
1 

 

Bioinformatic analysis of endogenous and exogenous 
small RNAs on lipoproteins 

 
*Ryan M. Allen1, *Shilin Zhao2,, Marisol A. Ramirez Solano1, Danielle L. Michell1, Yuhuan 

Wang3, Yu Shyr2, Praveen Sethupathy4, MacRae F. Linton1, Greg A. Graf3, #Quanhu Sheng2 

#Kasey C. Vickers1 

 

1Department of Medicine, Vanderbilt Univ. Medical Center, Nashville, TN. 37232 USA 
2Department of Biostatistics, Vanderbilt Univ. Medical Center, Nashville, TN. 37232 USA 

3Department of Pharmacology, University of Kentucky. Lexington, KY. 40536 USA 
4Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY. 

14853 USA 
 

*Co-first authors 
#Co-corresponding authors 

 
 

CORRESPONDING AUTHOR: 
Kasey C. Vickers, PhD 

2220 Pierce Ave. 
312 Preston Research Building 

Nashville, TN 37232 
Ph: 1-615.936.2989 
Fax: 1-615.936.1872 

kasey.c.vickers@Vanderbilt.edu 
 

ABSTRACT: 274 
BODY: 11,112 

 
 
 
 
 
 
 

ABBREVIATIONS: 
exRNA, extracellular RNAs; HDL, high-density lipoproteins; HMB, human microbiome project; lncRNA, 

long non-coding RNA;  LDL, low-density lipoproteins; miscRNA, miscellaneous sRNA; ncRNA, non-

coding RNA; NIH, National Institutes of Health;  nts, nucleotides; osRNA, other sRNA; rDR, rRNA-

derived sRNA, RPM, Reads Per Million total reads; rRNA, ribosomal RNA; sRNA, small RNAs; snDR, 

snRNA-derived sRNA; snoDR, snoRNA-derived sRNA;  snoRNA, small nucleolar RNA;  snRNA, small 

nuclear RNA; SR-BI, scavenger receptor BI;  sRNA-seq, small RNA sequencing, tDR, tRNA-derived 

sRNA; tRNA, transfer RNA; yDR, Y RNA-derived sRNA; 3’ UTR, 3’ untranslated regions.  

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246900doi: bioRxiv preprint 

https://doi.org/10.1101/246900


2 

 

Abstract 

High-throughput small RNA sequencing (sRNA-seq) has facilitated the discovery of many classes of 

small RNAs (sRNA) and helped establish the field of extracellular RNA (exRNA). Although several tools 

are available for sRNA-seq analysis, exRNAs present unique analytical challenges that are not met by 

current software. Therefore, we developed a novel data analysis pipeline specifically for exRNAs 

entitled, “Tools for Integrative Genome analysis of Extracellular sRNAs (TIGER).” To demonstrate the 

power of this tool, sRNA-seq was performed on high-density lipoproteins (HDL), apolipoprotein B-

containing particles (APOB), bile, urine, and liver samples collected from wild-type (WT) and scavenger 

receptor BI knockout (SR-BI KO) mice. TIGER was able to account for approximately 60% of reads on 

lipoproteins and >85% of reads in liver, bile, and urine, a significant advance compared to existing 

software, largely due to the identification of non-host sRNAs in these datasets. A key advance for the 

TIGER pipeline is the ability to analyze host and non-host sRNAs across many classes at the genome, 

parent RNA, and individual fragment levels. Moreover, disparate sample types were compared at each 

level using hierarchical clustering, correlations, betadispersions, principal coordinate analysis, and 

permutational multivariate analysis of variance. TIGER analysis was also used to quantify distinct 

features of exRNAs, including 5’ microRNA (miRNA) variants, 3’ miRNA non-templated additions, 

parent RNA positional coverage, and length distributions by RNA class. Results suggest that the 

majority of sRNAs on lipoproteins are non-host sRNAs derived from bacterial sources in the 

microbiome and environment, specifically rRNA-derived sRNAs from proteobacteria. Here, we report 

novel discoveries of lipoprotein sRNAs that were facilitated by the new sRNA-seq analysis pipeline, 

TIGER, which has tremendous applicability for the field of exRNA. 
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Introduction 

High-throughput sRNA-seq is the current state-of-the-art method for profiling sRNAs, and is widely-

used across many disciplines. Although many software are currently available for sRNA-seq data 

analysis, most fail to meet the present demands for the study of host and non-host sRNAs across 

diverse RNA classes. This is particularly important for the investigation of exRNAs, which are 

heterogeneous pools of host (e.g. human) and non-host (e.g. bacteria) sRNAs. Furthermore, individual 

sRNA classes harbor distinct features, e.g. miRNA 3’ non-templated additions (NTA)1-3, and these 

features each require unique strategies for alignments and quantification. A key objective for data 

analysis is to account for all reads in the sRNA-seq dataset, and current approaches to sRNA profiling 

now require sophisticated analysis strategies. Therefore, we developed a novel data analysis pipeline 

specifically for exRNAs entitled, “Tools for Integrative Genome analysis of Extracellular sRNAs 

(TIGER).” This pipeline integrates host and non-host sRNA analysis through both genome and 

database alignments, and greatly improved our ability to account for a larger number of reads in sRNA-

seq datasets. The TIGER pipeline was designed for the study of lipoprotein sRNAs; however, it has 

great applicability to all exRNA studies. 

