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ABSTRACT	

Variance	 in	 reproductive	 success	 is	 a	 major	 determinant	 of	 the	 degree	 of	 genetic	 drift	 in	 a	

population.	While	many	plants	and	animals	exhibit	high	variance	in	their	number	of	progeny,	far	

less	 is	known	about	 these	distributions	 for	microorganisms.	Here,	we	used	a	strain	barcoding	

approach	to	quantify	variability	in	offspring	number	among	replicate	bacterial	populations	and	

developed	a	Bayesian	method	to	infer	the	distribution	of	descendants	from	this	variability.	We	

applied	our	approach	to	measure	the	offspring	distributions	for	5	strains	of	bacteria	from	the	

genus	Streptomyces	after	germination	and	growth	in	a	homogenous	laboratory	environment.	The	

distributions	of	descendants	were	heavy-tailed,	with	a	few	cells	effectively	“winning	the	jackpot”	

to	 become	 a	 disproportionately	 large	 fraction	 of	 the	 population.	 This	 extreme	 variability	 in	

reproductive	 success	 largely	 traced	back	 to	 initial	 populations	 of	 spores	 stochastically	 exiting	

dormancy,	 which	 provided	 early-germinating	 spores	 with	 an	 exponential	 advantage.	 In	

simulations	with	multiple	dormancy	cycles,	heavy-tailed	distributions	of	descendants	decreased	

the	effective	population	size	by	many	orders	of	magnitude	and	led	to	allele	dynamics	differing	

substantially	from	classical	population	genetics	models	with	matching	effective	population	size. 

Collectively,	these	results	demonstrate	that	extreme	variability	in	reproductive	success	can	occur	

even	in	growth	conditions	that	are	far	more	homogeneous	than	the	natural	environment.	Thus,	

extreme	 variability	 in	 reproductive	 success	 might	 be	 an	 important	 factor	 shaping	 microbial	

population	 dynamics	 with	 implications	 for	 predicting	 the	 fate	 of	 beneficial	 mutations,	

interpreting	 sequence	 variability	 within	 populations,	 and	 explaining	 variability	 in	 infection	

outcomes	across	patients.	 	
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INTRODUCTION	

Since	the	dawn	of	population	genetics,	it	has	been	clear	that	the	distribution	of	the	number	of	

offspring	per	parent	 is	central	 to	developing	a	quantitative	understanding	of	 the	evolution	of	

genetic	variants	(Fisher,	1958;	Gillespie,	1974;	Haldane,	1932;	Motoo	Kimura,	1994;	S.	Wright,	

1931).	 The	 offspring	 distribution	 provides	 a	 mapping	 between	 generations	 and	 directly	

determines	the	extent	to	which	genetic	drift	affects	allele	frequencies	in	a	population	(R.	Der,	

Epstein,	 &	 Plotkin,	 2012).	 Specifically,	 the	 effective	 population	 size,	 which	 is	 often	 used	 to	

quantify	genetic	drift,	 is	 inversely	proportional	to	the	variance	of	the	offspring	distribution.	 In	

classical	 models	 of	 population	 genetics,	 such	 as	 the	 Wright-Fisher	 model,	 the	 offspring	

distribution	 is	Poisson	distributed	 (Charlesworth,	2009;	Schierup	&	Wiuf,	2010).	However,	 for	

some	animals	there	is	high	variance	in	reproductive	success,	with	a	minority	of	males	fathering	a	

large	fraction	of	the	children	in	each	generation	(Araki,	Waples,	Ardren,	Cooper,	&	Blouin,	2007;	

Hedgecock,	1994;	Hedgecock	&	Pudovkin,	2011;	Lallias,	Taris,	Boudry,	Bonhomme,	&	Lapègue,	

2010).	 Such	 highly-skewed	 offspring	 distributions	 have	 fundamental	 implications	 for	 how	we	

predict	and	interpret	fluctuations	in	allele	frequencies	(R.	Der	et	al.,	2012;	Hedrick,	2005;	Hoban	

et	 al.,	 2013).	 These	 implications	 include:	dramatic	 (e.g.,	 six	orders	of	magnitude)	discrepancy	

between	census	and	effective	population	size	(Hedrick,	2005),	genetic	patchiness	on	small	spatial	

scales	despite	long-range	dispersal	(Broquet,	Viard,	&	Yearsley,	2013;	Hedgecock,	1994;	Selkoe,	

Gaggiotti,	 ToBo,	Bowen,	&	Toonen,	2014),	 and	dramatically	altered	effectiveness	of	 selection	

compared	with	classical	population	genetics	models	(Chang	et	al.,	2013;	R.	Der	et	al.,	2012;	Tellier	

&	Lemaire,	2014).	
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	 In	 contrast	 to	 plants	 and	 animals,	 the	 offspring	 distribution	 is	 largely	 unexplored	 for	

microorganisms.	While	 it	 is	 well	 known	 that	 exponential	 growth	 can	 generate	 "jackpots"	 of	

mutants	at	high	frequencies	(Luria	&	Delbrück,	1943),	far	less	is	known	about	the	distribution	of	

descendants	 within	 genetically	 identical	 populations.	 One	 reason	 for	 this	 might	 be	 that	 the	

offspring	distribution	is	seemingly	simpler	for	bacteria	undergoing	binary	fission,	since	each	cell	

can	 only	 leave	 behind	 0	 (death),	 1	 (no	 doublings),	 or	 2	 descendants.	 However,	 even	 clonal	

populations	of	bacteria	display	a	distribution	of	growth	rates	and	lag	times,	causing	them	to	yield	

a	variable	number	of	offspring	after	some	time	(Fridman,	Goldberg,	Ronin,	Shoresh,	&	Balaban,	

2014;	 Labhsetwar,	 Cole,	 Roberts,	 Price,	 &	 Luthey-Schulten,	 2013;	 Wang	 et	 al.,	 2010;	 Xu	 &	

Vetsigian,	 2017).	 In	 particular,	 many	microorganisms	 form	 spores	 or	 persister	 (non-growing)	

phenotypes	to	survive	unfavorable	environments	or	disperse	(Balaban,	2004;	Dworkin	&	Shah,	

2010;	Fridman	et	al.,	2014;	Vulin,	Leimer,	Huemer,	Ackermann,	&	Zinkernagel,	2018),	and	exit	

from	dormancy	is	often	a	stochastic	process	that	presumably	evolved	as	a	bet	hedging	strategy	

to	 overcome	 environmental	 uncertainty	 (Sturm	 &	 Dworkin,	 2015;	 Villa	 Martin,	 Munoz,	 &	

Pigolotti,	2019;	Xu	&	Vetsigian,	2017).	

	 Importantly,	it	is	unclear	how	stochastic	variability	in	growth	rates	and	lag	times	affects	

genetic	drift.	One	way	to	study	this	quantitatively	is	by	examining	the	distribution	of	the	number	

of	bacteria	arising	from	a	single	bacterium	after	a	given	amount	of	time	!,	where	the	time	!	is	

substantially	longer	than	the	standard	doubling	time	(Fig.	1a).	This	is	a	stochastic	quantity	which	

can	be	described	by	a	probability	distribution	that	we	term	here	the	'distribution	of	descendants'.	

In	a	system	with	seasonality,	for	example,	one	might	look	at	this	distribution	after	one	season.	

Defined	as	such,	the	distribution	of	descendants	is	an	important	quantity	of	which	little	is	known	
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for	 bacteria.	Quantifying	 this	 distribution	 and	 how	 it	 varies	 across	 species	 and	 environments	

would	likely	improve	our	understanding	of	genetic	drift	in	microbial	populations	and,	ultimately,	

our	ability	to	correctly	interpret	the	genetic	variability	observed	in	sequence	data.	

	 Here	we	present	a	scalable	methodology	for	quantifying	the	distribution	of	descendants	

in	clonal	populations.	We	used	a	generalizable	barcode	tagging	approach	that	enabled	us	to	track	

descendants	from	hundreds	of	sub-populations	differing	only	by	a	short	DNA	barcode	inserted	in	

their	 chromosome.	 We	 developed	 analysis	 methods	 for	 determining	 the	 distribution	 of	

descendants	from	barcode	data,	and	applied	these	approaches	to	soil	bacteria	from	the	genus	

Streptomyces.	We	focused	on	Streptomyces	because	they	have	complicated	life-cycles,	and	the	

impact	 of	 life-cycle	 stages	 (i.e.,	 spore	 germination	 followed	 by	 mycelial	 growth)	 on	 the	

distribution	of	descendants	is	particularly	poorly	understood	(Bobek,	Šmídová,	&	Čihák,	2017).	

Using	the	variability	between	replicates,	we	show	that	the	distribution	of	descendants	is	heavy-

tailed	–	that	is	some	bacteria	represent	a	far	greater	proportion	of	the	final	population	than	their	

initial	frequency.	Furthermore,	using	microscope	time-lapse	imaging,	we	demonstrate	that	the	

heavy-tailed	nature	of	the	distribution	of	descendants	can,	in	our	case,	be	largely	explained	by	

phenotypic	variability	in	lag	time	before	exponential	growth.	We	then	examine	the	implications	

of	heavily-skewed	distributions	of	descendants	for	the	population	genetics	of	microorganisms.	

MATERIALS	AND	METHODS	

Construction	of	barcoded	strains	of	Streptomyces	

Oligonucleotides	 5’-GATCCACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’	 and	 5’-S20-N30-

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTG/3Phos/	were	purchased	from	Integrated	DNA	

Technologies.	The	latter	oligonucleotide	is	different	for	each	strain	library	and	contains	a	unique	
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20-nucleotide	 strain	 barcode	 (S20),	 a	 stretch	 of	 30	 random	 nucleotides	 that	 form	 the	 set	 of	

lineage	barcodes	 (N30),	and	a	3’-phosphate	modification.	To	permit	 robust	 identification	of	a	

strain	 in	 the	presence	of	sequencing	errors,	 the	S20	 sequences	were	designed	using	EDITTAG	

(Faircloth	&	Glenn,	2012).	The	34-nucleotide	complementary	region	of	the	two	oligonucleotides	

were	annealed,	made	double	stranded	using	Klenow	Polymerase	(Promega),	and	then	modified	

using	T4	Polynucleotide	Kinase	(New	England	Biolabs),	which	removes	the	3’-phosphate	and	adds	

5’-phosphates.	Subsequently,	this	DNA	insert	was	ligated	into	plasmid	pSRKV004	cut	with	BamHI	

and	 EcoRV	 (New	 England	 BioLabs).	 The	 plasmid	 pSRKV004	 is	 a	 derivative	 of	 the	 integrating	

plasmid	pSET152	(Hopwood,	Kieser,	Bibb,	Buttner,	&	Chater,	2000)	in	which	the	orientation	of	

EcoRV	and	BamHI	sites	in	the	multiple	cloning	site	is	reversed.	

