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Abstract11

Speech intelligibility is currently measured by scoring how well a person can identify12

a speech signal. The results of such behavioral measures reflect neural processing of the13

speech signal, but are also influenced by language processing, motivation and memory. Very14

often electrophysiological measures of hearing give insight in the neural processing of sound.15

However, in most methods non-speech stimuli are used, making it hard to relate the re-16

sults to behavioral measures of speech intelligibility. The use of natural running speech as17

a stimulus in electrophysiological measures of hearing is a paradigm shift which allows to18
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bridge the gap between behavioral and electrophysiological measures. Here, by decoding19

the speech envelope from the electroencephalogram, and correlating it with the stimulus20

envelope, we demonstrate an electrophysiological measure of neural processing of running21

speech. We show that behaviorally measured speech intelligibility is strongly correlated22

with our electrophysiological measure. Our results pave the way towards an objective and23

automatic way of assessing neural processing of speech presented through auditory prosthe-24

ses, reducing confounds such as attention and cognitive capabilities. We anticipate that our25

electrophysiological measure will allow better differential diagnosis of the auditory system,26

and will allow the development of closed-loop auditory prostheses that automatically adapt27

to individual users.28

1 Introduction29

The human auditory system processes speech in different stages. The auditory periphery converts30

the sound pressure wave into neural spike trains, the auditory cortex segregates streams, and31

finally specialized language processing areas are activated, which interact with short and long32

term memory. Each of these subsystems can be impaired, so in diagnostics it is crucial to be able33

to measure the function of the auditory system at the different levels. The current audiometric34

test battery consists of behavioral tests of speech intelligibility and objective measures based on35

electroencephalogram (EEG).36

In behavioral tests of speech intelligibility the function of the entire auditory system is mea-37

sured. A fragment of natural speech is presented and the subject is instructed to identify it. When38

the goal is to assess the function of the auditory periphery, such as fitting auditory prostheses,39

language knowledge and cognitive function such as working memory are confounds. Additionally,40

behavioral testing requires active participation of the test subject, which is not always possible41

and leads to another confound: motivation and attention. With current EEG-based objective42

measures, it is possible to measure the function of intermediate stages of the auditory system, but43

unnatural periodic stimuli, such as click trains, modulated tones or repeated phonemes are used44

(e.g., Anderson et al, 2013; Picton et al, 2005; McGee and Clemis, 1980), which are acoustically45

different from natural running speech, and are processed differently by the brain (Hullett et al,46

2016). While these measures yield valuable information about the auditory system, they are not47

well-correlated with behaviorally measured speech intelligibility. Another practical downside of48
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non-speech stimuli is that they may be processed differently from speech by modern auditory49

prostheses which take into account the statistics of speech signals (Dillon, 2012). This is prob-50

lematic when assessing a subject’s hearing through an auditory prosthesis such as a hearing aid51

or cochlear implant.52

The missing link between behavioral and objective measures is a measure of neural processing53

of the acoustic cues in speech that lead to intelligibility. The most important acoustic cue for54

speech intelligibility is the temporal envelope (Shannon et al, 1995; Peelle and Davis, 2012)55

and especially modulation frequencies below 20 Hz (Drullman et al, 1994b,a). Recently, it has56

been shown with non-invasive magnetoencephalography (MEG) and EEG recordings that neural57

processing of the speech envelope can be inferred from the correlation between the actual speech58

envelope and the speech envelope decoded from the neural signal (Aiken and Picton, 2008;59

Ding and Simon, 2011). Even for running speech in a single-trial paradigm i.e., presenting the60

stimulus only once the speech envelope could reliably be reconstructed (Ding and Simon, 2012,61

2013; O’Sullivan et al, 2014; Di Liberto et al, 2015; Horton et al, 2014). A decoder transforms62

the multi-channel neural signal into a single-channel speech envelope, by linearly combining63

amplitude samples across MEG sensors and across a post-stimulus temporal integration window.64