The most extensively studied class of sRNAs is miRNAs4 and many sRNA-seq analysis tools are 

limited to only miRNA quantification5. In addition to miRNAs, many other classes of sRNAs are present 

in sRNA-seq datasets6. These include sRNAs derived from parent transfer RNAs (tRNA), ribosomal 

RNAs (rRNA), small nucleolar RNAs (snoRNA), small nuclear RNAs (snRNA), long non-coding RNAs 

(lncRNA), Y RNAs, and several other miscellaneous non-coding RNAs7, 8. For consistency in 

nomenclature, here, we will refer to these novel sRNA classes as tRNA-derived sRNAs (tDR), rRNA-

derived sRNAs (rDR), lncRNA-derived sRNAs (lncDR), snRNA-derived sRNAs (snDR), snoRNA-

derived SRNAs (snoDR), Y RNA-derived sRNAs (yDR) and other miscellaneous sRNAs (miscRNA). 

Outside of miRNAs and tDRs, the biological function(s) of these other endogenous sRNAs are 

unknown8, 9; however, similar to miRNAs, many of these endogenous sRNAs are present in biological 
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fluids and hold great potential as disease biomarkers or intercellular communication signals. 

Nevertheless, tools for their analysis in sRNA-seq datasets are very limited10, 11.  

The key advantage of sRNA-seq over other profiling methods (e.g. microarrays) is the ability to 

quantify sRNAs without prior knowledge of sRNA sequences or genomic annotation, thus sRNA-seq 

provides the opportunity to discover novel endogenous sRNAs from unlimited host genomes and, most 

interestingly, exogenous sRNAs - likely from bacteria and fungi – in host tissues and biological fluids12. 

Although it is to be expected that exogenous sRNAs are present in certain biofluids, e.g. saliva13, 

bacterial and fungal sRNAs have also been reported in plasma12, and comprehensive analysis of 

exRNA requires their quantification in sRNA-seq datasets. Furthermore, analysis sRNA-seq data 

generated from cells/tissues should also assess exogenous sRNAs as non-human sRNAs have been 

detected within the RNA-Induced Silencing Complex (RISC) in human cells12. Although the functional 

relevance of exogenous sRNAs in RISC and their potential regulation of human gene expression 

remains to be determined, these initial studies support the demand for bioinformatic strategies to 

identify and quantify exogenous sRNAs in diverse sRNA-seq datasets.  

In plasma and other biofluids, exRNAs are carried by extracellular vesicles (EV), lipoproteins, and 

ribonucleoproteins, which protects exRNAs against RNase-mediated degradation14, 15. Previously, we 

reported that lipoproteins - low-density lipoproteins (LDL) and high-density lipoproteins (HDL) - 

transport miRNAs in plasma, and lipoprotein miRNA signatures are distinct from exosomes16. Using 

real-time PCR-based TaqMan arrays to profile HDL-miRNAs, we further identified HDL-miRNAs that 

were significantly altered in hypercholesterolemia and atherosclerosis16. Currently, it is unknown if 

lipoproteins transport other sRNAs in addition to miRNAs. In a previous study, we reported that HDL 

transfer miRNAs to recipient cells and this process is regulated by HDL’s receptor, scavenger receptor 

BI (SR-BI), in hepatocytes16. SR-BI is a bidirectional transporter of cholesterol and a critical factor in 

reverse cholesterol transport pathway in which HDL returns excess cholesterol to the liver for excretion 

to bile. Currently, it is unknown if miRNAs, and potentially other sRNAs, on lipoproteins follow 
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cholesterol and are transported to the liver for secretion to bile. Furthermore, it is unknown if SR-BI 

regulates miRNAs or other sRNAs on HDL, LDL, or biofluids, e.g. bile. 

To demonstrate the power of the TIGER pipeline, we present results from our comprehensive 

analysis of lipoprotein sRNAs by high-throughput sRNA-seq. Using TIGER, we found that lipoproteins 

transport a wide-variety of host and non-host sRNAs, most notably, HDL and APOB particles transport 

non-host bacterial tDRs and rDRs. TIGER analysis was also used to demonstrate that lipoprotein sRNA 

signatures are distinct from liver, bile, and urine for host sRNAs and their distinct features. Moreover, 

TIGER analysis was used to determine the role of SR-BI in the regulation of exRNAs on lipoproteins 

and in biofluids. At the parent RNA level, SR-BI-deficiency had minimal impact on sRNA levels; 

however, by organizing sRNAs at the individual fragment level, we found that loss of SR-BI in mice 

resulted in significant changes to specific sRNA classes in different sample types, e.g. snDRs on HDL 

were found to be increased in SR-BI KO mice compared to WT mice. Collectively, the development and 

application of TIGER overcame many of the barriers and challenges exRNA sequencing analysis and 

uncovered many novel observations for sRNAs on lipoproteins and in liver and biological fluids. 