	 To	reduce	the	background	of	pSRKV004	without	inserts	after	ligation,	the	ligation	mixture	

was	digested	with	EcoRV	and	NotI	(New	England	BioLabs)	and	then	transformed	into	E.	coli	10G	

ELITE	 cells	 (Lucigen)	 via	electroporation.	 Transformants	were	 selected	on	 lysogeny	broth	 (LB)	

plates	with	50	μg/ml	apramycin,	and	the	pool	of	transformants	underwent	plasmid	preparation	

(miniprep)	using	a	commercial	kit	(Promega).	The	miniprep	was	again	digested	with	EcoRV	and	

NotI	 and	 the	 resulting	 library	 was	 introduced	 into	 the	 conjugation	 helper	 strain	 ET12567-

pUZ8002	(Hopwood	et	al.,	2000)	via	chemical	transformation.	Transformants	were	selected	on	

LB	plates	with	15	µg/ml	chloramphenicol,	50	µg/ml	kanamycin,	and	50	μg/ml	apramycin,	pooled,	

and	grown	in	liquid	LB	containing	15	µg/ml	chloramphenicol,	50	µg/ml	kanamycin,	and	50	μg/ml	

apramycin	for	2-3	hours	at	37°C	while	shaking	at	200	rpm.	

	 This	 E.	 coli	 culture	 was	 used	 for	 conjugation	 into	 the	 desired	 Streptomyces	 strain	

according	to	a	standard	protocol	(Hopwood	et	al.,	2000).	Briefly,	the	transformed	conjugation	
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helper	strain	was	mixed	with	Streptomyces	spores,	the	bacterial	mix	was	grown	on	mannitol-salt	

(MS)	 agar	 for	 16	 hours	 and	 then	 overlaid	with	 apramycin	 (100	 µg/ml)	 and	 nalidixic	 acid	 (50	

µg/ml).	Strains	successfully	undergoing	conjugation	integrate	the	plasmid	at	a	phage	attachment	

site	in	their	genomic	DNA	(Sun,	Kelemen,	Fernández-Abalos,	&	Bibb,	1999).	Barcoded	libraries	

were	prepared	by	scraping	spores	from	exconjugants	and	selecting	against	E.	coli	carryover	by	

propagating	the	spores	on	Streptomyces	Isolation	Medium	(Hopwood	et	al.,	2000)	supplemented	

with	50	µg/ml	nalidixic	acid	and	100	µg/ml	apramycin	for	two	propagation	cycles.	

Strains	and	growth	conditions	

Five	 barcoded	 Streptomyces	 strains	 were	 chosen	 based	 on	 having	 more	 than	 100	 distinct	

barcodes	per	strain.	These	five	strains	were	S.	coelicolor,	S.	albus	J1074,	S.	G4A3	(Vetsigian,	Jajoo,	

&	 Kishony,	 2011),	 S.	 S26F9	 (E.	 Wright	 &	 K.	 Vetsigian,	 2016),	 and	 S.	 venezuelae.	 Across	 all	

experiments,	 we	 observed	 a	 total	 of	 283,	 1611,	 2534,	 211,	 and	 419	 unique	 N30	 barcodes,	

respectively,	for	the	5	strains	(Table	S1).	We	believe	that	this	relatively	low	barcode	diversity	in	

comparison	 to	 previous	 studies	 is	 a	 consequence	 of	 low	 inter-phylum	 (i.e.,	 E.	 coli	 to	

Streptomyces)	conjugation	efficiencies.	Full	concentration	spore	stocks	were	diluted	10-fold	and	

100-fold	to	generate	three	initial	concentrations	(high,	medium,	and	low),	and	aliquoted	into	8	

replicates	 per	 concentration,	 each	 containing	 a	 single	 strain	 (120	 total	 populations).	 Each	

replicate	(30	µl)	was	used	to	inoculate	1	ml	of	1/10th	concentration	ISP2	liquid	(10	g	malt	extract,	

4	 g	 yeast	 extract,	 and	 4	 g	 dextrose	 per	 1	 L)	 in	 a	 sterile	 1.5	ml	 polystyrene	 tube	 (Evergreen	

Scientific).	A	small	hole	was	made	in	the	cap	of	each	tube	to	allow	air	flow.	Tubes	were	incubated	

for	7.5	days	at	28°C	while	shaking	at	200	rpm.	

DNA	extraction	and	sequencing	
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After	growth,	strains	were	centrifuged	at	2000	rpm	for	10	minutes	to	pellet	the	cells.	A	750	µl	

volume	of	supernatant	was	removed,	leaving	about	150	µl	remaining.	Note	that	about	10%	of	

the	original	volume	was	 lost	 to	evaporation	during	growth.	The	 remaining	volume	containing	

mycelium	was	sonicated	at	100%	amplitude	for	3	minutes	using	a	Model	505	Sonicator	with	Cup	

Horn	(QSonica)	while	the	samples	were	completely	enclosed.	We	did	not	sequence	the	 initial	

stock	 (!	 =	 0)	 because	we	were	 only	 able	 to	 efficiently	 lyse	mycelium	 and,	 therefore,	 cannot	

accurately	determine	the	relative	abundances	of	the	 initial	barcoded	spore	populations.	After	

sonication,	 the	 samples	were	 centrifuged,	 and	 the	 supernatant	 containing	 DNA	was	 used	 as	

template	for	PCR	amplification.	

	 The	number	of	unique	dual	 index	 Illumina	primers	available	allowed	us	 to	sequence	8	

replicates	of	each	strain	at	 three	different	 initial	concentrations.	PCR	primers	 (Table	S2)	were	

designed	with	unique	8-nucleotide	i5	and	i7	index	sequences	and	Illumina	adapters.	The	random	

barcode	(N30)	sequence	occurs	at	the	start	of	the	sequencing	read	to	assist	with	cluster	detection	

on	the	Illumina	platform.	Since	strains	could	be	distinguished	by	their	sequence	specific	barcode	

(S20),	we	amplified	each	replicate	using	a	unique	dual-index	combination,	but	used	the	same	set	

of	combinations	for	all	5	strains.	Hence,	the	S20	region	effectively	acted	as	a	third	index	sequence	

that	allowed	the	5	strains	sharing	dual-index	primers	to	be	correctly	de-multiplexed	(E.	S.	Wright	

&	 K.	 H.	 Vetsigian,	 2016).	 This	 permitted	 all	 24	 samples	 per	 strain	 to	 be	multiplexed	without	

needing	to	have	some	samples	only	separated	by	a	single	i5	or	i7	index.	All	strains	were	amplified	

separately	before	pooling,	 requiring	a	 total	of	120	PCR	 reactions	 (5	 strains	with	24	 replicates	

each).	In	addition,	we	sequenced	two	more	technical	(PCR)	replicates	of	one	sample	belonging	

to	each	strain.	
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	 Extracted	DNA	was	amplified	using	a	qPCR	reaction	consisting	of	a	2	min	denaturation	

step	at	95°C,	followed	by	40	cycles	of	20	sec	at	98°C,	15	sec	at	67°C,	and	15	sec	at	80°C.	Each	

well	contained	10	μL	of	iQ	Supermix	(Bio-Rad),	1.6	μL	of	10	μM	left	primer,	1.6	μL	of	10	μM	right	

primer,	4	μL	of	DNA	template,	and	2.8	μL	of	reagent	grade	H2O	per	sample.	A	standard	curve	of	

pure	template	DNA	was	used	to	estimate	the	initial	DNA	copy	number	per	sample.	The	resulting	

amplicons	were	pooled	by	sample	and	purified	using	the	Wizard	SV-Gel	and	PCR	Cleanup	System	

(Promega).	Samples	were	sequenced	by	the	UW-Madison	Biotechnology	Center	on	an	Illumina	

Hi-Seq	 2500	 in	 rapid	 mode.	 Sequences	 were	 deposited	 into	 the	 Short	 Read	 Archive	 (SRA)	

repository	under	accession	number	PRJNA353868.	

DNA	sequence	analysis	

Using	the	R	(R	Core	Team,	2019)	package	DECIPHER	(E.	S.	Wright,	2016),	DNA	sequencing	reads	

were	 filtered	 at	 a	 maximum	 average	 error	 of	 0.1%	 (Q30)	 to	 lessen	 the	 degree	 of	 cross-talk	

between	dual-indexed	samples	(E.	S.	Wright	&	K.	H.	Vetsigian,	2016).	Sequences	were	assigned	

to	the	appropriate	strain	by	exact	matching	the	S20,	and	the	nearest	barcode	by	clustering	N30	

sequences	within	an	edit	distance	of	5.	To	completely	eliminate	any	remaining	cross-talk	(E.	S.	

Wright	&	K.	H.	Vetsigian,	2016),	we	subtracted	0.01%	+	5	reads	from	the	count	of	every	barcode	

by	sample.	The	remaining	reads	were	normalized	by	dividing	by	the	total	number	of	reads	per	

sample.	The	final	result	of	this	process	was	a	matrix	of	read	counts	for	each	unique	barcode	across	

every	sample	by	strain	(Fig.	S1).	

Time-lapse	imaging	of	the	initial	growth	

To	simultaneously	track	the	growth	of	many	Streptomyces	colonies,	we	inoculated	spores	onto	a	

device	developed	as	part	of	another	study	(Xu	&	Vetsigian,	2017).	Each	of	the	five	strains	were	
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added	to	a	separate	well	containing	90	μL	of	1/10th	ISP2	with	1.25%	purified	agar	(Sigma-Aldrich).	

The	surface	of	each	well	was	imaged	for	48	hours	using	a	Nikon	Eclipse	Ti	microscope	with	a	20x	

phase	contrast	lens.	Time	points	were	collected	every	half	hour	across	a	15	x	15	grid	(225	images	

per	 strain)	 with	 20%	 overlap,	 and	 stitched	 together	 with	 Nikon	 NIS	 Elements	 software	 to	

construct	a	large	high-resolution	image.	

	 Images	 were	 processed	 using	 in-house	 Matlab	 scripts.	 First,	 25%	 sized	 images	 were	

aligned	 between	 time-points	 by	 identifying	 shared	 features	 using	 Matlab's	 computer	 vision	

toolbox.	 Regions	 of	 the	 image	 with	 remaining	 mis-alignment	 were	 fixed	 by	 local	 image	

registration.	 These	 transformations	 were	 then	 scaled	 to	 larger	 (50%	 sized)	 images	 used	 for	

further	 analyses.	 Growing	 colonies	 were	 detected	 by	 comparing	 the	 difference	 between	

subsequent	 time	 points,	 and	 area	 was	 determined	 through	 thresholding	 the	 image	 since	

mycelium	are	darker	 than	 the	background.	Tracking	was	 terminated	at	 the	 time	point	before	

colonies	 intersected.	Manual	validation	was	applied	 to	 remove	artifacts	 that	were	 incorrectly	

identified	 by	 the	 algorithm	 as	mycelium.	 Finally,	 growth	 curves	were	 removed	with	 extreme	

jumps	between	time-points	or	decreases	 in	colony	size,	which	were	characteristic	of	 localized	

failures	in	thresholding.	

