcodes per strain. These five strains were S. coelicolor, S. albus 11074, S. G4A3 (39), S. S26F9
(40), and S. venezuelae. Across all experiments, we observed a total of 283, 1611, 2534, 211,
and 419 unique N30 barcodes, respectively, for the 5 strains. Full concentration spore stocks
were diluted 10-fold and 100-fold to generate three initial concentrations, and aliquoted into 8
replicates per concentration, each containing a single strain (120 total populations). Each
replicate (30 ul) was used to inoculate 1 ml of 1/10™ concentration ISP2 liquid (10 g Malt
extract, 4 g Yeast extract, and 4 g Dextrose per 1 L) in a sterile 1.5 ml polystyrene tube
(Evergreen Scientific). A small hole was made in the cap of each tube to allow air flow. Tubes

were incubated for 7.5 days at 28°C while shaking at 200 rpm.

DNA extraction and sequencing

After growth, strains were centrifuged at 2000 rpm for 10 minutes to pellet the cells. A 750 pl
volume of supernatant was removed, leaving about 150 pl remaining. Note that about 10% of
the original volume was lost to evaporation during growth. The remaining volume containing

mycelium was sonicated at 100% amplitude for 3 minutes using a Model 505 Sonicator with
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Cup Horn (QSonica) while the samples were completely enclosed. After sonication, the samples
were centrifuged, and the supernatant containing DNA was used as template for PCR
amplification.

PCR primers (Table S2) were designed with unique 8-nucleotide i5 and i7 index
sequences and lllumina adapters. The random barcode (N30) sequence occurs at the start of
the sequencing read to assist with cluster detection on the Illlumina platform. Since strains
could be distinguished by their sequence specific barcode (520), we amplified each replicate
using a unique dual-index combination, but used the same set of combinations for all 5 strains.
Hence, the 520 region effectively acted as a third index sequence that allowed the 5 strains
sharing dual-index primers to be correctly de-multiplexed. This permitted all 24 samples per
strain to be multiplexed without needing to have some samples only separated by a single i5 or
i7 index. All strains were amplified separately before pooling, requiring a total of 120 PCR
reactions (5 strains with 24 replicates each). In addition, we performed two more technical
(PCR) replicates of one sample belonging to each strain.

Extracted DNA was amplified using a qPCR reaction consisting of a 2 min denaturation
step at 95°C, followed by 40 cycles of 20 sec at 98°C, 15 sec at 67°C, and 15 sec at 80°C. Each
well contained 10 pL of iQ Supermix (Bio-Rad), 1.6 uL of 10 uM left primer, 1.6 pL of 10 uM
right primer, 4 pL of DNA template, and 2.8 uL of reagent grade H,O per sample. A standard
curve of pure template DNA was used to estimate the initial DNA copy number per sample. The
resulting amplicons were pooled by sample and purified using the Wizard SV-Gel and PCR

Cleanup System (Promega). Samples were sequenced by the UW-Madison Biotechnology
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Center on an lllumina Hi-Seq 2500 in rapid mode. Sequences were deposited into the Short

Read Archive (SRA) repository under accession number PRJINA353868.

DNA sequence analysis

Using the R (41) package DECIPHER (42), DNA sequencing reads were filtered at a maximum
average error of 0.1% (Q30) to lessen the degree of cross-talk between dual-indexed samples
(43). Sequences were assigned to the appropriate strain by exact matching the 520, and the
nearest barcode by clustering N30 sequences within an edit distance of 5. To completely
eliminate any remaining cross-talk, we subtracted 0.01% + 5 reads from the count of every
barcode by sample. The remaining reads were normalized by dividing by the total number of
reads per sample. The final result of this process was a matrix of read counts for each unique

barcode across every sample by strain (Fig. S1).