 

Results 

Lipoproteins transport distinct sRNA signatures.  

miRNAs are just one of several classes of non-coding sRNAs, and many of these non-miRNA sRNAs 

have been detected in plasma and extracellular fluids7-9, 17. Moreover, many of these sRNAs are also 

likely to be associated with HDL and LDL in circulation; however, the full-compendium of exRNAs on 

lipoproteins has not been investigated. Therefore, an unbiased approach to identifying and quantifying 

sRNAs on lipoproteins was warranted. To address this gap in knowledge, high-throughput sRNA-seq 

was used to profile all sRNAs on HDL and apoB-containing particles (APOB) purified from mouse 

plasma by size-exclusion chromatography (SEC) (Fig.S1A-C). Profiling lipoprotein sRNAs by sRNA-
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seq presented unique challenges in data analysis, e.g. miRNAs were only a minor fraction of all host 

sRNAs and we detected many non-host sRNAs by individual searches. Therefore, we designed a new 

pipeline (TIGER) to address these complexities. To demonstrate the unique features of sRNAs on 

lipoproteins, mouse HDL and APOB profiles were compared to mouse liver, bile, and urine. The TIGER 

pipeline is composed on multiple data analysis modules in which the priority and order of analyses can 

be defined. Many biofluids contain both host (e.g. mouse) and non-host (e.g. bacteria) sRNAs and the 

ratio between host and non-host can be used to determine the order of analysis and priority of 

assumptions. For example, in a recent study, sRNAs in saliva were aligned first to bacterial genomes 

prior to the host genome13. Here, we aligned reads first to the host using a combination of host genome 

and mature transcripts in specific databases followed by parallel alignments to non-host genomes (e.g. 

bacteria species) and non-host sRNA libraries (e.g. tRNA database) (Fig.1). For host sRNAs, the 

TIGER pipeline prioritized annotated sRNAs in ranking order; miRNAs, tDRs, rDRs, snDRs, snoDRs, 

yDRs, lncDRs, miscellaneous sRNAs (miscRNA), and unannotated host genome sRNAs. For non-host 

genomes, the TIGER pipeline aligned reads in parallel (equally) to genomes organized into microbiome 

bacteria, environment bacteria, and fungi. Using this approach, we were able to make many novel 

observations concerning nucleic acid cargo on lipoproteins that would not be possible using currently 

available software. 

 

Distinct features of miRNAs on lipoproteins  

To compare miRNA content between groups, miRNA read counts can be normalized by Reads Per 

Million total reads (RPM) or Reads Per Million miRNA reads (RPM miR). To determine the appropriate 

normalization for our data, both approaches were compared to real-time PCR (TaqMan assay) results 

for 9 miRNAs across all samples, and we found that normalization of miRNAs by RPM (R2=0.45) 

showed a higher correlation between sequencing and PCR results than RPM miR (R2=0.17) (Fig.2A, 

Table S1) Lipoproteins, specifically APOB particles, were found to have less miRNA content, as 
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reported by total miRNA counts (RPM), than livers which had the largest fraction of miRNAs per total 

reads (RPM) (Fig.2B). To compare miRNA signatures across sample types, Principal Coordinate 

Analysis (PCoA) was used, and we found distinct clustering of lipoproteins and biofluids separate from 

livers (Fig.2C). To quantify differences in the homogeneity of multivariable distributions (miRNAs) for 

the samples in each group, PERMANOVA tests were used, and we found that the miRNA profiles of 

lipoproteins (HDL and APOB) and biofluids (bile and urine) were significantly distinct from livers (WT 

mice) – APOB (F=9.57, p=0.001), HDL (F=7.11, p=0.001), bile (F=5.56, p=0.001), and urine (F=8.42, 

p=0.001) (Table S2). Betadispersions can be used to calculate the distances of individual samples 

within a group to the group’s centroid, and lipoprotein (high-dispersions) and biofluid (high-disperisons) 

samples were significantly (ANOVA P<0.05) more dispersed than livers (low-dispersion) – APOB 

(F=31.03, p<0.0001), HDL (F=23.20, p<0.0001), bile (F=17.09, p<0.0001), and urine (F=15.47, 

p<0.0001)  (Fig.2C). To further compare miRNA signatures between groups, high-end analyses were 

performed using hierarchical clustering and correlations (Spearman) of group means. Both HDL and 

APOB groups distinctly clustered away from liver and biofluids, and lipoproteins displayed high 

correlations between HDL and APOB groups and modest correlations with liver, bile, and urine groups 

(Fig.2D). These results suggest that HDL and APOB transport unique miRNA signatures that are 

distinct from liver, as lipoproteins showed significantly less homogeneity of miRNAs, increased sample 

dispersions, and clustered separately from liver. 