Inferring	the	distribution	of	descendants	from	rare	barcodes	

The	barcode	reads	that	we	observe	result	from	three	sequential	stochastic	processes	(Fig.	1b):	

1) A	common	initial	pool	of	barcoded	spores	is	randomly	sampled	to	inoculate	replicates.	

2) Individuals	in	each	tube	undergo	stochastic	germination	and	growth.	

3) The	final	barcode	pool	in	each	tube	is	randomly	sampled	through	qPCR	and	sequencing	

to	generate	the	observed	read	counts.	
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Our	goal	is	to	correctly	account	for	processes	1	and	3	in	order	to	learn	about	process	2,	which	is	

the	process	of	biological	interest.	Process	2	is	quantified	by	the	distribution	of	descendants,	"($),	

specifying	the	probability	that	an	individual	in	a	test	tube	will	leave	descendants	that	constitute	

a	relative	fraction	$	of	the	final	population.	Let	&'(	be	the	number	of	observed	reads	of	barcode	

)	in	sample	*	(* = 1. .8)	and	/' = &'(( 	be	the	total	number	of	reads	for	each	sample.	We	want	

to	estimate	the	probability	density	function	"($)	based	on	the	dataset	 &'( .	

	 To	model	the	initial	sampling	(process	1),	let	0(	be	the	unknown	initial	density	of	barcode	

)	within	the	common	pool.	The	units	are	chosen	such	that	0(	 is	the	expected	number	of	cells	

with	barcode	)	 in	a	tube	immediately	after	inoculation.	The	actual	number	of	initial	cells	with	

barcode	)	in	a	sample	*,	1'(,	follows	a	Poisson	distribution:	

2 1'( 0() =
34

5
64

764!
9
:34.	

To	model	the	final	sampling	(process	3),	let	$'(	be	the	unknown	relative	frequency	of	barcode	)	

in	sample	*	at	the	end	of	stochastic	germination	and	growth	( $'( = 1( ).	The	observed	reads,	

&'(,	result	from	stochastically	sampling	/' 	reads	from	the	multinomial	distribution	specified	by	

the	 frequencies	 $'( .	 This	 process	 can	 be	 approximated	 by	 assuming	 independent	 binomial	

sampling	for	each	barcode,	which	is	justified	if	there	are	many	rare	barcodes.	This	leads	to:	

2 &'( $'(, /') =
/'

&'(
1 − $'(

>6:?64	$'(
?64.	

	 Taking	 a	 Bayesian	 view	 and	 considering	 the	 unobserved	 quantities	$	 to	 be	 a	 random	

variable	with	an	uninformative	prior	(2($) = @A1BC),	we	have	2 $ &) ∝ 2 & $).	Substituting	the	

above	expression	and	normalizing	 the	probability	density,	 the	 factor	
/'

&'(
	drops	out,	and	we	

obtain:	
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2 $'( &'(, /') =
E:F64

G
6
HI

64	F64
I
64

E:F
G
6
HI

64	F
I
64	JF

K

L

	.	

Using	 the	above	mathematical	 relationships,	we	perform	an	 iterative	 two-step	procedure	 for	

estimating	"($),	starting	from	an	initial	guess	of	the	probability	density.	For	example,	the	initial	

guess	can	be	set	to	the	singleton	distribution	smoothed	by	fitting	it	to	a	functional	form	(e.g.,	log-

normal).	The	prior	distribution	is	updated	by	alternating	steps	1	and	2,	described	below,	until	

convergence	of	"($).	 Approximately	 five	 iterations	were	 sufficient	 for	 convergence	with	our	

data.	

Step	1.	Given	 the	observed	 reads	and	an	estimate	of	"($),	 compute	probability	 distributions	

2 0(| &'( , "($) 	for	every	barcode	).	

Using	Bayes	theorem	and	the	independence	of	different	samples	we	get:	

2 0(| &'( , " $ = 2 &'( |0(, " $ 2N?'O? 0( = 2N?'O? 0( 2(&'(|0(, /', "($))' .	

Furthermore,	summing	over	all	possible	intermediate	states	$'(	for	going	from	0(	to	&'(,	we	

obtain:	

2 &'( 0(, /', " $ = P$'(

E

Q

2 &'( $'(, /' 	2($'(|0(, ")	

and,	similarly,	summing	over	all	possible	1'(:	

2 $'( 0(, " = 2 1'( 0(

7RST

764UE

"
764 ($'()	

where	" E
$ ≝ " $ 	and	" 7

$ = " W "
7:E

F

Q
$ − W 	PW.	

	 We	used	2N?'O? 0( = @A1BC.	For	experiments	in	which	the	initial	pool	of	barcoded	cells	

was	diluted	10	times,	we	also	tried	setting	2N?'O? 0( 	based	on	the	results	from	experiments	with	

the	 undiluted	 pool,	 i.e.,	 2N?'O? 0( = 2 100( &'( , " $
Y7J'ZY[\J

,	 where	 the	 factor	 10	
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accounts	for	the	dilution	of	0.	The	two	different	priors	led	to	the	same	final	solution	for	"($),	

indicating	a	lack	of	sensitivity	to	the	prior.	

	 The	above	numerical	procedure	requires	us	to	choose	a	value	for	1]^F,	the	maximum	

initial	number	of	cells	from	a	barcode	in	a	tube.	If	we	exclude	data	for	barcodes	that	are	present	

in	all	tubes	(i.e.	m=8),	1]^F = 20	can	be	safely	used,	since	it	is	unlikely	that	barcodes	that	are	

missing	 from	some	of	 the	 tubes	have	more	 than	a	 few	cells	 in	 the	 tubes	 in	which	 they	were	

detected.	

Step	 2.	Given	 an	 estimate	 for	 the	 probability	 distributions	 of	0(,	the	 observed	 reads,	 and	 an	

estimate	of	the	offspring	distribution	"N?\3 $ ,	compute	an	improved	estimate	for	"($).	

If	we	 know	1'(	 and	$'(	 in	 a	 given	 tube	 *	 and	 barcode	),	 this	would	 provide	 information	 for	

constructing	"($).	If	1'( = 1	then	$'(	constitutes	an	observation	sampled	from	"($),	which	will	

correspondingly	contribute	to	the	probability	density	of	"($)	at	$ = $'(.	If	1'( = 2,	we	cannot	

immediately	determine	the	contribution	of	$'(	to	"($).	However,	this	can	be	done	by	leveraging	

our	previous	best	estimate	for	the	distribution	of	descendants,	"N?\3 $ .	The	hope	is	that,	as	we	

iterate,	the	algorithm	will	eventually	converge	to	a	self-consistent	solution	" $ = "N?\3 $ 	and,	

indeed,	it	does	so	in	practice.	Returning	to	the	case	of	1'( = 2,	we	have	two	initial	cells	and	two	

contributions,	W	 and	$'( − W	 to	 the	 probability	 density	"($),	 and	 each	 particular	 value	 of	W	

contributes	a	relative	weight	of	
`aIbc d 	`aIbc(F64:d)

`
aIbc

(e)
(F64)

.	More	generally,	the	contributions	to	"(W)	

from	a	 1'(, $'( 	pair	are	weighed	according	to	

f W, 1'(, $'( = 1'(

"N?\3 W "
N?\3

(764:E)

($'( − W)

"
N?\3

(764)

($'()
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where	we	define	"
N?\3

(Q)

$ = 1.	The	factor	1'(	comes	from	equivalence	between	the	1'(	cells	in	

a	tube.	

	 Averaging	 contributions	 from	 all	 possible	 1'(, $'( 	 pairs	 according	 to	 their	 Bayesian	

probability	2 1'(, $'(|2 0( , &'( ,	we	 can	 compute	 the	overall	 contribution	of	 a	 barcode	)	 in	

sample	*	to	the	probability	density	"($),	and	then	we	can	sum	over	all	*	and	)	to	incorporate	

contributions	from	all	the	barcodes	and	samples:	

" W = P$'(f W, 1'(, $'( 	2 1'(, $'(|2 0( , &'(

E

Q

7RST

764UE'(

	

The	last	factor	can	be	computed	as	

2 1'(, $'(|2 0( , &'( = P0(

g

Q

2(1'(, $'(|&'(, 0()	2 0(| &'( , "N?\3 $ 	

with	 2 1'(, $'( &'(, 0( = 2(1'(|0()2($'(|&'()	 (as	 defined	 above),	 and	 2 0(| &'( , "N?\3 $ 	

being	the	output	of	Step	1.	

Modeling	the	population	genetics	consequences	of	the	distribution	of	descendants	

The	population	genetics	simulation	consists	of	discrete	time	steps.	Each	time	step	captures	the	

dynamics	 over	 one	 ecological	 cycle.	 We	 assume	 that	 each	 individual	 (*)	 starts	 growing	

exponentially	with	growth	rate	r,	after	a	stochastic	lag	time	C'.	Correspondingly,	in	the	beginning	

of	each	ecological	cycle,	N	random	variables	C' 	are	drawn	from	a	lag	time	distribution,	and	the	

corresponding	relative	abundances	of	descendants	are	computed	as	$' =
F6

F6

,	where	$' = 9
:?[6.	

For	models	with	selection	we	set	$' → 1 + B' $' 	and	normalized	the	sum	to	1.	To	complete	the	

cycle,	N	random	individuals	are	selected	from	the	multinomial	distribution	specified	by	$' 	to	start	
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the	next	cycle.	To	find	the	variance	effective	population	size,	Ne,	we	computationally	determined	

the	distribution	of	descendants,	0,	after	a	 full	ecological	cycle,	 that	 is	 the	discrete	probability	

distribution	for	the	number	of	descendants	from	one	individual	after	one	ecological	cycle.	The	

mean	of	0	 is	1.	We	then	set	jk = j

var 0
	 (Ricky	Der,	Epstein,	&	Plotkin,	2011).	To	perform	

simulations	with	a	 log-normal	distribution	of	descendants	we	set	 t	 to	 the	normal	distribution	

(with	variance	1)	and	used	r	=	3.	

RESULTS	

High-throughput	measurement	of	the	distribution	of	descendants	

Directly	determining	the	distribution	of	descendants	would	require	tracking	each	individual	cell	

and	 all	 of	 its	 offspring	within	 a	 clonal	 population.	 Such	 a	 brute	 force	 strategy	 is	 exceedingly	

difficult,	 if	 not	 impossible.	 Therefore,	 we	 developed	 an	 alternative	 method	 to	 track	 sub-

populations	of	cells	and	infer	the	shape	of	the	distribution	of	descendants	based	on	changes	in	

the	relative	abundance	of	sub-populations	between	replicates	(Fig.	1bc).	This	method	involves	

tagging	bacterial	lineages	of	an	otherwise	clonal	population	with	a	unique	30	base-pair	random	

sequence	inserted	at	a	fixed	site	on	the	chromosome	(Fig.	1c).	A	similar	technique	has	been	used	

previously	to	tag	yeast	and	Escherichia	 lineages	(Cottinet	et	al.,	2016;	Levy	et	al.,	2015).	After	

barcoding,	 we	 grew	 5	 different	 strains	 of	 Streptomyces	 in	 8	 separate	 replicate	 populations	

starting	 from	3	different	 initial	 concentrations.	Streptomyces	 strains	 first	 germinate	and	 then	

grow	as	 interconnected	 filamentous	colonies	within	 liquid	medium.	After	7.5	days	of	growth,	

genomic	 DNA	was	 extracted	 and	 the	 barcoded	 region	was	 amplified	 before	 sequencing	 (see	

Methods).	We	observed	between	211	and	2,534	unique	barcoded	lineages	per	strain	across	all	
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replicates	 in	 the	 experiment.	 An	 example	 of	 the	 data	 collected	 for	 one	 of	 the	 five	 strains	 is	

depicted	in	Fig.	S1.	