Time-lapse imaging of the initial growth
To simultaneously track the growth of many Streptomyces colonies, we inoculated spores onto
a device developed as part of another study (20). Each of the five strains were added to a
separate well containing 90 plL of 1/10™ ISP2 with 1.25% purified agar (Sigma-Aldrich). The
surface of each well was imaged for 48 hours using a Nikon Eclipse Ti microscope with a 20x
phase contrast lens. Time points were collected every half hour across a 15 x 15 grid with 20%
overlap, and stitched together with Nikon NIS Elements software to construct a large high-
resolution image.

Images were processed using in-house Matlab scripts. First, 25% sized images were
aligned between time-points by identifying shared features using the computer vision toolbox.

Regions of the image with remaining mis-alignment were fixed by local image registration.
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427  These transformations were then scaled to larger (50% sized) images used for further analysis.
428  Growing colonies were detected by comparing the difference between subsequent time points,
429  and area was determined through thresholding the image since mycelium are darker than the
430  background. Tracking was terminated at the time point before colonies intersected. Manual
431 validation was applied to remove artifacts that were incorrectly identified by the algorithm as
432 mycelium. Finally, growth curves were removed with extreme jumps between time-points or

433  decreases in colony size, which were characteristic of localized failures in thresholding.

434  Complete simulations with different distributions of lag times

435  We performed comprehensive simulations in order to determine whether the experimental
436  results can be explained solely based on a variability in lag times and deduce the distributions
437  of descendants that best explain the data. We accomplished this by simulating the growth of
438  barcoded lineages under different distributions of descendants and comparing the resulting
439  distribution of barcodes to the observed distribution of barcodes across the 8 replicates per
440  strain at a given concentration. First, a background barcode frequency distribution was

441  generated by averaging the relative barcode frequency distributions across all 8 replicates. This
442  distribution is reasonably well-approximated by an exponential distribution, but is truncated
443  because very rare barcodes are not observed. We supplemented these rare barcodes by

444  extrapolating the exponential distribution and adding back “virtual” barcodes at less than the
445 10" percentile of relative frequency. Since these barcodes are extremely rare, they collectively
446  have minimal effect on the relative frequencies of the other barcodes.

447 The simulation begins by sampling the initial number of individuals (n) from a Poisson

448  distribution. For each parameter combination, we first optimized the initial (census) population
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size (n) to yield the same number of unique barcodes that were observed in the real data. The
barcodes assigned to these individuals are drawn from the pool of barcodes in accordance with
the aforementioned background barcode frequency distribution. We then assume that an
individual i starts growing exponentially with growth rate r, after a stochastic lag time t;:

x; = er(+s)(T-ty)
where X; is the number of descendants of i, s; is a selection coefficient (assumed to be barcode

specific), and T is the time when exponential growth is terminated by the experimenter or

exhaustion of resources. We are only interested in the distribution of relative frequencies:

~ X e—T(1+Si)ti

MZ S T gertrs

since we only experimentally determine relative barcode frequencies. Notice that X; is
independent of T, indicating that T is irrelevant as long as it is large enough (i.e., T> t;). We
further assume that t;’s are independent and identically distributed random variables,
described by the cumulative distribution function (CDF):

CDF(t) = (1 +e b)),
And a > 0 is a parameter controlling the skew of the distribution. The effect of varying a on
germination times is shown in Fig. S5. This model was chosen to reflect the observation that
germination delays largely explain the observed variability in the number of descendants (Fig.
3). We compared this distribution of t;’s to one drawn from a skew normal distribution with
shape (a) controlling the skewness of the distribution (44). Note that the other (location and
scale) parameters defining a skew normal are irrelevant because the simulation only considers

the relative, rather than absolute, lag times.
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After the relative barcode frequencies are calculated, the simulation subsamples the
distribution in accordance with the predicted number of initial templates in gPCR followed by
the observed number of sequencing reads. To better reflect the real data, these two steps are
performed on a per-replicate basis. Thus, there are only two free parameters in the simulation,
one proportional to the fixed growth rate (r), and a second controlling the skew of "jackpots"
(ar). We performed a sweep across a range of parameter combinations to find the optimum
based on the outcome of 1000 replica simulations per combination. Spacing for the search grid
was chosen such that parameter combinations differed by close to the amount of variability
observed between replicate simulations near the optimum (Fig. S6). Accordingly, further
optimization of the parameter values would largely be due to noise because of stochasticity
among the 1000 replicates.