miRNAs (19-23 nts in length) post-transcriptionally regulate gene expression through binding to and 

suppressing mRNA targets4. Recognition of mRNA target sites is conferred through a critical “seed” 

region (bases 2-7) on the 5’ end of the miRNA18. During biogenesis, mature miRNAs are processed 

from precursor miRNA hairpins and imprecise cleavage can give rise to variations on the 5’ end19-21. As 

such, one miRNA locus can produce multiple miRNA isoforms, termed isomiRs, which can differ by one 

or two nts at the 5’ start position; therefore, the miRNA “seed” region sequence can be shifted and the 

recognition of mRNA targets altered20-22. Therefore, it is important that analysis of miRNAs in sRNA-seq 
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datasets includes quantification of isomiRs; however, most analysis software only assess canonical 

miRNAs. One feature of the TIGER pipeline is the ability to quantify both canonical miRNAs and their 

various isoforms (isomiRs). In our study, all samples contained 5’ isomiRs, the largest fraction was 

found on HDL (8.42%) followed by urine (7.2%), APOB (6.53%), bile (4.54%), and liver (4.34%) 

(Fig.S2A-B). In addition, we found specific examples of miRNAs with different 5’ terminal start positions 

than their reported canonical forms, e.g. miR-142-5p (-2), miR-133a-3p (+1) and miR-192-5p (+1), and 

these patterns were consistent across all sample types, suggesting these annotations may be 

inaccurate in the database (miRBase) (Fig.2E). Most interestingly, we found that lipoproteins and 

biofluids contained significantly more 5’ (-1) isomiRs of miR-101a-3p than liver samples, which may be 

evidence of isomiR partitioning for miR-101a-3p between extracellular and intracellular pools (Fig.2E). 

Mature miRNAs also harbor extensive variability on their 3’ terminal ends due to imprecise processing 

and NTAs, i.e. extra non-genomic 3’ nts added by cytoplasmic nucleotidyltransferases3, 23. The most 

common NTA events are poly-uridylation and poly-adenylation, which have been reported to decrease 

stability and activity, respectively2, 3, 21, 23. In our analysis, all sample types were found to contain a 

substantial fraction of miRNAs that were modified with NTAs (17-32%) (Fig.S2C). Contrary to what was 

observed for canonical miRNAs and 5’ isomiRs, APOB particles contained significantly more miRNAs 

with NTAs than liver samples (Figs.S2B-C). A previous study reported that miRNA poly-uridylation 

(NTA-U) was significantly increased on extracellular miRNAs released in exosomes, whereas miRNA 

poly-adenylation (NTA-A) was associated with cellular retention24. To determine if lipoproteins and/or 

biofluids are similarly enriched with NTA-U, NTA patterns were compared between groups, and we 

found that HDL and APOB (WT mice) were indeed significantly enriched with NTA-U compared to liver 

samples which were enriched with NTA-A (Fig.2F). Nonetheless, miRNAs in bile and urine from WT 

mice were not enriched with NTA-U (Fig.2F). Collectively, these results further demonstrate that 

miRNAs on lipoproteins, particularly APOB particles, are distinct for many features from hepatic 

miRNAs, including 5’ isomiRs and 3’ NTAs, and the TIGER analysis pipeline aided in these findings. 
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Lipoproteins transport many classes of host sRNAs 

Most, if not all, non-coding RNAs are processed to smaller fragments creating an enormously diverse 

pool of sRNAs in cells and extracellular fluids9. To determine if HDL and APOB particles also transport 

non-miRNA sRNAs and to compare annotated host sRNAs across sample types, reads were aligned to 

the host (mouse) genome, as well as to mature transcripts for specific classes of RNAs with genes 

harboring introns, e.g tRNAs and rRNAs. The largest class of host sRNAs detected in livers was rDRs 

42-45 nts in length (Figs.3A,B). rDRs were also present on HDL and APOB particles; however, their 

lengths were variable (Figs.3A,C,D). We also detected snoDRs (57-64 nts in length) in livers; however, 

snoDRs were largely absent from lipoproteins and biofluids, suggesting that the liver and other tissues 

may not export this class of sRNAs to lipoproteins or into bile or urine (Figs.3A-F). Both lipoproteins 

and biofluids contained tDRs 28-36 nts in length, which suggests that these reads are likely tRNA-

derived halves (tRHs), a sub-class of tDRs approximately 31-35 nts in length (Figs.3A,C,D)42, 47. Most 

tDRs on lipoproteins and in biofluids aligned to the 5’ halves of parent tRNAs, particularly anti-codons 

representing glutamate (GluCTC), glycine (GlyGCC), aspartate (AspGTC), and valine (ValCAC) 

(Figs.4A,S3). Strikingly, 68.9% of tDR reads on WT HDL and APOB particles aligned to the parent 

tRNA GluCTC (Figs.4A,S4A,B). At the parent tRNA level, tDR signatures demonstrated considerable 

overlap of all groups by PCoA (Fig.4B). Nevertheless, at the fragment level, lipoprotein tDR signatures 

were demarcated from livers and biofluids (Fig.4C). PERMANOVA analysis found that lipoprotein and 

biofluids were significantly distinct from liver signatures at the fragment level: WT APOB (F=5.32, p-

0.001), HDL (F=2.94, p=0.014), bile (F=10.22, p=0.001), and urine (F=7.08, p=0.001) (Table S2). 