	 Since	our	analysis	methods	are	based	on	the	variability	between	replicate	populations,	

they	require	that	the	technical	variability	due	to	the	experimental	procedure	be	far	less	than	the	

biological	variability.	To	investigate	both	of	these	components	of	variability,	we	compared	the	

frequency	 distribution	 determined	 from	 technical	 (PCR)	 replicates	 to	 that	 originating	 from	

distinct	 biological	 replicates.	 We	 found	 that	 technical	 replicates	 had	 substantially	 higher	

correlation	than	biological	replicates	(Fig.	S2),	confirming	that	most	of	the	variability	is	biological	

in	 nature.	 This	 allows	 the	 shape	 of	 the	 distribution	 of	 descendants	 to	 be	 inferred	 from	

fluctuations	in	the	relative	abundance	of	barcodes	between	biological	replicates.	However,	it	is	

worth	noting	that	we	can	only	observe	the	right	side	of	the	distribution	of	descendants,	because	

Figure	1.	Measurement	of	the	distribution	of	

descendants.	 a,	 Clonal	 cells,	 represented	 by	
colored	circles,	are	grown	for	a	period	of	time	
(!)	 before	 their	 relative	 abundances	 are	
measured.	b,	The	variability	in	the	proportion	
of	descendants	between	replicate	populations	
of	cells	is	used	to	determine	the	distribution	of	
descendants.	 c,	 The	 distribution	 of	 descen-
dants	may	take	on	a	variety	of	shapes	that	have	
different	 rates	 of	 going	 to	 zero	 in	 their	 right	
tail.	 A	 heavy-tailed	 distribution	 (solid	 line)	
would	 result	 in	 "jackpots"	 where	 individuals	
have	much	 greater	 reproductive	 output	 than	
expected	based	on	their	initial	frequency.	d,	In	
order	 to	 track	 lineages,	 we	 constructed	 a	
barcoded	 library	of	Streptomyces	where	each	
spore	 has	 a	 unique	 30	 base-pair	 lineage-
specific	 sequence	 integrated	 into	 its	 chromo-
some. 
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the	lower	detection	limit	of	our	method	is	approximately	1	in	105	cells	based	on	the	finite	number	

of	sequencing	reads	and	 initial	 templates	 in	PCR.	Therefore,	we	would	not	observe	the	rarest	

barcodes	if	they	decrease	in	relative	frequency	substantially	during	the	course	of	the	experiment.	

Nonetheless,	we	are	most	interested	in	the	right-tail	of	the	distribution	of	descendants	because	

it	might	include	lineages	that	increase	considerably	in	relative	abundance.	

The	distribution	of	descendants	is	skewed	with	a	heavy	tail	

Two	extremes	of	the	barcode	frequency	distribution	across	replicates	reveal	characteristics	of	

the	distribution	of	descendants	(Fig.	2a).	At	one	end,	the	abundance	of	a	barcode	present	at	high	

frequency	is	expected	to	be	normally	distributed	across	replicates.	This	is	because,	for	abundant	

barcodes,	each	barcode	represents	a	large	number	of	initial	cells	and	the	final	barcode	frequency	

is	 a	 sum	 of	many	 realizations	 of	 the	 distribution	 of	 descendants.	 Based	 on	 the	 central	 limit	

theorem,	 the	 variation	 across	 replicates	 will	 approach	 normality,	 so	 long	 as	 the	 underlying	

distribution	of	descendants	has	a	tail	that	decays	sufficiently	fast.	We	tested	whether	the	relative	

frequencies	 of	 the	 8	 replicates	 belonging	 to	 the	most	 abundant	 barcodes	 could	 be	 normally	

distributed	using	the	Shapiro-Wilk	test.	Each	of	these	barcodes	is	estimated	to	be	shared	by	over	

1,000	initial	cells	per	replicate	based	on	their	final	fraction	of	the	population	and	the	empirically	

determined	 initial	 population	 size.	 For	 4	 out	 of	 9	 of	 these	 abundant	 barcodes	 the	 normal	

distribution	was	 rejected	with	 p-value	 <	 0.02	 (Fig.	 2b).	We	 calculated	 a	 combined	p-value	 of	

0.0006	using	Stouffer's	method,	strongly	rejecting	the	normal	distribution.	Moreover,	the	fact	

that	we	could	 repeatedly	 reject	a	normal	distribution	even	with	a	small	number	of	 replicates	

indicates	 that	 the	 deviations	 from	normality	 are	 strong.	 Thus,	 this	 analysis	 suggests	 that	 the	

underlying	distribution	of	descendants	is	heavy-tailed.	
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At	the	other	extreme,	as	the	initial	frequency	of	a	barcode	approaches	a	single	cell	(Fig.	

2a),	the	distribution	of	final	barcode	frequencies	should	reflect	the	distribution	of	descendants.	

We	made	the	approximation	that	barcodes	appearing	in	only	1	out	of	8	replicates	of	a	given	initial	

concentration	were	sufficiently	rare	to	have	originated	from	a	single	cell.	While	we	would	expect	

this	 assumption	 to	 be	 violated	 in	 about	 10%	 of	 cases	 because	 a	 rare	 barcode	 had	 an	 initial	

Figure	 2.	 Inferring	 the	 distribution	 of	 descendants	 from	 abundant	 and	 rare	 barcodes.	 a,	 Barcodes	 at	 the	 two	
extremes	of	relative	abundance	reflect	the	shape	of	the	distribution	of	descendants.	b,	Abundant	barcodes,	those	
shared	by	more	than	1000	cells	in	the	initial	population,	are	expected	to	converge	to	a	normal	distribution	due	to	the	
central	 limit	 theorem.	 However,	 many	 of	 the	 most	 abundant	 barcodes	 were	 not	 normally	 distributed	 across	
replicates,	based	to	their	p-values	(at	right)	in	the	Shapiro-Wilk	test.	Instead,	the	abundant	barcodes	originating	from	
three	different	strains	(colors)	were	widely	scattered	in	terms	of	their	final	proportion	of	the	population	(x-axis).	c,	
The	singletons,	those	barcodes	occurring	in	only	1	out	of	8	replicates,	approximate	the	shape	of	the	distribution	of	
descendants	since	they	likely	started	from	single	cells.	For	the	strain	with	the	most	singletons	at	high	concentration,	
Streptomyces	G4A3	(808	singletons),	we	observed	many	outliers	where	the	relative	abundance	was	much	higher	than	
expected	(~10-4)	on	average.	d,	Plotting	the	same	histogram	on	a	log-scaled	x-axis	reveals	that	the	outliers	fall	beyond	
the	right	tail	of	a	fitted	log-normal	distribution	(green	curve).	These	outlying	“jackpots”	represent	cells	that	grew	to	a	
far	higher	abundance	than	the	median	abundance	of	singletons,	in	many	case	by	more	than	100-fold.	Note	that	the	
left-side	of	the	distribution	is	likely	truncated	because	it	contains	barcodes	that	fall	below	the	lower	detection	limit	
of	our	method. 
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population	size	of	2,	the	 impact	of	starting	from	2	cells	should	be	on	the	order	of	2-fold.	The	

resulting	distribution	of	barcode	frequencies	for	these	“singletons”	is	heavy-tailed	and	appeared	

broader	than	a	log-normal	distribution	(Fig.	2cd).	Surprisingly,	for	many	strains	the	distribution	

spanned	over	three	orders	of	magnitude,	meaning	that	some	barcodes	were	over-represented	

by	more	than	1000-fold	that	of	a	typical	barcode	starting	from	an	identical	initial	frequency.	

	 Figure	3	shows	the	complete	set	of	raw	data	for	the	8	replicates	of	one	strain	at	one	initial	

concentration.	For	each	barcode	we	define	its	multiplicity	(m),	which	is	the	number	of	samples	

in	which	the	barcode	was	detected.	Rare	barcodes	(m	<	8)	are	particularly	informative	about	the	

shape	of	the	distribution	of	descendants	because	they	must	have	been	initially	present	in	small	

numbers.	 Across	 multiplicities	 (m),	 we	 again	 see	 that	 barcodes	 can	 sometimes	 produce	 a	

disproportionately	 large	 fraction	 of	 the	 final	 biomass	 in	 single	 replicate	 populations	 (colored	

outliers	in	Fig.	3a).	For	rare	barcodes	(m<8),	these	outliers	cannot	be	due	to	exceptionally	high	

initial	abundance.	Moreover,	it	is	apparent	that	barcodes	that	are	outliers	in	some	samples	can	

have	very	low	abundance	or	typical	abundance	in	the	other	replicate	populations.	This	suggests	

that	outliers	are	not	due	to	strongly	beneficial	adaptations	 that	have	already	established	 in	a	

barcode	 prior	 to	 inoculation.	 Therefore,	 the	 outliers	 are	 a	 consequence	 of	 a	 heavy-tailed	

distribution	of	descendants.	

The	distribution	of	descendants	is	heavier	than	log-normal	

We	sought	to	develop	a	procedure	for	determining	the	distribution	of	descendants	that	is	more	

statistically	robust	and	utilizes	more	of	the	data	than	the	singleton	(m=1)	barcode	approach	of	

Fig.	2cd.	We	developed	a	Bayesian	method	for	recovering	the	distribution	of	descendants	from	

relatively	rare	barcodes	(m	<	8)	given	the	constraint	that	we	cannot	determine	initial	barcode	
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abundances	due	to	difficulties	extracting	DNA	from	spores.	Our	approach	is	model-free	in	the	

sense	that	it	makes	no	assumptions	about	the	functional	form	of	the	distribution	of	descendants,	

and	it	is	essentially	an	expectation	maximization	algorithm	with	the	initial	barcode	frequencies	

serving	as	latent	variables.	While	the	method	works	even	without	prior	information	about	initial	

barcode	abundances,	it	allows	for	such	information	to	be	easily	incorporated	when	available.	For	

example,	 we	 used	 the	 inferred	 initial	 barcode	 abundances	 from	 the	 high	 concentration	

experiments	as	a	prior	(after	dilution)	for	the	lower	concentration	experiments	(see	Methods).	