To define an optimality criterion, we split the simulation results (Fig. 4b) into successive
bins by median barcode frequency, with 10 bins that were evenly spaced in log-space per order
of magnitude. For each bin, we then compared the sum-of-squared differences (w?) between
the cumulative frequency distributions of the real data and that of the combined results of the
1000 simulations. The parameters yielding the minimal w® were considered optimal, although
oftentimes nearby parameters yielded similar values of w? due to the density of the search grid
(Fig. S6). We tested whether a distribution could be rejected by comparing w? of the real data
to that of the 1000 simulations tested against one another through leave-one-out. That is, for
each simulation we calculated w” against the rest of the simulations after leaving it out of the
dataset. The reported p-value (Table S1) represents the fraction of simulations with at least as

extreme of an w? as the real data.
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Modeling the population genetics consequences of the distribution of descendants
The population genetics simulation consists of discrete time steps. Each time step captures the
dynamics over one ecological cycle. In the beginning of each ecological cycle, N random

variables t; are drawn from a lag time distribution as described in the previous section, and the

X

e where
L

corresponding relative abundances of descendants are computed as X; =

%; = e""t. For models with selection we set X; = (1 + s;)%;, and normalized the sum to 1. To
complete the cycle, N random individuals are selected from the multinomial distribution
specified by X; to start the next cycle.

To find the variance effective population size, Ne, we computationally determined the
distribution of descendants, v, after a full ecological cycle, that is the discrete probability

distribution for the number of descendants from one individual after one ecological cycle. The

mean of v is 1. We then set N, = N/Var(v) (29).

All simulations were performed with parameters r =0.2 and a = 0.28. For these
parameters, the random variable ¥ = e™"¢ (with t distributed as above) has no finite variance.

In fact, for large X, we have probability density:

~ 1
PX)~ —apm
which is of Pareto form with ¢/,- = 1.4 < 2. Because of the infinite variance of ¥, var(%)
and var(v) depend on N and do not converge to a constant as N — oo. This leads to the sub-

linear dependence of N, on N, which appears to be a power-law.
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Figure 1. Measurement of the distribution of descendants arising from a population. a, Clonal
cells, represented by colored circles, are grown for a period of time (t) before their relative
abundances are measured. b, The variability in the proportion of descendants between
replicate populations of cells is used to determine the distribution of descendants. c, The
distribution of descendants may take on a variety of shapes that have different rates of
converging to zero. A heavy-tailed distribution (solid line) would result in "jackpots" where
individuals have much greater reproductive output than expected based on their initial
frequency. d, In order to track lineages, we constructed a barcoded library of Streptomyces
where each spore has a unique 30 base-pair lineage-specific sequence integrated into its

chromosome.
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Figure 2. Inferring the distribution of descendants from abundant and rare barcodes. a,
Barcodes at the two extremes of relative abundance reflect the shape of the distribution of
descendants. b, Abundant barcodes, those shared by more than 1000 cells in the initial
population, are expected to converge to a normal distribution due to the central limit theorem.
However, many of the most abundant barcodes were not normally distributed across
replicates, based to their p-values (at right) in the Shapiro-Wilk test. Instead, the abundant
barcodes originating from three different strains (colors) were widely scattered in terms of their
final proportion of the population (x-axis). ¢, The singletons, those barcodes occurring in only 1
out of 8 replicates, approximate the shape of the distribution of descendants since they likely
started from single cells. For the strain with the most singletons, Streptomyces G4A3 (808
singletons), we observed that their relative abundances at the end of the experiment were
more heavy-tailed than a fitted log normal distribution (green curve). The outlying “jackpots”
represent cells that grew to a far higher abundance than the median abundance of singletons,
in many case by more than 100-fold. Note that the left-side of the distribution is likely