Based on training data, the decoder is calculated as the linear combination that maximizes the65

correlation with the actual speech envelope. This method has also been shown to work with66

electroencephalography (EEG) recordings (O’Sullivan et al, 2014). Furthermore, using surface67

recordings of the cortex, the full stimulus spectrogram can be decoded (Pasley et al, 2012), and68

inversely the full spectrogram and even phoneme representation can be used to predict the EEG69

signal (Di Liberto et al, 2015).70

Using these techniques, previous research has compared the correlation between the speech71

envelope and the reconstructed envelope, with speech intelligibility (Ding and Simon, 2013; Kong72

et al, 2015). However, the interpretation of the results is complicated by the fact that speech73

intelligibility could fluctuate over time due to the use of non-standardized running speech as a74

stimulus, and because subjective ratings were used as a measure of speech intelligibility instead75

of standardized speech audiometry. Standardized audiometric speech materials are carefully76

optimized for precision and reliability, something which is difficult, if not impossible with running77

speech and subjective ratings.78

Therefore, we developed an objective measure of neural processing of the speech envelope79
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Figure 1: Overview of the experimental setup. We used the Flemish Matrix sentences to behav-

iorally measure speech intelligibility. In the EEG experiment we presented stimuli from the same

Matrix corpus while measuring the EEG. By correlating the speech envelopes from the Matrix

and the envelopes decoded from the EEG, we obtained our objective measure.

based on the stimulus reconstruction method and compared it with behaviorally measured speech80

intelligibility. We do not expect these measures to correspond exactly, as there are some inherent81

differences, in particular the higher level functions such as working memory and cognitive function82

that are relied upon for the behavioural measure and not so much for the objective one. However,83

on the one hand we reduced those differences by the choice of materials and methods, and on84

othe other hand it remains important to compare our novel objective measure to the current gold85

standard for measuring speech intelligibility. We used EEG rather than MEG, as it is ubiquitous,86

can be implemented on a large scale, and is often available for clinical application.87

2 Methods88

An overview of our methods is shown in Figure 1. Briefly, in a behavioral and EEG experiment,89

we used the same speech stimuli, from a standardized speech test, combined with spectrally90

matched stationary noise at different signal to noise ratios (SNRs). In the behavioral experiment,91

we determined the speech reception threshold (SRT). In the EEG experiment, we determined92

neural entrainment of the speech envelope as a function of SNR, and derived an objective measure.93

We then compared the SRT with the objective measure on an individual subject basis.94

The objective measure is obtained by on the one hand determining the slowly varying tempo-95

ral envelope of the speech signal (bottom row of Figure 1), which can be thought of as the signal96
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power over time, and on the other hand attempting to decode this same envelope from the EEG97

signal (middle row of Figure 1). To this end, for each subject a decoder is trained on speech98

in quiet, which decodes the speech envelope as a linear combination of EEG samples, across a99

temporal integration window, and across the EEG recording electrodes. The actual and decoded100

envelopes are then correlated with each other, which yields a measure of neural entrainment of101

the speech envelope. After repeating this process for a number of SNRs, a sigmoid function is102

fitted to the results. The midpoint of the resulting sigmoid function is our objective measure,103

which we call the correlation threshold (CT).104

2.1 Participants105

We tested 24 normal-hearing subjects, 7 male and 17 female, recruited from our university student106

population to ensure normal language processing and cognitive function. Their age ranged from107

21 to 29 years with an average of 24.3 years. Every subject reported normal hearing, which was108

verified by pure tone audiometry (thresholds lower than 25 dB HL for 125 Hz until 8000 Hz109

using MADSEN Orbiter 922-2). They had Dutch (Flemish) as mother tongue and were unpaid110

volunteers. Before each experiment the subjects signed an informed consent form approved by111

the Medical Ethics Committee UZ KU Leuven / Research (KU Leuven) with reference S59040.112

2.2 Behavioral experiments113

The behavioral experiments consisted of tests with the Flemish Matrix material Luts et al (2015)114

using the method of constant stimuli at 3 SNRs around the SRT. This material is divided in lists115

of 20 sentences which have been shown to yield similar behavioral speech intelligibility scores.116

Such validated tests, consisting of a standardized corpus of sentences, are currently the gold117

standard in measuring speech intelligibility, both in research and clinical practice. Sentences118

were spoken by a female speaker and presented to the right ear. They have a fixed structure119

of ‘name verb numeral adjective object’, where each element is selected from a closed set of ten120

possibilities, e.g., ‘Sofie ziet zes grijze pennen’ (‘Sofie sees six gray pens’). These sentences sound121

perfectly natural, but are grammatically trivial and completely unpredictable, thus minimizing122

the effect of higher order language processing.123

The experiments were conducted on a laptop running Windows using the APEX 3 (version124
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3.1) software platform developed at ExpORL (Dept. Neurosciences, KU Leuven) (Francart et al,125