We	used	the	raw	number	of	sequencing	reads	per	sample,	rather	than	relative	abundances,	in	

order	to	account	for	any	differences	in	the	depth	of	sequencing	across	replicas.	Our	approach	is	

iterative	 but	 reliably	 converges	 to	 almost	 the	 same	 distribution	 of	 descendants	 even	 when	

starting	 from	 different	 prior	 distributions.	 We	 validated	 our	 approach	 using	 data	 simulated	

according	to	different	distributions	of	descendants	(Fig.	S3).	We	expect	that	the	robust	analysis	

procedure	we	developed	here	will	be	useful	in	future	studies	of	the	distribution	of	descendants.	

	 The	Bayesian	analysis	method	allowed	us	to	quantitatively	reconstructed	the	distribution	

of	descendants	from	m	<	8	barcodes	(Fig.	3b).	As	shown,	a	log-normal	distribution	is	an	excellent	

fit	to	the	majority	of	the	dataset,	but	there	are	several	outliers	suggesting	a	heavier	tail	than	the	

log-normal.	 We	 observed	 these	 outliers	 across	 several	 strains	 starting	 from	 different	 initial	

concentrations	(Fig.	S4).	To	corroborate	the	faster	than	log-normal	tail,	we	used	the	log-normal	

fit	 from	m	<	8	 to	make	predictions	about	 the	m=8	data	 (Fig.	3c).	Reassuringly,	 the	prediction	

based	on	m	<	8	data,	explains	most	of	the	variability	in	m	=	8	data	(Fig.	3d).	But	once	again,	the	

m=	8	data	revealed	clear	outliers	that	cannot	be	explained	based	on	a	log-normal	distribution	of	
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descendants.	 Taken	 together	 these	 analyses	 indicate	 heavier	 than	 log-normal	 tail	 for	 the	

distribution	of	descendants.	

Stochastic	exits	from	dormancy	largely	explain	the	heavy-tail	

We	reasoned	that	growth	variability	would	 largely	 result	 from	two	sources:	differences	 in	 lag	

time	before	growth	(driven	by	variability	in	germination	times)	or	variability	in	growth	rates	that	

is	auto-correlated	across	divisions.	To	determine	which	source	dominated	growth	variability	in	
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Figure	3.	Reconstructing	the	distribution	of	descendants	with	a	Bayesian	approach.	a,	The	relative	abundance	of	
barcodes	(x)	 is	shown	according	to	the	number	of	replicates	(m)	 in	which	they	were	detected	within	the	8	total	
replicates	 of	 S.	 SG4A3	 inoculated	 at	medium	 concentration.	 Colored	 points	 highlight	 the	 proportion	 of	 specific	
barcodes	that	appeared	as	outliers	in	one	of	the	(m)	samples	in	which	they	were	detected.	b,	The	distribution	of	
descendants	 is	 reconstructed	using	 the	barcodes	 that	were	not	observed	 in	all	 replicates	 (m	 <	8).	CDF(x)	 is	 the	
probability	 that	 the	 relative	 abundance	 of	 all	 the	 descendants	 of	 one	 starting	 cell	 is	 less	 than	 x.	 A	 log-normal	
distribution	 (dashed	 red)	 fits	 the	 body	 of	 the	 distribution	 apart	 from	 several	 outliers.	 c,	 Given	 the	 median	
abundances	 of	 barcodes	 observed	 in	 all	 8	 replicates	 (m	 =	 8),	 it	 is	 possible	 to	 simulate	 the	 expected	 relative	
abundances	of	barcodes	according	 to	 the	 fitted	 log-normal	distribution.	 d,	 Repeating	 the	process	of	 simulating	
barcode	 abundances	 100	 times	 results	 in	 a	 cloud	 of	 points	 (gray)	 representing	 expected	 relative	 abundances	
according	to	a	log-normal	distribution	of	descendants	(black	points	correspond	to	10	repetitions).	Overlaying	with	
the	 relative	 abundances	 of	 barcodes	 observed	 in	 all	 8	 replicates	 (colored	 points),	 reveals	 that	 the	 log-normal	
distribution	 is	 insufficient	 to	 capture	outliers.	 This	provides	 further	 support	 to	 the	 idea	 that	 the	distribution	of	
descendants	is	heavier	tailed	than	a	log-normal	distribution. 
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our	experimental	system,	we	tracked	strains	under	a	microscope	during	their	first	day	of	growth	

on	agar	medium	containing	the	same	nutrients	as	the	liquid	experiment.	This	resulted	in	large	

images	(Fig.	4a)	that	we	aligned	between	time	points	to	track	the	growth	of	each	germinated	

spore	(see	Methods).	Colony	growth	was	constrained	to	two	dimensions	for	a	long	time,	which	

allowed	us	to	estimate	the	number	of	genomes	present	from	the	area	covered	by	the	colonies.	

This	method	provides	 a	means	of	 directly	 assessing	 the	distribution	of	 descendants	 until	 the	

colonies	intersect	and	can	no	longer	be	distinguished.	

	 Three	 of	 the	 five	 strains	 mostly	 completed	 germination	 during	 the	 course	 of	 the	

experiment,	while	two	strains	germinated	too	late	to	adequately	track	under	the	microscope.	All	

three	early-germinating	strains	displayed	wide	variation	in	colony	size	after	one	day	of	growth,	

with	the	largest	colonies	being	almost	3-orders	of	magnitude	larger	in	biomass	than	the	smallest	

(Fig.	4b,	Fig.	S5).	This	likely	underestimated	the	extent	of	variability,	as	large	colonies	can	easily	

overwhelm	smaller	colonies	so	that	they	cannot	be	identified	at	later	time	points	and	because	

we	 sampled	 only	 hundreds	 of	 spores,	 thus	missing	 rare	 instances	 of	 very	 early	 germination.	

Nevertheless,	 it	 was	 clear	 that	 variation	 in	 germination	 times	 might	 largely	 account	 for	 the	

approximately	log-normal	shape	of	the	distribution	of	descendants	(Fig.	4c).	Considering	a	simple	

exponential	 growth	model,	P9B@91Po1CB = 	 9?∗ [:[L ,	 a	 constant	 growth	 rate	 (r)	 and	normal	

distribution	of	germination	times	(t0)	would	result	in	a	log-normal	distribution	of	descendants.	

	 Lag	time	variability	in	Streptomyces	has	been	shown	to	be	a	phenotypic	effect	rather	than	

a	 genotypic	 effect	 and,	 furthermore,	 	 that	 growth	 rates	 are	 variable	 immediately	 after	

germination	and	then	become	deterministic	at	a	constant	rate	(Xu	&	Vetsigian,	2017).	Therefore,	

it	 is	 possible	 that	minute	 differences	 in	 the	 initial	 growth	 rate	 could	 compound	 the	 lag	 time	
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variability	to	make	the	distribution	even	wider	than	log-normal.	According	to	the	simple	growth	

model	above,	 initial	variability	 in	r	would	amplify	variability	 in	t0	 to	generate	a	distribution	of	

descendants	 that	 is	heavier-tailed	 than	a	 log-normal	distribution.	Overall,	 the	 results	of	 time-

lapse	microscopy	revealed	that	early	germination	largely	accounts	for	the	outliers	observed	in	

the	barcoded	replicate	populations.	

Figure	4.	 Stochastic	exits	 from	 germination	 largely	explain	 the	 variability	 in	 the	number	 of	descendants.	a,	A	
vertical	 cross-section	 representing	one-fifth	of	a	 composite	 image	of	 S.	 S26F9	 growth	after	 22.4	hours	on	 solid	
medium	 with	 regions	 shown	 in	 (b)	 denoted	 by	 white	 boxes.	b,	 Colonies	 originating	 from	 single	 spores	 can	 be	
drastically	different	in	size	at	the	same	point	in	time.	The	image	on	the	left	shows	the	largest	non-intersecting	colony	
after	22.4	hours	of	growth.	The	two	images	on	the	right	highlight	the	smallest	identifiable	colonies	(circled)	at	the	
same	time	point	and	scale.	The	colony	on	the	left	has	approximately	330	times	more	mycelial	area	than	either	of	
the	colonies	on	the	right.	c,	Cumulative	distributions	of	germination	times	for	three	strains	(points)	are	consistent	
with	 a	 normal	 distribution	 fitted	 to	 the	 earliest	 germinators.	 Since	 growth	 is	 an	 exponential	 process,	 a	 normal	
distribution	of	 lag	 times	would	 result	 in	distribution	of	descendants	 that	 is	 at	 least	as	 extreme	as	a	 log-normal	
distribution.	 Note	 that	 the	 distribution	 of	 germination	 times	 is	 censored	 because	 spores	 cannot	 be	 observed	
germinating	if	they	intersect	with	a	previously-germinated	mycelial	network.	Therefore,	only	the	beginning	of	the	
germination	curve	(i.e.,	the	outliers)	can	be	approximated. 
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Selection	is	an	implausible	explanation	for	the	observed	distribution	of	descendants	

A	 potential	 source	 of	 growth	 variation	 is	 the	 existence	 of	 genetic	 differences	 within	 the	

population.	One	genetic	basis	for	variation	is	that	some	barcodes	have	pre-existing	mutations	

that	impart	a	higher	growth	rate,	resulting	in	an	exponential	divergence	in	relative	abundance	

over	time.	One	way	to	uncover	differences	in	inter-barcode	selection	coefficients	is	to	look	for	

correlations	between	the	final	relative	frequencies	of	rare	barcodes.	We	tested	this	by	plotting	

the	relative	frequency	of	barcodes	that	were	only	present	in	2	of	8	replicates	(Fig.	S6).	If	jackpots	

within	 this	 set	are	due	 to	 selection,	we	would	expect	 them	to	manifest	 in	both	 replicates.	 In	

contrast,	 the	 correlation	between	 replicate	barcodes	was	extremely	 low	 (Pearson’s	 r	 =	0.08),	

indicating	 that	 inter-barcode	 selection	 coefficients	 are	 not	 a	 major	 source	 of	 the	 observed	

variability	 between	 replicates.	 A	 second	 way	 to	 investigate	 the	 role	 of	 pre-existing	 adaptive	

mutations	is	to	examine	whether	outliers	in	the	lowest	abundance	lineages	are	also	outliers	in	

the	 highest	 abundance	 lineages	 because	 a	 beneficial	 barcode	 sub-population	 at	 medium	

concentration	would	likely	also	be	present	in	a	ten-fold	more	concentrated	inoculum.	However,	

we	 found	 that	 outliers	 of	 rare	 barcodes	 at	medium	 concentration	 are	 not	 outliers	 at	 higher	

concentrations,	 further	 diminishing	 the	 likelihood	 of	 pre-adapted	 barcode	 lineages	 as	 an	

explanation	for	the	observed	jackpots	(Fig.	S7).	