Hierarchical clustering and correlation analyses further supports that individual tDR fragments, not 

parent tRNAs, define tDR profiles across sample types (Figs.S5A-B). Most interestingly, this observed 

pattern of overlap at the parent level and definition at the fragment level was consistent for other host 

sRNAs, including rDRs and snDRs (Figs.S5C-F,S6A-F, Table S2). 
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To validate candidate tDRs on lipoproteins and in biofluids that were identified by sRNA-seq, real-

time PCR using custom locked-nucleic acid (LNA)-based assays (Exiqon) were completed. Both tDR-

GluCTC (38 nts in length) and tDR-GlyGCC (32 nts in length) were confirmed to be highly-abundant on 

lipoproteins; however, they were also readily detected livers, bile, and urine, but not detected in the 

negative control (buffer) solution used to isolate the lipoproteins (Fig.4D,E). Furthermore, real-time 

PCR was used to validate other sRNA candidates on lipoproteins representing other classes of RNAs. 

For example, the abundance of two distinct snDRs and a candidate sRNA cleaved from a ribozyme 

(miscRNA) were detected by PCR on lipoproteins similarly to a previously reported miRNA on 

lipoproteins (miR-223-3p) (Figs.S7A-D). Although these PCR assays detected single products, as 

determined by melting curves, sRNA-seq datasets contained many sequences that were very similar to 

the candidate sRNAs. Moreover, although the general, regional cleavage patterns for specific parent 

RNAs were consistent for tRNAs (Fig.S3) and snRNAs (Fig.S8), specific fragmentation and exact 

sRNA sequences were variable across samples, e.g. lengths of related sRNAs. Therefore, to compare 

between samples within a group, correlations were performed at both the parent and fragment levels. 

For tDRs (Fig.4F) and other RNA classes (Fig.S9), we found high correlation between samples at the 

parent level and poor correlation across samples at the fragment (read) level for lipoproteins and 

biofluids. For liver samples, high-correlation was detected for sRNAs at both the parent and fragment 

levels (Figs.4F,S9). These results suggest that, although individual fragments define sRNA classes 

across groups, further investigation of individual candidate sRNAs (fragments) may be challenging due 

to variability across samples. 

 

Lipoproteins are highly-enriched in exogenous sRNAs  

Reads aligning to non-human transcripts have previously been detected in human plasma samples12; 

however, it is unknown which carriers transport non-host sRNAs in host circulation. To determine if 
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lipoproteins carry exogenous bacterial and fungal sRNAs, reads >20 nts in length that failed to map to 

the host (mouse) genome were aligned in parallel to A.) Annotated non-host transcripts curated in 

GtRNAdb (tRNA), SILVA (rRNA), and miRBase (miRNA) databases, and B.) Genomes of bacteria and 

fungi present in the microbiome (human microbiome, HMB) or environment (ENV) (Fig.1). To identify 

exogenous miRNAs (xenomiRs), reads were aligned with perfect match (PM) to non-host mature 

miRNA sequences (miRBase.org); however, only a few xenomiRs were detected on mouse lipoproteins 

or in liver, bile, or urine datasets (Table S3). To determine the levels of exogenous tDRs on 

lipoproteins, non-host reads were aligned to parent tRNAs curated in the GtRNAdb library. Both HDL 

and APOB particles were found to transport a diverse set of exogenous tDRs across multiple kingdoms, 

which accounted for approximately 2.5% of the sRNAs (total reads) circulating on each lipoprotein class 

(Figs.5A, Table S4). Based normalized read counts, bacteria was the most represented kingdom, and 

the bacterial species with the highest normalized read counts were Pseudomonas fluorescens, 

Pseudomonas aeruginosa, and Acinetobacter baumanni (Fig.S10A,B). The parent tRNA (amino acid 

anti-codons) with the highest normalized read counts were fMetCAT, GluTTC, AspGTG, and AsnGTT 

(Figs.S10C, Table S4). Positional coverage analyses of bacterial tDRs found that bacterial tDRs 

aligned to both the 5’ and 3’ halves of parent tRNAs (Figs.5B,S11,S12), which differed from host tDRs 

which predominantly aligned to the 5’ halves of parent tRNAs (Figs.4A,S3). To determine if lipoproteins 

also transport exogenous rDRs, non-host reads were also aligned to known rRNA transcripts curated in 

the SILVA database, and remarkably, reads aligned to non-host rDRs accounted for approximately 

25% of the total reads in each of the HDL and APOB datasets (Figs.5C, Table S5). Strikingly, rDRs 

from every taxonomical kingdom were present on lipoproteins; however, rDRs from bacteria were the 

most abundant on HDL and APOB particles (Figs.5C,S13, Table S5). Although the overall content of 

non-host sRNAs on HDL and APOB particles were similar, HDL were found to be enriched for shorter 

length non-host tDRs and rDRs compared to APOB particles (Figs.5D,E). Collectively, these results 

suggest that lipoproteins transport exogenous tDR and rDRs, most of which are likely bacterial in origin. 
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Aligning reads to transcripts (databases) is biased in that only known (annotated) RNAs are 

queried, and thus, limits the power of discovery in sRNA datasets as many non-host genomes are 

poorly annotated. Furthermore, non-host reads on lipoproteins, and in biological fluids, are not likely to 

be restricted to only tRNAs and rRNAs. To overcome these limitations and comprehensively analyze 

exogenous sRNAs on lipoproteins and in biofluids and livers, non-host reads were also aligned to 

bacterial genomes within the NIH HMB Project (hmpdacc.org). The HMB database currently holds 