2008), an RME Multiface II sound card (RME, Haimhausen, Germany) and Etymotic ER-3A126

insert phones (Etymotic Research, Inc., Illinois, USA) which were electromagnetically shielded127

using CFL2 boxes from Perancea Ltd. (London, United Kingdom). The speech was presented128

monaurally at 60 dBA and the setup was calibrated in a 2-cm3 coupler (Brüel & Kjær 4152)129

using the stationary speech weighted noise corresponding with the Matrix speech material. The130

experiments took place in an electromagnetically shielded and soundproofed room.131

2.3 EEG experiments132

Setup To measure auditory evoked potentials we used a BioSemi (Amsterdam, Netherlands)133

ActiveTwo EEG setup with 64 electrodes and recorded the data at a sampling rate of 8192 Hz134

using the ActiView software provided by BioSemi. The stimuli were presented with the same135

setup as the behavioral experiments, with the exception of diotic stimulation and adapting the136

noise level instead of the speech level for the EEG experiment.137

Speech material We presented stimuli created by concatenating two lists of Flemish Matrix138

sentences with a gap between the sentences. This length of this gap was uniformly distributed139

between 0.8 s and 1.2 s. The total duration of this stimulus was around 120 seconds. It was140

presented at 3, 5 or 7 different SNRs with the speech level fixed at 60 dBA. The order of SNRs141

was randomised across subjects. Each stimulus was presented 3 or 4 times. The total duration142

of the experiment was 2 hours. To keep the subjects attentive, questions about the stimuli were143

asked before and after the presentation of the stimulus. The questions were typically counting144

tasks, e.g. ‘How many times did you hear “gray pens”?’. These Matrix sentences were used to145

objectively estimate the speech understanding.146

Speech story The subjects listened to the children’s story ‘Milan’, written and narrated in147

Flemish by Stijn Vranken1. It was 15 minutes long and was presented at 60 dBA without any148

noise. The purpose of this stimulus was to have a continuous, attended stimulus to train the149

linear decoder. No questions were asked before or after this stimulus.150

1http://www.radioboeken.eu/radioboek.php?id=193&lang=NL
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2.4 Signal processing151

Speech We measured envelope entrainment by calculating the bootstrapped Spearman corre-152

lation (see below) between the stimulus speech envelope and the envelope reconstructed by a153

linear decoder. All implementations were written in MATLAB R2016b.154

The stimulus speech envelope was extracted according to Biesmans et al (2016), who investi-155

gated the effect of envelope extraction method on auditory attention detection, and found best156

performance for a gammatone filterbank followed by a power law. In more detail, we used a gam-157

matone filterbank (Søndergaard and Majdak, 2013; Søndergaard et al, 2012) with 28 channels158

spaced by 1 equivalent rectangular bandwidth (ERB), with center frequencies from 50 Hz until159

5000 Hz. From each subband we extracted the envelope by taking the absolute value of each160

sample and raising it to the power of 0.6. The resulting 28 subband envelopes were averaged to161

obtain one single envelope. The power law was chosen as the human auditory system is not a162

linear system and compression is present in the system. The gammatone filterbank was chosen163

as it mimics the auditory filters present in the basilar membrane in the cochlea.164

The speech envelope and EEG signal were band-pass filtered. We investigated performance165

for a range of filter cut-off frequencies. The same filter (a zero phase Butterworth filter with166

80 dB attenuation at 10% outside the passband) was applied to the EEG and speech envelope.167

Before filtering, the EEG data were re-referenced to Cz and were downsampled from 8192 Hz168

to 1024 Hz to decrease processing time. After filtering, the data were further downsampled to169

64 Hz.170

A decoder, is a spatial filter, over EEG electrodes and a temporal filter, over time lags which171

optimally reconstructs the speech envelope from the EEG. The decoder linearly combines EEG172

electrode signals and their time shifted versions to optimally reconstruct the speech envelope.173

In the training phase, the weights to be applied to each signal in this linear combination are174

determined. The decoder was calculated using the mTRF toolbox (version 1.1) (Lalor et al,175