	 These	 results	 do	 not	 rule	 out	 the	 possibility	 that	 there	were	 rare	 individuals	within	 a	

barcode	lineage	with	new	or	recently	acquired	beneficial	mutations.	Such	mutants	would	likely	

have	had	to	arise	after	the	start	of	the	experiment	in	order	to	only	be	present	in	a	minority	of	

replicates.	Given	the	high	number	of	positively-skewed	replicates,	it	is	implausible	that	so	many	

mutants	of	large	effect	size	could	occur	and	reach	high	abundance	so	rapidly.	Furthermore,	we	
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estimate	 that	most	 cells	only	doubled	about	10-15	 times	over	 the	 course	of	 the	experiment,	

depending	 on	 each	 strain's	 initial	 concentration.	 Even	 a	 large	 growth	 rate	 advantage	 of	 10%	

would	be	expected	to	result	in	at	most	a	3-fold	variability	in	final	abundances.	Nonetheless,	it	is	

well	known	that	mutation	is	a	major	cause	of	fitness	variation	in	populations,	and	we	cannot	rule	

out	 the	 fact	 that	 some	of	 the	variance	 in	 the	distribution	of	descendants	was	attributable	 to	

genetic	differences.	

The	heavy-tailed	distribution	of	descendants	yields	large	deviations	from	classical	population	

genetics	predictions	

We	 next	 examined	 the	 population	 genetics	 consequences	 of	 heavy-tailed	 distributions	 of	

descendants	 through	 population	 genetics	 simulations.	 While	 the	 experimentally	 determined	

distributions	are	likely	fatter	than	log-normal,	we	show	that	log-normal	distributions	already	lead	

to	significant	deviations	from	classical	population	genetics	predictions	with	equivalent	effective	

population	sizes.	We	modeled	a	situation	 in	which	we	start	with	N	 individuals,	 let	them	grow	

exponentially	to	large	numbers	following	a	stochastic	exit	from	dormancy,	and	then	sample	N	

individuals	at	random	to	start	the	next	ecological	cycle	(Fig	5a,	Methods).		

We	first	determined	the	distribution	of	descendants	after	one	ecological	cycle,	 i.e.	the	

distribution,	v(n),	for	the	number	of	individuals,	n,	descending	from	one	individual	after	one	cycle.	

Classical	population	genetics	theory	states	that	the	consequences	of	genetic	drift	can	be	captured	

by	a	Fisher-Wright	model	with	a	(variance)	effective	population	size	Ne	=	N	/	var(v).	Fig.	5b	shows	

that	the	heavy-tailed	distribution	of	descendants	leads	to	Ne	<<	N,	and	strikingly,	that	Ne	does	
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not	scale	linearly	with	N,	even	for	large	values	of	N	(though	linearity	is	ultimately	restored	given	

that	the	assumed	log-normal	distribution	of	descendants	has	a	finite	variance).		

Importantly,	the	heavy-tailed	distribution	of	descendants	affects	the	population	dynamics	

beyond	reducing	Ne	 (Ricky	Der	et	al.,	2011).	Through	simulations,	we	determined	the	fixation	

probability	of	beneficial	mutations	with	different	selection	coefficients,	s.	We	observed	(Fig.	5c)	

that	as	s	increases,	the	probability	of	fixation	increases	much	more	rapidly	than	expected	based	

on	the	classical	population	genetics	prediction	(for	haploid	populations)	(M.	Kimura,	1962),	which	

states:	

2qrs B =
E:\

H	e	t	uv/u

E:\
He	t	uv

	.	

The	classical	 formula	with	matching	Ne	only	agrees	with	the	simulations	for	very	small	s.	As	a	

control,	we	verified	that	this	formula	agrees	well	with	simulations	of	the	Fisher-Wright	model	

with	matching	Ne	across	the	range	of	s	values	(Fig.	S8).	Therefore,	while	heavy-tailed	distributions	
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Figure	 5.	 Population	 genetics	 consequences	 of	 log-normal	 distribution	 of	 descendants.	 a,	 In	 the	 model,	 N	
individuals	exit	dormancy	stochastically	and	grow	exponentially	at	the	same	growth	rate	until	a	very	large	population	
size	is	reached.	N	individuals	are	then	randomly	sampled	to	start	the	next	cycle.	b,	Shown	are	the	variance	effective	
population	sizes	(Ne)	that	result	from	simulations	with	different	numbers	of	initial	cells	(N)	(red	circles	connected	by	
solid	lines).	Strikingly,	Ne	does	not	scale	linearly	with	N	for	small	N.	c,	The	probability	of	fixation	is	shown	as	a	function	
of	the	selection	coefficient	s	(red,	N	=	106,	r	=	3).	The	classical	expectation	based	on	the	formula	presented	in	the	
text	is	shown	for	matching	N	and	Ne	(black	dashed	line).	d,	Shown	is	the	probability	distribution	for	the	fixation	times	
of	a	neutral	allele	with	an	initial	fraction	of	50%.	The	model	with	a	log-normal	distribution	of	descendants	is	shown	
in	red	(same	parameters	as	in	b),	and	the	Fisher-Wright	model	with	matching	effective	population	size	is	shown	in	
black. 
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of	descendants	dramatically	decrease	the	effective	population	size,	they	increase	the	efficiency	

of	selection	at	a	given	effective	population	size.	

	 Finally,	 we	 examined	 whether	 purely	 neutral	 dynamics	 are	 also	 different	 from	 the	

predictions	of	a	Fisher-Wright	model	with	the	same	Ne.	To	this	end,	we	computed	the	distribution	

of	fixation	times	for	a	neutral	allele	starting	at	50%	abundance	(Fig.	5c).	We	found	that	neutral	

mutations	take	significantly	longer	to	fix	with	a	heavy-tailed	distribution	of	descendants.	Thus,	

the	population	genetic	dynamics	resulting	from	the	experimentally	determined	distribution	of	

descendants	 is	 not	 captured	 by	 classical	 population	 genetic	models	with	 equivalent	 variance	

effective	population	size.	Importantly,	these	deviations	are	generic	to	heavy-tailed	distributions	

and	would	become	even	stronger	for	fatter	than	log-normal	distributions.	

DISCUSSION	

In	this	study,	we	developed	and	applied	a	scalable	procedure	for	determining	the	distribution	of	

descendants	arising	from	a	population	of	bacteria.	Surprisingly,	the	distribution	of	descendants	

was	heavy-tailed,	resulting	in	a	wide	range	of	relative	abundances	after	only	a	short	time	(Fig.	3).	

This	variation	was	largely	explained	by	differences	in	lag	time	before	exponential	growth	(Fig.	4).	

We	 further	 showed	 that	 the	 observed	 variability	 in	 lag	 times	 and	 the	 resulting	 heavy-tailed	

distribution	of	descendants	have	non-trivial	consequences	 for	population	genetics	after	many	

cycles	of	growth	and	dormancy.	

	 This	work	highlights	a	simple	and	potentially	common	mechanism	for	generating	heavy-

tailed	distributions	of	descendants	 in	microbial	populations.	Such	distributions	would	arise	as	

long	as	the	exit	from	dormancy	is	stochastic	and	the	variation	in	lag	times	is	large	compared	to	

the	doubling	time	of	actively	growing	cells.	It	is	already	well	established	that	many	bacteria	taxa	
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have	dormancy	states	that	allow	them	to	persist	in	unfavorable	environments,	and	in	fact	natural	

environments	are	often	numerically	dominated	by	dormant	microorganisms	(Lennon	&	Jones,	

2011).	While	there	are	known	examples	of	stochastic	exit	from	dormancy	in	bacteria	(Balaban,	

2004;	 Sturm	&	 Dworkin,	 2015;	 Xu	&	 Vetsigian,	 2017),	 it	 is	 still	 unknown	 how	 common	 such	

stochasticity	is	among	microorganisms.	However,	it	has	been	argued,	for	example	in	the	context	

of	desert	plants	(Gremer	&	Venable,	2014),	that	stochastic	exit	from	dormancy	is	a	bet	hedging	

strategy	 that	 increases	 survival	 in	 uncertain	 environments.	 Given	 the	 generic	 nature	 of	 this	

argument,	it	is	likely	that	stochastic	exists	from	dormancy	are	common	across	the	tree	of	life.	We	

therefore	expect	that	the	findings	described	here	will	be	relevant	to	many	microbial	populations	

and	will	stimulate	further	work	on	stochastic	germination.	

	 Quantification	of	this	stochasticity	is	important	not	only	as	a	means	of	characterizing	bet	

hedging	strategies	but	also	for	how	we	predict	and	interpret	changes	in	allele	frequencies.	The	

functional	form	of	germination	stochasticity,	coupled	with	variability	in	growth	rates,	determines	

how	heavy-tailed	the	distributions	of	descendants	are.	In	particular,	an	exponential	rise	of	the	

germination	 curve	 (Fig.	 4c)	 can	 lead	 to	 fat-tailed,	 power-law	 like	 distributions.	 In	 contrast,	 a	

Gaussian	distribution	of	germination	times	would	lead	to	log-normal	distributions,	which	are	less	

extreme.	Heavier	tails	result	in	greater	deviations	from	classical	population	genetics	predictions.	

One	intuitive	way	to	think	about	this	is	that	the	variance	of	a	distribution	no	longer	summarizes	

it	 well	 if	 the	 distribution	 is	 heavy-tailed.	 Thus,	 variance-based	 adjustments	 of	 the	 effective	

population	size	are	insufficient	to	capture	the	allele	dynamics.	In	this	way,	luck	might	play	a	far	

greater	role	in	evolution	than	generally	considered	by	classical	population	genetics	models.	
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	 The	heavy-tailed	nature	of	the	distribution	of	descendants	is	anticipated	to	have	several	

effects	on	bacterial	populations.	First,	extreme	stochastic	variability	can	decrease	the	effective	

population	size	dramatically	below	the	census	population	size	(Hedrick,	2005),	even	when	the	

census	 size	 is	 measured	 at	 population	 bottlenecks	 within	 ecological	 cycles.	 Moreover,	 our	

experimental	results	supported	a	population	genetics	model	in	which	the	discrepancy	between	

census	and	effective	population	sizes	increases	with	the	number	of	individuals	and,	therefore,	

becomes	more	 important	 for	 large	systems.	Such	processes	can	greatly	amplify	 the	effects	of	

genetic	 drift	 and	 lead	 to	 faster	 elimination	 of	 genetic	 diversity,	 larger	 fluctuations	 of	 allele	

frequencies,	and	an	increased	lower-bound	at	which	weak	selective	pressure	can	effectively	act.	