3,055 genomes, many of which are highly similar; therefore, to address potential multi-mapping issues, 

we collapsed these species into 206 representative genomes that spanned 11 phyla and accounted for 

every genera within the HMB. Alignment of non-host reads to HMB genomes resulted identified many 

bacterial sRNAs on lipoproteins and in biofluids, reported as summarized genome read counts per 

million total reads (RPM) (Figs.S14A-B, Table S6). The HMB genomes with the largest read counts for 

sRNAs on HDL from WT mice were Pseudomonas 2 1 26 uid40037, Micrococcus luteus SK58 

uid34071, Acinetobacter ATCC 27244 uid30949 (Figs.S14A-B, Table S6). To perform a taxonomical 

analysis of lipoprotein-associated bacterial sRNAs, circular tree maps were generated. As shown by 

concentric rings in the tree maps, the vast majority of both HDL and APOB bacterial reads mapped to 

the Proteobacteria phylum (green), followed by the Actinobacteria (blue) and Firmicutes (yellow) 

phylums (Figs.6A,S15A). Within the Proteobacteria phylum, a majority of the reads aligned to genomes 

in the Gammaproteobacteria class, particularly the orders of Pseudomonadales and Enterobacteriales, 

and the family of Enterobacteriaceae. Among individual genera (inner-most circles), counts for the 

genus Pseudomonas (Proteobacteria phylum) were consistently the high, as were Micrococcus 

(Actinobacteria phylum) (Figs.6A,S15A). 

We also observed that many reads that aligned to bacterial rRNA transcripts, failed to align to HMB 

genomes, thus suggesting that these reads may be derived from bacteria not presently curated in the 

HMB database. Using BLASTn (NCBI), many highly abundant reads were found to be perfect matches 

to genomes of bacterial species present in the environment, e.g. soil bacteria. Therefore, to increase 
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our bacterial coverage, 167 additional bacterial genomes representing non-redundant genera of 8 

taxonomical phyla were added, termed here as environmental bacteria (ENV). The bacterial species 

with the most ENV genome counts for lipoproteins from WT mice were Pseudomonas fluorescens, 

Pseudomonas putida, Propionibacterium acnes, and Stenotrophomonas maltophilia (Figs.S14C-

D,S15B-C, Table S7). Although many bacterial reads (sequences) were shared between HMB and 

ENV bacterial genomes, greater than half of all non-host (genome) bacterial reads could be assigned 

exclusively to only one database, suggesting a complex origin for bacterial sRNAs associated with 

lipoproteins (Fig.S16). Although most reads identified through BLASTn analysis were bacterial, we also 

identified several fungal species, including the genus Fusarium. The highest genome counts for fungal 

species on WT HDL were Fusarium oxysporum, Histoplasma capsulatum, Cryptococcus neoformans 

(Figs.S17A-B, Table S8). 

To assess bacterial sRNAs across samples, non-host sRNAs (HMB and ENV) signatures on 

lipoproteins were correlated (Spearman) between samples at both the genome and fragment levels. 

For both databases, we identified high correlations between lipoprotein samples at the genome level 

and low correlations at the fragment level (Figs.6B,C). These data suggest that similar bacteria are 

contributing sRNAs to circulating lipoproteins across all mice; however, these bacteria are likely 

contributing different sRNAs (sequences) to HDL and APOB particles in different mice. Most 

interestingly, a key difference between HDL and APOB bacterial sRNAs was length, as HDL were 

enriched for shorter sRNAs than APOB particles; this pattern was evident for both HMB and ENV 

sRNAs (Figs.6D,E). A similar trend was observed for reads mapping to fungal genomes (Fig.S18). For 

host sRNAs, HDL and APOB particles were found to transport very similar profiles and the lipoprotein 

samples clustered together with considerable overlap at both the parent and fragment levels 

(Figs.2C,S6). To determine if HDL and APOB particles transport different exogenous (non-host) sRNA 

signatures, PCoA and PERMANOVA analyses were completed. At the genome level, the HDL and 

APOB particles were indistinguishable for HMB and ENV bacteria (Figs.S19A-B). At the fragment level, 
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HDL and APOB profiles clustered separately and HDL and APOB profiles were significantly distinct 

(F=1.7, p=0.048) for ENV bacterial sRNAs by PERMANOVA (Figs.S19C-D, Table S9) 

The lack of strong correlation at the fragment level for non-host sRNAs is likely due to differences in 

read lengths and sequences (e.g. terminal nts) for similar reads, and thus variable read counts across 

samples. These observations present unique challenges to study individual sRNAs for biological 

function; however, many candidate sRNAs do exist within the very large pool of non-host reads. Real-

time PCR was used to quantify candidate bacterial sRNAs on lipoproteins, and we confirmed that HDL 

and APOB particles transport a 22 nt rDR (5’-AGAGAACUCGGGUGAAGGAACU-3’) likely from 

bacteria in the Proteobacteria phyla (Figs.6F,S20). Likewise, HDL and APOB were also found to 

transport another rDR in the Proteobacteria phyla, likely from the order of Burkholderiales (33 nts, 5’-

GACCAGGACGUUGAUAGGCUGGGUGUGGAAGUG-3’) (Figs.6G,S21). In addition to bacterial 

sRNAs, real-time PCR was also used to confirm that lipoproteins also transport a fungal rDR from the 

Verticillium genus (21 nts 5’-UGGGUGUGACGGGGAAGCAGG-3’) (Fig.S22). Collectively, these 

results suggest that HDL and APOB transport non-host sRNAs derived from bacterial and fungal 

sources in the microbiome and environment, and that analysis of lipoprotein sRNA-seq data should 

include their identification and quantification. 