truncated because it contains barcodes that fall below the lower detection limit of our method.
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655  Figure 3. Stochastic exits from germination largely explain the variability in the number of
656 descendants. a, A vertical cross-section representing one-fifth of a composite image of S. S26F9
657  growth after 22.4 hours on solid medium with regions shown in (b) denoted by white boxes. b,
658  Colonies originating from single spores can be drastically different in size at the same pointin
659 time. The image on the left shows the largest non-intersecting colony after 22.4 hours of

660 growth. The two images on the right highlight the smallest identifiable colonies (circled) at the
661  same time point and scale. The colony on the left has approximately 330 times more mycelial
662  area than either of the colonies on the right. ¢, Growth curves for 301 colonies of S. S26F9

663  tracked under the microscope. Each line represents the mycelial area of a colony originating
664  from a single spore, and the lines are truncated when colonies intersect. Since mycelium

665  thickness is approximately constant, this measure is proportional to the total length and
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666  volume of the mycelium filaments. The largest colonies had a mycelia area almost 3-orders of

667 magnitude greater than the smallest colonies at the end of the experiment.
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668

669  Figure 4. Inferring the distribution of descendants from the entire dataset. a, We performed
670 simulations of the entire experiment with different distributions of descendants to test their
671  ability to recapitulate the observed data (see Materials and Methods). b, The variation in

672 relative barcode frequencies between 8 replicate populations is shown for the strain S.

673  coelicolor at full initial concentration (black). Vertical lines connect the observed relative

674  frequencies of each of the 8 biological replicates (points) corresponding to a given barcode, and
675 extend to zero in cases where a barcode was not observed in one or more of the 8 replicates.
676  Simulation results (gray) closely mirror the observed data. ¢, The optimal distributions of

677  descendants obtained from parameter fitting (colored lines) generally matched the relative

678 frequencies of singletons (points) for the three strains with the most singletons: S. albus J1074

679 (400 singletons), S. G4A3 (808), and S. venezuelae (64).
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Figure 5. Population genetics consequences of the experimentally determined distribution of
descendants. a, In the model, N individuals exit dormancy stochastically and grow exponentially
at the same growth rate until a very large population size is reached. N individuals are then
randomly sampled to start the next cycle. b, Shown are the variance effective population sizes
(Ne) that result from simulations with different numbers of initial cells (N) (red circles connected
by lines). Strikingly, N. does not scale linearly with N (black dashed line). Instead, N, follows a
sub-linear power-law: N~ N’ with y < 1. ¢, The probability of fixation is shown as a function of
the selection coefficient s (red, N = 100,000, r = 0.2, t = 0.28). The classical expectation based
on the formula presented in the text is shown for matching N and N, (black dashed line). A log-
log presentation of this result (Fig. S9a) reveals that, for large s, the probability of fixation is a
super-linear power-law as a function of s. d, The probability of distribution for the fixation times
of a neutral allele with an initial fraction of 50% is shown. The model with the experimentally
determined heavy-tailed distribution of descendants is shown in red (same parameters as in b),

and the Fisher-Wright model with matching effective population size is shown in black.
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696  SUPPLEMENTAL MATERIALS
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698  Figure S1. Example of the complete dataset collected for a single strain (S. coelicolor). Each
699 row depicts the relative fraction of a given barcode in a sample (column). Vertical lines separate
700 each of the eight biological replicates starting from three different concentrations (separated
701 by 10-fold increments). The leftmost three columns are technical (separate PCR and

702  sequencing) replicates of the first sample.
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704  Figure S2. Most of the variability between replicates is biological in nature. Three technical
705  (separate PCR and sequencing) replicates of the same biological sample are plotted against