In	particular,	amplified	genetic	drift	may	influence	microbial	population	dynamics	on	timescales	

that	 are	 important	 to	 commercial	 biotechnologies	 or	 bacterial	 infections.	 Second,	 classical	

population	genetics	models	with	matching	variance	effective	population	size	do	not	adequately	

represent	dynamics	in	a	population	with	a	heavy-tailed	distribution	of	descendants.	We	showed	

that	 the	probability	 of	 fixation	of	 beneficial	mutations	 increases	 faster	 than	 linearly	with	 the	

selection	coefficient	and	that	fixation	times	of	neutral	alleles	are	longer	than	expected	given	the	

effective	population	size.	Third,	since	many	infections	are	caused	by	a	small	initial	number	of	cells	

or	viruses,	wide	distributions	of	descendants	may	greatly	influence	the	early	burden	on	the	host	

and	 partly	 explain	 the	 variability	 in	 symptoms	 observed	 between	 patients	 with	 the	 same	

infection.	Finally,	our	results	offer	support	for	the	notion	that	true	fitness,	that	is	the	long-term	

propensity	to	have	more	descendants,	 is	difficult	to	measure	(Mills	&	Beatty,	1979).	Even	the	

largest	 sub-populations	 in	 our	 experiments	 exhibited	 variability	 in	 their	 relative	 abundance	

between	replicates	due	to	jackpots.	Owing	to	insufficient	replication	or	low	initial	population	size,	
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this	 variability	 could	 easily	 be	 interpreted	 as	 a	 long-term	 heritable	 fitness	 difference	 when	

potentially	none	is	present.	

	 While,	to	our	knowledge,	this	is	the	first	measurement	of	a	distribution	of	descendants	

for	 bacteria,	 it	 is	 known	 that	 viruses	 also	 exhibit	 large	 variation	 in	 the	 number	 of	 progeny	

generated	from	each	infected	cell.	For	example,	human	cells	can	differ	by	up	to	300-fold	in	the	

number	of	released	viruses	depending	on	the	stage	of	the	cell	cycle	in	which	the	infection	occurs	

(Russell,	Trapnell,	&	Bloom,	2018;	Timm	&	Yin,	2012;	Zhu,	Yongky,	&	Yin,	2009).	The	methodology	

employed	 here	 for	 tracking	 Streptomyces	 could	 be	 extended	 to	 study	 the	 distributions	 of	

descendants	 for	 other	 species	 and	 environments.	 It	 would	 be	 particularly	 interesting	 to	

determine	the	distribution	of	descendants	of	bacterial	populations	in	their	natural	environment	

or	as	part	of	the	human	microbiome,	where	additional	complexities	might	further	broaden	the	

distribution	relative	to	the	homogeneous	environment	explored	in	this	study.	
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SUPPLEMENTAL	MATERIALS	

	
	

Figure	S1.	Example	of	the	complete	dataset	collected	for	a	single	strain	(S.	coelicolor).	Each	row	
depicts	the	relative	fraction	of	a	given	barcode	in	a	sample	(column).	Vertical	lines	separate	each	
of	the	eight	biological	replicates	starting	from	three	different	concentrations	(separated	by	10-
fold	 increments).	 The	 leftmost	 three	 columns	 are	 technical	 (separate	 PCR	 and	 sequencing)	
replicates	of	the	first	sample.	 	
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Figure	S2.	Most	of	 the	variability	between	 replicates	 is	biological	 in	nature.	 Three	 technical	
(separate	PCR	and	sequencing)	replicates	of	the	same	biological	sample	are	plotted	against	each	
other	 and	 a	 different	 biological	 sample	 of	 S.	 coelicolor.	 Each	 point	 corresponds	 to	 a	 unique	
barcode	that	was	present	in	both	samples.	Correlation	between	technical	replicates	was	much	
higher	than	that	for	biological	replicates.	The	line	of	identity	is	colored	red.	
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Figure	S3.	Validation	of	the	method	for	inferring	the	distribution	of	descendants	based	on	final	

barcode	abundances	using	simulations	with	known	distribution	of	descendants.	We	simulated	
the	 experiment	 by	 creating	 an	 in	 silico	 pool	 of	 barcodes,	 sampling	 the	 pool	 in	 8	 different	
replicates,	 generating	 a	 final	 abundance	 of	 each	 cell	 by	 sampling	 a	 known	 distribution	 of	
descendants,	and	sampling	barcodes	(reads)	at	random.	The	distribution	of	descendants	(ground	
truth,	dashed	red)	is	compared	to	different	reconstructions	based	on	the	final	reads.	x	(0	<	x	<	1)	
is	 the	 final	 fraction	 of	 a	 sub-population	 started	 from	 one	 cell.	 (a)	 Weibull	 distribution	 of	
descendants	 is	assumed.	 (b)	 Log-normal	distribution	of	descendants	 is	assumed.	The	 top	 row	
shows	the	distributions	as	CDFs.	The	bottom	row	details	the	behavior	of	the	tails	of	the	CDFs	at	
high	values	of	x	.	Black	circles	show	the	empirical	distribution	of	descendants	recovered	from	the	
singleton	barcodes	 (as	 in	Fig.	2d	but	 in	CDF	form).	Cyan	and	blue	 lines	show	results	 from	the	
Bayesian	approach	for	two	different	values	of	the	multiplicity.	m	=	1	agrees	with	the	singleton	
distribution	 (a,	 top).	 Including	barcodes	with	higher	multiplicity	 in	 the	analysis	 leads	 to	more	
accurate	reconstructions,	particularly	at	the	high	x	tail.	 	
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Figure	S4.	The	analysis	from	Figure	3	as	applied	to	another	strain.	(a),	Similar	to	before,	there	
are	pronounced	outliers,	and	barcodes	are	typically	outliers	in	only	one	of	the	replicates.	(b),	The	
body	of	the	distribution	is	well-fitted	by	a	log-normal	distribution	apart	from	a	few	outliers.	(d).	
The	log-normal	from	m	<	8	predicts	well	the	overall	variability	of	the	data	for	abundant	barcodes	
(m	=	8).	But,	again	there	are	outliers	arguing	for	a	heavier	than	log-normal	tail.	
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Figure	S5.	Sets	of	growth	curves	for	three	strains	tracked	under	the	microscope.	Colony	sizes	
over	 time	are	 shown	 for	301	 colonies	of	S.	 S26F9	 (a),	 85	 colonies	of	S.	 coelicolor	 (b),	 and	89	
colonies	of	S.	G4A3	(c).	Each	line	represents	the	mycelial	area	of	a	colony	originating	from	a	single	
spore,	 and	 the	 lines	 are	 truncated	 when	 colonies	 intersect.	 Since	 mycelium	 thickness	 is	
approximately	 constant,	 this	 measure	 is	 proportional	 to	 the	 total	 length	 and	 volume	 of	 the	
mycelium	 filaments.	 The	 largest	 colonies	 had	 a	 mycelia	 area	 almost	 3-orders	 of	 magnitude	
greater	than	the	smallest	colonies	at	the	end	of	the	experiment.
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Figure	 S6.	 The	 frequency	 of	 rare	 barcodes	 was	 largely	 uncorrelated	 between	 biological	

replicates.	The	relative	frequencies	of	barcodes	appearing	in	only	2	of	8	replicates	are	shown	for	
strain	S.	albus	 J1074.	 The	 lack	of	 correlation	between	 replicate	barcodes	 indicates	 that	 inter-
barcode	selection	had	a	minimal	influence	over	the	variability	between	replicates.	Note	the	log-
scaled	axes	and	the	line	of	identity.	
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Figure	S7.	Outliers	at	medium	concentration	are	not	outliers	at	high	concentration.	The	relative	
abundance	 of	 barcodes	 (points)	 is	 shown	 according	 to	 their	 multiplicity	 m	 (the	 number	 of	
replicates	in	which	they	were	detected	within	the	8	total	replicates)	for	two	of	the	strains.	For	
each	strain,	the	medium	inoculum	concentration	is	shown	to	the	left	and	the	high	concentration	
is	shown	to	the	right.		Colored	points	highlight	the	proportion	of	specific	barcodes	that	appeared	
as	outliers	at	the	medium	concentration	in	one	of	the	(m)	samples	in	which	they	were	detected.	
The	same	barcodes	are	also	shown	at	high	concentration.	Barcodes	responsible	for	outliers	at	
medium	concentration	were	not	responsible	for	outliers	at	the	highest	inoculum	concentration.	
Therefore,	we	 can	exclude	 the	possibility	 that	 the	 jackpots	 result	 from	barcode	 lineages	 that	
contain	 beneficial	 mutations	 as	 a	 significant	 fraction	 of	 the	 barcode	 population,	 since	 these	
beneficial	mutations	would	have	likely	be	sampled	at	the	ten	times	higher	concentration	as	well	
and	would	have	led	to	outliers.	 	
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Figure	S8.	Fixation	probabilities	for	beneficial	mutations	under	the	Wright-Fisher	model.	The	
probability	of	fixation	(red)	closely	follows	the	theoretical	prediction	(dashed	black)	even	for	large	
values	of	s.	This	demonstrates	that	the	simulation	code	works	as	expected	and	that	the	deviations	
from	the	classical	results	for	fixation	probability	at	large	s	are	not	simply	due	to	exceeding	the	
regime	of	validity	of	the	formula.	
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Table	S1.	Observed	or	estimated	data	for	each	sample.	
Strain	 Replicate	 Initial	CFU	 Sequencing	reads	 Distinct	barcodes	

S.	coelicolor	

1a	 1.08E+04	 4.64E+06	 217	
1b	 1.08E+04	 6.32E+05	 202	
1c	 1.08E+04	 8.09E+05	 205	
2	 1.08E+04	 5.30E+05	 194	
3	 1.08E+04	 5.08E+05	 212	
4	 1.08E+04	 3.72E+05	 211	
5	 1.08E+04	 6.10E+05	 215	
6	 1.08E+04	 6.17E+05	 203	
7	 1.08E+04	 1.18E+06	 124	
8	 1.08E+04	 7.11E+05	 119	
9	 1.08E+03	 9.76E+05	 136	
10	 1.08E+03	 9.37E+05	 138	
11	 1.08E+03	 1.09E+06	 141	
12	 1.08E+03	 8.94E+05	 137	
13	 1.08E+03	 7.11E+05	 133	
14	 1.08E+03	 5.96E+05	 128	
15	 1.08E+03	 1.35E+05	 48	
16	 1.08E+03	 1.31E+05	 41	
17	 1.08E+02	 3.35E+05	 45	
18	 1.08E+02	 2.26E+05	 49	
19	 1.08E+02	 2.82E+05	 54	
20	 1.08E+02	 3.10E+05	 44	
21	 1.08E+02	 2.30E+05	 49	
22	 1.08E+02	 2.96E+05	 52	
23	 1.08E+02	 2.52E+06	 217	
24	 1.08E+02	 3.26E+06	 222	

S.	albus	J1074	

1a	 1.75E+04	 2.62E+05	 820	
1b	 1.75E+04	 2.28E+05	 802	
1c	 1.75E+04	 1.92E+05	 755	
2	 1.75E+04	 1.75E+05	 732	
3	 1.75E+04	 1.50E+05	 747	
4	 1.75E+04	 2.87E+05	 747	
5	 1.75E+04	 1.94E+05	 727	
6	 1.75E+04	 1.98E+05	 737	
7	 1.75E+04	 5.54E+04	 264	
8	 1.75E+04	 4.40E+04	 273	
9	 1.75E+03	 3.82E+04	 312	
10	 1.75E+03	 3.22E+04	 307	
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Strain	 Replicate	 Initial	CFU	 Sequencing	reads	 Distinct	barcodes	