 

Class-Independent Analysis of Lipoprotein sRNAs 

To determine which RNA class and species contribute to the most abundant sRNAs in each sample 

type, the top 100 ranked reads for each sample were filtered and redundant reads were removed for 

each group. The top abundant sequences were then linked to reads identified in the host and non-host 

modules. For liver samples, the top ranked reads were entirely host sRNAs (Fig.7A). Although 

lipoproteins likely transport more non-host sRNAs than host sRNAs, circos plots demonstrated that the 

top most abundant reads on lipoproteins are comprised of both host and non-host sRNAs (Figs.7B,C). 
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The top ranked reads in urine samples were found to be mainly host sRNAs (tDRs); however, many 

links to exogenous bacterial sRNAs were identified (Fig.7D). For bile, the most abundant reads were 

entirely host sRNAs (Fig.7E). Nonetheless, some of the top ranked sequences were not identified 

through our host and non-host analyses; therefore, we sought to further analyze lipoproteins sRNAs 

using a class-independent strategy. 

Many sRNA-seq data analysis pipelines are limited to only miRNAs and most of the recent 

advances in sRNA-seq data analysis for other host RNAs are designed to quantify and categorize 

sRNAs based on the contributing parent RNA class. However, the biological functions of individual 

sRNAs, although currently unknown, are not likely to be conferred by specific groupings or 

classifications based on the parent RNAs. Their biological roles and activities are most likely to be 

influenced by their individual sequence, length, base chemistry, terminal nts, and most importantly, 

abundance. Furthermore, exRNAs are a new class of disease biomarkers and their value as 

representative signals is not solely dependent on parent RNAs, if at all. Therefore, a key advantage of 

the TIGER pipeline is the ability to assess the most abundant reads in sRNA datasets independent of 

parent RNA class and/or contributing species (host or non-host). To assess the similarity of profiles 

between groups for the top ranked sRNAs, hierarchical clustering and correlations were performed, and 

lipoproteins were highly correlated between groups, and HDL and APOB profiles clustered separately 

from livers, bile, and urine (Fig.S23). These observations were confirmed by PCoA, as lipoprotein 

samples overlapped and clustered together, separately from bile, urine and liver samples (Fig.7F). 

PERMANOVA analysis found that APOB (F=19.56, p=0.002), HDL (F=15.71, p=0.001), bile (F=49.74, 

p=0.003), and urine (F=22.07, p=0.002) were significantly distinct from liver profiles (Table S10). Most 

interestingly, every group was significantly distinct from each other based on the most abundant sRNAs 

(Top 100) in each WT group, as determined by PERMANOVA (Table S10). These results suggest that 

each sample type can be defined by their most abundant sRNAs independent of parent RNA class or 

contributing host or non-host species which is highly appropriate for the study of exRNAs.  
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Comparison of TIGER to Other Pipelines. 

To compare the TIGER pipeline to other sRNA-seq analysis software, APOB, HDL, and liver samples 

from WT mice were analyzed by Chimira5, Oasis11, ExceRpt13, and miRge10 software (Table S11). 

Although each pipeline is designed for different outputs, each can quantify host miRNAs for which we 

used to compare analyses, and we found that all the pipelines were comparable in their ability to 

quantify host canonical miRNAs for different sample types (Fig.24A) and the pipelines were highly 

correlated for miRNAs (Fig.S24B). Most available software for sRNA-seq data analysis are restricted to 

miRNAs or endogenous (host) sRNAs, including Chimira, Oasis, and miRge (Table S11). This may be 

suitable for liver samples (red circles), but HDL (blue circles) and APOB (green circles) samples remain 

largely unexplained using this approach, as demonstrated by ternary plots (Fig.8A). Incorporation of 

both endogenous and exogenous sRNAs, a key feature of the TIGER pipeline, is essential to studying 

HDL and APOB sRNAs, as this strategy accounts for more reads in the datasets, as depicted by the left 

shifts of blue and green circles in the ternary plot (Fig.8B). The main feature of the TIGER pipeline is 

the ability to explain a large amount of data in exRNA datasets, as demonstrated by the summary 

output Table S12. A key metric for comparing pipelines/software is the percent of assigned quality 

reads, i.e. the amount of (useable) information extracted from the data by the software. Remarkably, 

the TIGER pipeline accounted for 87.95% bile, 87.9% of liver, 85.3% urine, 71.5% HDL, and 62.2% 