706  each other and a different biological sample of S. coelicolor. Each point corresponds to a unique
707  barcode that was present in both samples. Correlation between technical replicates was much
708  higher than that for biological replicates. The line of identity is colored red.
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Figure S3. The distribution of singletons across strains was consistently heavy-tailed. Four of
five strains are shown: S. coelicolor (a), S. albus J1074 (b), S. S26F9 (c), and S. venezuelae (d).
The green curve represents a log normal distribution fitted to the inner-quartile range of the
data.
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717  Figure S4. Sets of growth curves for two additional strains. Colony sizes over time are shown
718  for colonies of S. coelicolor (a) and S. G4A3 (b) tracked under the microscope.
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720
721  Figure S5. The effect of varying a on the different distributions. (a) The cumulative probability

722 of germination as a function of lag time (CDF(t) = (1 + e~%)~%; see main text), showing that
723 higher values of a result in fewer jackpots, whereas smaller values of a result in more jackpots.
724  (b) Corresponding distributions of descendants having the same rate (r = 1) and mean (1/N =
725 10, showing that a controls the degree to which the distribution is heavy-tailed. (c) The

726  CDF(t) of the skew normal distribution, which is equivalent to the standard normal

727  distribution when a is 0 and becomes more skewed at higher values of a. (d) In contrast to (b),
728  the exponentiated skew normal distributions of descendants (r=3; 1/N = 10™) exhibit

729  lognormal decay. Note that the right-tails in (d) are concave, while the right-tails in (b) are

730  straight lines.
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731
732  Figure S6. Effect of varying parameters (r and a) on simulation fits for four species at full

733 initial concentration. A grid search was performed to identify the optimal combination of

734  parameters for each species. A skew normal (top) was compared to the generalized logistic

735  function (bottom) for each species (a, S. coelicolor; b, S. albus J1074; c, S. G4A3; d, S. S26F9).
736  The generalized logistic function largely achieved equivalent or better fits (lower mean «f) than
737  the skew normal.

738


https://doi.org/10.1101/246629
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/246629; this version posted January 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

2e-04 5e-04

Relative frequency in second replicate
2e-05 5e-05

5e-06

| | | | | | | |
5e-06 1e-05 2e-05 5e-05 1e-04 2e-04 5e-04 1e-03

739 Relative frequency in first replicate

740  Figure S7. The frequency of rare barcodes was largely uncorrelated between biological

741  replicates. The relative frequencies of barcodes appearing in only 2 of 8 replicates are shown
742  forstrain S. albus J1074. The lack of correlation between replicate barcodes indicates that inter-
743  barcode selection had a minimal influence over the variability between replicates. Note the log-
744  scaled axes and the line of identity.
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747  Figure S8. Effective population size and fixation probabilities for a lognormal-tailed

748  distribution of descendants. In both panels, a lognormal-tailed distribution of descendants

749  resulted from using a standard normal distribution of lag-times (a=0) with r = 3. (a) N, increases
750  sub-linearly with N, but it asymptotically approaches Ne~N at large N. (b) The probability of

751  fixation (red) is substantially higher than the classical expectation with matching N, (dashed
752  black). N=100,000 for both panels.
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755  Figure S9. Fixation probabilities for beneficial mutations. (a) The simulation results from Figure
756  5care replotted on a log-log plot. The simulated probability of fixation (red) approaches a

757  straight line in log-log space for large selection coefficients, thus revealing a super-linear power-
758 law dependence of the probability of fixation on the selection coefficient. In contrast, the

759  classical expectation (dashed black) converges to a linear relationship. (b) Simulation of a

760  Fisher-Wright model with the same effective population size as in panel (a). The probability of
761 fixation (red) closely follows the theoretical prediction (dashed black) even for large values of s.
762  The probabilities of fixation are very different in magnitude between panels (a) and (b) because
763  the initial mutant fractions are 1/N and 1/N,, respectively.
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