11	 1.75E+03	 5.91E+04	 316	
12	 1.75E+03	 4.98E+04	 300	
13	 1.75E+03	 5.01E+04	 325	
14	 1.75E+03	 3.48E+04	 291	
15	 1.75E+03	 8.90E+03	 82	
16	 1.75E+03	 5.41E+04	 120	
17	 1.75E+02	 4.08E+04	 109	
18	 1.75E+02	 6.34E+04	 109	
19	 1.75E+02	 4.06E+04	 106	
20	 1.75E+02	 8.66E+04	 101	
21	 1.75E+02	 8.86E+04	 120	
22	 1.75E+02	 6.49E+04	 104	
23	 1.75E+02	 1.98E+05	 658	
24	 1.75E+02	 2.24E+05	 767	

S.	G4A3	

1a	 1.35E+04	 2.18E+06	 1199	
1b	 1.35E+04	 8.04E+05	 707	
1c	 1.35E+04	 4.94E+05	 1058	
2	 1.35E+04	 7.02E+05	 661	
3	 1.35E+04	 6.14E+05	 824	
4	 1.35E+04	 4.57E+05	 1009	
5	 1.35E+04	 7.81E+05	 729	
6	 1.35E+04	 4.74E+05	 1005	
7	 1.35E+04	 2.04E+05	 462	
8	 1.35E+04	 3.23E+05	 497	
9	 1.35E+03	 3.88E+05	 470	
10	 1.35E+03	 3.47E+05	 549	
11	 1.35E+03	 2.26E+05	 489	
12	 1.35E+03	 2.34E+05	 532	
13	 1.35E+03	 2.30E+05	 491	
14	 1.35E+03	 1.84E+05	 449	
15	 1.35E+03	 1.15E+05	 127	
16	 1.35E+03	 2.06E+05	 137	
17	 1.35E+02	 4.09E+05	 138	
18	 1.35E+02	 3.49E+05	 148	
19	 1.35E+02	 5.75E+05	 133	
20	 1.35E+02	 5.39E+05	 140	
21	 1.35E+02	 4.82E+05	 141	
22	 1.35E+02	 4.11E+05	 134	
23	 1.35E+02	 4.76E+05	 890	
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Strain	 Replicate	 Initial	CFU	 Sequencing	reads	 Distinct	barcodes	

24	 1.35E+02	 4.31E+05	 1202	

S.	S26F9	

1a	 2.00E+04	 2.77E+05	 180	
1b	 2.00E+04	 1.16E+06	 132	
1c	 2.00E+04	 5.05E+05	 183	
2	 2.00E+04	 4.19E+05	 174	
3	 2.00E+04	 2.31E+05	 165	
4	 2.00E+04	 5.17E+05	 178	
5	 2.00E+04	 3.70E+05	 178	
6	 2.00E+04	 4.24E+05	 177	
7	 2.00E+04	 3.55E+05	 141	
8	 2.00E+04	 5.68E+05	 124	
9	 2.00E+03	 4.76E+05	 140	
10	 2.00E+03	 5.14E+05	 134	
11	 2.00E+03	 2.14E+05	 149	
12	 2.00E+03	 4.49E+05	 126	
13	 2.00E+03	 3.51E+05	 130	
14	 2.00E+03	 4.41E+05	 125	
15	 2.00E+03	 1.58E+05	 66	
16	 2.00E+03	 3.72E+05	 68	
17	 2.00E+02	 4.04E+05	 63	
18	 2.00E+02	 2.86E+05	 64	
19	 2.00E+02	 3.77E+05	 73	
20	 2.00E+02	 5.72E+05	 69	
21	 2.00E+02	 3.19E+05	 69	
22	 2.00E+02	 4.21E+05	 67	
23	 2.00E+02	 3.86E+05	 169	
24	 2.00E+02	 3.66E+05	 179	

S.	venezuelae	

1a	 2.10E+02	 3.10E+05	 292	
1b	 2.10E+02	 7.63E+05	 281	
1c	 2.10E+02	 3.88E+05	 274	
2	 2.10E+02	 1.12E+06	 264	
3	 2.10E+02	 5.36E+05	 287	
4	 2.10E+02	 6.21E+05	 281	
5	 2.10E+02	 7.99E+05	 287	
6	 2.10E+02	 7.02E+05	 290	
7	 2.10E+02	 6.58E+05	 24	
8	 2.10E+02	 3.03E+05	 24	
9	 2.10E+01	 2.23E+05	 24	
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Strain	 Replicate	 Initial	CFU	 Sequencing	reads	 Distinct	barcodes	

10	 2.10E+01	 4.79E+05	 24	
11	 2.10E+01	 1.63E+05	 26	
12	 2.10E+01	 1.68E+05	 27	
13	 2.10E+01	 2.65E+05	 28	
14	 2.10E+01	 3.66E+05	 15	
15	 2.10E+01	 1.71E+05	 1	
16	 2.10E+01	 3.30E+01	 14	
17	 2.00E+00	 2.42E+05	 1	
18	 2.00E+00	 4.21E+05	 1	
19	 2.00E+00	 2.65E+05	 2	
20	 2.00E+00	 4.04E+05	 4	
21	 2.00E+00	 3.14E+05	 2	
22	 2.00E+00	 7.49E+05	 3	
23	 2.00E+00	 3.21E+05	 283	
24	 2.00E+00	 2.96E+05	 281	
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Table	S2.	PCR	primers	used	in	this	study.	1 
	2 
Primer	Name	 Primer	Sequence	(5'	to	3')	
Left41	 AATGATACGGCGACCACCGAGATCTACACAATGACGGACACTCTTTCCCTACACGACG 
Left42	 AATGATACGGCGACCACCGAGATCTACACTGACGGAAACACTCTTTCCCTACACGACG 
Left43	 AATGATACGGCGACCACCGAGATCTACACACATGGCTACACTCTTTCCCTACACGACG 
Left44	 AATGATACGGCGACCACCGAGATCTACACCCGAATTGACACTCTTTCCCTACACGACG 
Left45	 AATGATACGGCGACCACCGAGATCTACACTACTAGCGACACTCTTTCCCTACACGACG 
Left46	 AATGATACGGCGACCACCGAGATCTACACAGGCATCTACACTCTTTCCCTACACGACG 
Left47	 AATGATACGGCGACCACCGAGATCTACACAAGGTAGCACACTCTTTCCCTACACGACG 
Left48	 AATGATACGGCGACCACCGAGATCTACACTCCATCGTACACTCTTTCCCTACACGACG 
Left49	 AATGATACGGCGACCACCGAGATCTACACCATTCCGTACACTCTTTCCCTACACGACG 
Left50	 AATGATACGGCGACCACCGAGATCTACACGTGAGACAACACTCTTTCCCTACACGACG 
Left51	 AATGATACGGCGACCACCGAGATCTACACCGCTTAAGACACTCTTTCCCTACACGACG 
Left52	 AATGATACGGCGACCACCGAGATCTACACCTCGAGTAACACTCTTTCCCTACACGACG 
Left54	 AATGATACGGCGACCACCGAGATCTACACCAACGAACACACTCTTTCCCTACACGACG 
Left55	 AATGATACGGCGACCACCGAGATCTACACCACACACTACACTCTTTCCCTACACGACG 
Left56	 AATGATACGGCGACCACCGAGATCTACACAATACCGCACACTCTTTCCCTACACGACG 
Left57	 AATGATACGGCGACCACCGAGATCTACACCTGTTCGTACACTCTTTCCCTACACGACG 
Left58	 AATGATACGGCGACCACCGAGATCTACACGTCGTTGTACACTCTTTCCCTACACGACG 
Left59	 AATGATACGGCGACCACCGAGATCTACACCACAGGAAACACTCTTTCCCTACACGACG 
Left60	 AATGATACGGCGACCACCGAGATCTACACTAAGCCAGACACTCTTTCCCTACACGACG 
Left61	 AATGATACGGCGACCACCGAGATCTACACGCATAGGTACACTCTTTCCCTACACGACG 
Left62	 AATGATACGGCGACCACCGAGATCTACACATGCGTAGACACTCTTTCCCTACACGACG 
Left63	 AATGATACGGCGACCACCGAGATCTACACCTTGTTGCACACTCTTTCCCTACACGACG 
Left64	 AATGATACGGCGACCACCGAGATCTACACAAGTGGTGACACTCTTTCCCTACACGACG 
Left65	 AATGATACGGCGACCACCGAGATCTACACTTGCTACGACACTCTTTCCCTACACGACG 
Left78	 AATGATACGGCGACCACCGAGATCTACACCGGCTATTACACTCTTTCCCTACACGACG 
Left79	 AATGATACGGCGACCACCGAGATCTACACATAGCGGTACACTCTTTCCCTACACGACG 
Right28	 CAAGCAGAAGACGGCATACGAGATGAACGTCTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
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Primer	Name	 Primer	Sequence	(5'	to	3')	
Right29	 CAAGCAGAAGACGGCATACGAGATAAGTCCGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right30	 CAAGCAGAAGACGGCATACGAGATACGCTTAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right31	 CAAGCAGAAGACGGCATACGAGATTGGACATCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right32	 CAAGCAGAAGACGGCATACGAGATCCAAGTGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right33	 CAAGCAGAAGACGGCATACGAGATGGTAACGAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right34	 CAAGCAGAAGACGGCATACGAGATTCGGTAACGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right35	 CAAGCAGAAGACGGCATACGAGATGTCGCAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right36	 CAAGCAGAAGACGGCATACGAGATTCCATCTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right37	 CAAGCAGAAGACGGCATACGAGATGCCTTGAAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right38	 CAAGCAGAAGACGGCATACGAGATGATCATGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right39	 CAAGCAGAAGACGGCATACGAGATATTGCCAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right66	 CAAGCAGAAGACGGCATACGAGATTGGTAGGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right67	 CAAGCAGAAGACGGCATACGAGATACCGAAGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right68	 CAAGCAGAAGACGGCATACGAGATTAGCGTAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right69	 CAAGCAGAAGACGGCATACGAGATGTCGTGTTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right70	 CAAGCAGAAGACGGCATACGAGATAATCTCGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right71	 CAAGCAGAAGACGGCATACGAGATACCTTGTGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right72	 CAAGCAGAAGACGGCATACGAGATAACCGATGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right73	 CAAGCAGAAGACGGCATACGAGATCATAACGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right74	 CAAGCAGAAGACGGCATACGAGATCAACCACAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right75	 CAAGCAGAAGACGGCATACGAGATCGATTGTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right76	 CAAGCAGAAGACGGCATACGAGATGTTCTGGTGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right77	 CAAGCAGAAGACGGCATACGAGATTGAAGGCAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right80	 CAAGCAGAAGACGGCATACGAGATCACACCATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
Right81	 CAAGCAGAAGACGGCATACGAGATAGTTCAGCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGGCGATTAAGTTGGGTAACG 
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