2006, 2009) and applied as follows. As the stimulus evoked neural responses at different delays176

along the auditory pathway, we define a matrix R containing the shifted neural responses of each177

channel. If g is the linear decoder and R is the shifted neural data, the reconstruction of the178

speech envelope ŝ(t) was obtained as follows:179

ŝ(t) =
N∑
n=1

∑
τ

g(n, τ)R(t+ τ, n)
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with t the time ranging from 0 to T , n the index of the recording electrode and τ the post-stimulus180

integration-window length used to reconstruct the envelope. The matrix g can be determined by181

minimizing a least-squares objective function182

g = arg min E(|ŝ(t)− s(t)|2)

where E denotes the expected value, s(t) the real speech envelope and ŝ(t) the reconstructed183

envelope. In practice we calculated the decoder by solving184

g = (RRT )−1(RST )

where R is the time-lagged matrix of the neural data and S a vector of stimulus envelope samples.185

The decoder is calculated using ridge regression on the inverse autocorrelation matrix.186

We trained a new decoder for each subject on the story stimulus, which was 15 minutes long.187

After training, the decoder was applied on the EEG responses to the Flemish Matrix material.188

To measure the correspondence between the speech envelope and its reconstruction, we cal-189

culated the bootstrapped Spearman correlation between the real and reconstructed envelope.190

Bootstrapping was applied by Monte Carlo sampling of the two envelopes. Some examples of191

actual and reconstructed envelopes and the corresponding correlations are shown in figure 2.192

Our goal is to derive an objective measure of speech intelligibility, similar to the SRT for193

behavioral tests. Therefore the correlation between real and reconstructed envelope needs to194

increase with SNR, just like the percentage correctly repeated words increases with SNR in195

behavioral measures. To allow quantitative comparison between the different conditions of band196

pass filter and decoder temporal integration window, we defined a measure of monotonicity197

of the stimulus SNR versus correlation function. For each subject it indicates the percentage198

that the following comparisons are true: the correlation at the lowest SNR is lower than the199

correlations at the middle and highest SNR, and the correlation at the highest SNR is higher200

than the correlation at the lowest SNR. The band pass filter and temporal integration window201

were chosen to maximize this measure across all subjects.202

3 Results203

As different roles are attributed to different EEG frequency bands, we first investigated the204

effect of the cut-off frequencies of the band-pass filter that is applied to both the envelope205
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Figure 2: Examples of actual and reconstructed envelopes and the corresponding correlations.
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and EEG signal. Next, we investigated the effect of integration window of the decoder. This206

can be understood as the number of EEG samples following the acoustic stimulus that are207

taken into account. For both the filter and the integration window we selected the parameter208

values that yielded optimal monotonicity of the entrainment versus SNR. Finally, using the209

optimal parameters, we calculated the correlation between the actual speech envelope and the210

reconstructed envelope for each SNR, derived our objective measure of speech intelligibility, and211

compared it to the behavioral SRT.212

3.1 Filter band213

Neural responses are mostly analyzed in specific filter bands. Much of the speech-related EEG214

research focuses on the delta band (0.5 Hz - 4 Hz) and theta band (4 Hz - 8 Hz) (O’Sullivan215

et al, 2014; Ding and Simon, 2013; Doelling et al, 2014). We systematically investigated the216

effect of low- and high-pass frequency of the band on monotonicity of the reconstruction quality217

as a function of stimulus SNR. We found best monotonicity using only the delta band (Figure218

3a). Best performance was found when low frequencies are included. As a result we used a filter219

band from 0.5 until 4 Hz.220

3.2 Integration window221

We systematically varied the temporal integration window of the decoder, and found best mono-222

tonicity of the reconstruction quality using an integration window focusing on early responses,223

from 0 ms up to 75-140 ms, see Figure 3b. Other research has shown that early responses yield224

a more gradual decline in correlation with decrease in SNR (Ding and Simon, 2013), compared225

to later responses, and that earlier responses are less modulated by attention (Ding and Simon,226

2012; O’Sullivan et al, 2014). Based on these findings and our results, we used an integration227

window from 0 ms until 75 ms.228
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Figure 3: The monotonicity of envelope entrainment as a function of frequency bands and tem-

poral integration window.

3.3 Behavioral versus Objective229

Behavioral speech intelligibility was characterized by the speech reception threshold (SRT), i.e.,230

the SNR yielding 50% intelligibility. It was obtained by fitting a sigmoid function with the231

formula S(SNR) = γ + (1 − γ − λ) 1

1+e
−SNR−α

β

with γ the guess-rate, λ the lapse-rate, α the232

midpoint and β the slope, to the SNR-versus-intelligibility points for each subject individually233

(e.g., Figure 4a). For the behavioral data, γ and λ were fixed to 0, leaving 2 parameters to be234

fitted to 3 data points, as is common for obtaining the SRT. The mean of the individual SRTs235

was -7.4 dB with an inter-subject standard deviation of 1.3 dB, ranging from -9.9 dB to -4.7 dB.236
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Figure 4: Behavioral and objective results for one subject.

The objective measure was inspired by the behavioral one in the sense that we obtained a237

single-trial score for each of a range of SNRs and then fitted a sigmoid function. The score was238

calculated as the absolute value of the Spearman correlation between the actual and the decoded239

speech envelope. In Figure 5 the scores for each subject and SNR are shown.240
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symbol, the boxplot gives an idea of the variance across subjects.

For the objective data, γ was fixed to 0.03, the chance level of the correlation. The chance241

level was computed by correlating the reconstructed envelope with a different part of the actual242

envelope. As a result we fitted the remaining 3 parameters to at least 5 data points. After fitting243

the function, we derived its midpoint, and used this as our objective measure, which we will refer244

to as the correlation threshold (CT), e.g., Figure 4b. The benefit of this measure, compared to245

using the correlation value at a single SNR directly, is that the target SNR, which is subject246

specific, does not need to be known a priori and that it is robust to inter-subject differences in247

correlation magnitude.248

Using individual decoders we were able to obtain a good fit of the sigmoid function for249

19 of the 24 subjects, i.e., no fitted parameter was equal to its lower or upper bound, and250
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consequently derived the CT. We found a significant Pearson correlation of 0.69 between SRT251

and CT (p=0.001, Figure 6). Given the relatively small range of behavioral results for these252

normal-hearing subjects, from -9.9 dB SNR to -4.7 dB SNR, and a typical test-retest difference253

of 1 dB of the behavioral measure, this indicates that our objective measure is sensitive to small254

changes in SRT.255

Speech Reception Threshold (dB)
-10 -9 -8 -7 -6 -5

C
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re
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n 

T
hr
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ld
 (
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)
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-4

-2

0

2

4

6
Behavioural SRT vs objective CT

Figure 6: Electrophysiological versus behavioral measure (Pearson’s r = 0.69, p = 0.001). The

electrophysiological measure (correlation threshold, CT) is the midpoint of each psychometric

function. The behavioral measure (speech reception threshold, SRT) is the stimulus SNR at

which the subject can understand 50% of the words.
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4 Discussion256

We compared a new objective measure of speech intelligibility (the CT) to the behaviorally257

measured SRT for 24 normal-hearing subjects. The objective measure is based on the correlation258

between the actual speech envelope and the speech envelope reconstructed from the EEG signal,259

a measure of neural entrainment to the speech envelope. We fitted a sigmoid function to the260

resulting entrainment versus stimulus SNR data, and derived the CT as its midpoint. We found261

a significant correlation between the objectively measured CT and behaviorally measured SRT.262

4.1 Filter band263

We found highest monotonicity in the delta band. This band encompasses the main information264

in the modulation spectrum of speech which exhibits peaks at the sentence rate (0.5 Hz) and265

word rate (2.5 Hz) (Edwards and Chang, 2013). It contains the prosodic information which is266

known to be important for speech intelligibility (Woodfield and Akeroyd, 2010). For the Matrix267

sentences, sharp peaks can be observed in the modulation spectrum at 0.5, 2.5 and 4.1 Hz, due268

to low variation among the sentences. Note that the delta band does not include the syllable269

rate of the Matrix sentences (4.1 Hz). Ding and Simon (2013); Ding et al (2014); Doelling et al270

(2014) also found that the neural responses in delta band were a predictor of how well individual271

subjects recognized speech in noise.272

4.2 Integration window273

We found best monotonicity of correlation as a function of SNR for an integration window from274

0 ms until 75 ms. This may be counter-intuitive as higher correlation values, but not monotonicity275

are obtained using a longer integration window, such as 0 ms until 500 ms (Ding and Simon,276

2013) and other studies focus more on later responses (O’Sullivan et al, 2014; Di Liberto et al,277

2015). However recent work (Ding and Simon, 2012; O’Sullivan et al, 2014) shows that early278

responses (0 ms to 75 ms) are less modulated by attention compared to later responses (later279

than 75 ms). Our stimulus is unpredictable and not particularly engaging, so it is likely that the280

subjects were not attentive throughout the entire experiment (in spite of the instructions). By281

using only the early responses we limit the attentional effects.282
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4.3 Behavioral versus Objective283

We found a significant correlation between the behaviorally measured SRT and our new objective284

measure (CT). Ding and Simon (2014) reviewed a number of studies in which similar comparisons285

are made. They concluded that in many cases stimuli which differ in intelligibility also differ in286

acoustic properties, making it difficult to determine if changes in cortical entrainment arise from287

changes in speech intelligibility or from changes in acoustic properties. We addressed this by288

using stimuli with similar statistics in all conditions. Additionally, in previous work, subjective289

ratings of intelligibility of a non-standardized story were used as the behavioral measurement.290

The problem is that such measures are prone to large inter-subject differences and larger vari-291

ability than for standardized speech audiometry. We addressed this by using standardized speech292

material as the stimulus for both the behavioral and EEG experiments. Moreover, the correla-293

tion between actual and reconstructed envelope can differ widely in magnitude across subjects,294

due to differences in recording SNR of the EEG signal. Therefore we avoided using it directly295

and instead captured the trend across SNRs by fitting a sigmoid function.296

Ding and Simon (2013) found a correlation between subjectively rated intelligibility and297

reconstruction accuracy in an MEG experiment. When assessing reconstruction accuracy as a298

function of SNR across subjects, they found that it was relatively unaffected down to a certain299

SNR and then sharply dropped. Possible explanations for the difference with our results, where300

we found a more gradual decrease in reconstruction accuracy with SNR, are the type of speech301

material used (low-context Matrix sentences versus a story) and the decoder integration window302

length (75 ms versus 250 ms).303

The correlation between the SRT and the CT only explains 50 percent of the variance. The304

remainder can be attributed to limitations of our model, state of the subject, and limitations305

of the behavioural measure. In our model, we only used the speech envelope, which is a crude306

representation of a speech signal, and indeed the auditory system uses many other cues such307

as frequency-dependent envelopes and temporal fine structure. For instance, Di Liberto et al308

(2015) have shown that including the entire spectrogram or even a phoneme-representation of309

the stimulus can improve performance. Also, our simple linear decoder is probably not able310

to cope with all the complexity of the auditory system and brain, and the EEG technique has311

inherent problems, such as a low SNR of the signal of interest. Therefore in the future non-linear312
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techniques such as artificial neural networks may yield improved performance (e.g., Yang et al313

(2015)).314

Even with perfect reconstruction of the envelope from the EEG, differences between the CT315

and SRT can still be expected. First of all, the SRT obtained in a behavioral experiment is not316

infinitely precise, with a typical test-retest difference of around 2 dB. Second, the two measures317

do not reflect exactly the same thing: the CT presumably reflects relatively early neural coding of318

the speech envelope, while the SRT is the product of much more extensive processing, including319

remembering and repeating the sentence. Another difference is procedural in nature: in the320

behavioral experiment, we collected a response after each sentence was presented, ensuring the321

subject’s continuous attention. In the EEG experiment we continuously recorded the EEG during322

the stimulus, and it is likely that the subject’s attention lapsed once in a while. We attempted323

to mitigate these differences by selecting young, cognitively strong listeners, using low-context324

speech material, clear instructions, and asking the subjects regular questions during the EEG325

experiment to ensure they remained attentive.326

To translate this method to the clinic, it first needs to be further validated with a more diverse327

population with a wider age range, including children, various degrees of hearing impairment,328

different languages, etc., as it is possible that the optimal signal processing parameters depend329

on these factors (Presacco et al, 2016). It also needs to be investigated to what extent attention330

influences the results.331

4.4 Conclusions332

There is a missing link between the current behavioral and electrophysiological methods to assess333

hearing. The behavioral methods can yield a precise measure of speech intelligibility, but suffer334

from several confounding factors when the goal is to assess how the auditory periphery processes335

supra-threshold sounds. Current objective methods do not have this confound and can address336

specific areas in the auditory pathway. However they do not give much insight in how well the337

patient understands speech due to the use of simple repetitive stimuli. The proposed measure338

(CT) is based on running speech stimuli and is fully objective. It can on one hand provide valu-339

able information additional to behaviorally measured speech intelligibility in a population where340

cognitive factors play a role, such as in aging individuals, or during auditory rehabilitation after341

fitting an auditory prosthesis. On the other hand it enables completely automatic measurement,342
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which is invaluable for testing individuals who cannot provide feedback, for automatic fitting343

of auditory prostheses, and for closed-loop auditory prostheses that continuously adapt their344

function to the individual listener in a specific and changing listening environment.345
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