APOB reads in WT mice (Fig.8C, Table S13). In comparison to other pipelines, that TIGER pipeline 

significantly increased the assignment % of total reads for HDL and APOB (Fig.8D). Remarkably, the 

TIGER pipeline also explained significantly more reads than Chimira, Oasis, and ExceRpt in liver 

datasets which contain a large fraction of host sRNAs (Fig.8D). Furthermore, after the TIGER pipeline 

aligns non-host reads to RNA transcripts in the databases and the different collections of bacterial and 

fungal genomes, the top 100 ranked sequences of the remaining unexplained reads are filtered and 

searched using BLASTn (Fig.1). This is an added feature of the TIGER pipeline that is designed to 
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identify the potential sources and species of non-host reads that were not accounted for by the initial 

alignment strategy. Collectively, the TIGER pipeline provides an opportunity to analyze sRNA-seq with 

increased depth and detail which is particularly suited for analysis of exRNA and sRNAs on 

lipoproteins. 

 

SR-BI Regulation of Lipoprotein sRNAs 

SR-BI is highly-expressed in the liver and plays a fundamental role in reverse cholesterol transport 

mediating hepatic uptake of HDL-cholesteryl esters and biliary cholesterol secretion25-27. Loss-of-

function variants in human SCARB1 (SR-BI) were associated with increased in circulating HDL-C 

levels28. Likewise, Scarb1 mutations in mice also resulted in increased HDL-C levels29. We have 

previously reported that HDL-delivery of miRNAs to hepatocytes requires SR-BI16. Based on these 

observations, SR-BI may regulate sRNA levels on lipoproteins and in liver and bile. To quantify the 

impact of SRBI-deficiency on exRNAs in vivo, host sRNAs were compared at both the parent and 

fragment levels. For miRNAs, loss of SR-BI in mice did not alter miRNA content in liver, urine, bile, or 

APOB particles at the parent level, and only one miRNA (mmu-miR-143-3p, 0.199-fold, adjp= 0.00042) 

was significantly altered in SR-BI KO mice compared to WT mice (Fig.9A, Table S13), and the overall 

miRNA profiles were highly correlated between genotypes for all groups (Fig.2D). To determine if SR-

BI regulates distinct features of miRNAs, 5’ isomiRs or 3’ NTA counts were compared between 

genotypes, and SR-BI-deficiency did not alter miRNA isomiRs or NTA counts for HDL, APOB, liver, or 

bile (Figs.S2B-C). Nevertheless, SR-BI may regulate urinary miRNA NTAs as SR-BI KO mice were 

found to have a significant increase in urinary miRNA NTAs (p<0.001) compared to WT mice 

(Fig.S2C). Moreover, we found a significant (p=0.0021) change in NTA-A/U ratios in urine from SR-BI 

KO mice compared to WT mice, as urine samples from WT mice were enriched for poly-adenylated 

miRNAs (NTA-A) and samples from SRBI KO mice were enriched for poly-uridylated miRNAs (NTA-U) 

(Fig.2F).  
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To determine if SR-BI regulates non-miRNA host sRNAs at the parent level, differential expression 

analyses were performed, and we identified a limited number of significantly altered host sRNAs by 

parent in SR-BI KO mice compared to WT mice (Table S13). For APOB, 1 tDR (tDR-AsnGTT, 14.09-

fold, adjp=1.22E-02) and 3 miscRNAs (Vaultrc5, 6.02-fold, adjp=5.70E-05; lincDR-Malat1, 11.25-fold, 

adjp=4.61E-02) were significantly increased on APOB particles (Fig.S25, Table S13). Likewise, 1 

snoDR (Snord22, 9.23-fold, adjp=2.40E-02) and 2 snDRs (Gm25587, 3.54-fold, adjp=2.92E-02; 

Gm22866, 3.81-fold, adjp=2.92E-02) were significantly increased on HDL from SR-BI KO mice 

compared to WT mice (Figs.9,S25, Table S13). For liver, 1 snDR (Snord64, 2.26-fold, adjp=2.23E-02) 

was significantly increased; and 1 snoDR (Gm22270, 0.39-fold, adjp=8.04E-03), 1 snDR (Gm23686, 

0.43-fold, adjp=2.38E-02), and 1 miscRNA (lncDR-Gm26904, 0.31-fold, adjp=1.61E-02) were 

significantly decreased in SR-BI KO mice (Figs.9,S25, Table S13). For biofluids, 1 rDR (n-R5s2, 0.19-

fold, adjp=3.28E-02) was found to be significantly decreased in urine samples and 1 snDR (Gm24621, 

4.95-fold, 2.99E-02) was found to be significantly increased in bile from SR-BI KO mice compared to 

WT mice (Figs.9,S25, Table S13). 

To perform differential expression analysis at the parent level, many closely related sequences 

were grouped together to summarize parent RNA counts. Nonetheless, SR-BI may regulate sRNA flux 

between cells and extracellular carriers; therefore, the impact of SR-BI-deficiency on lipoprotein sRNAs 

may not be evident by grouping individual sRNAs. Therefore, to determine if SR-BI regulates lipoprotein 

sRNAs, or hepatic and biliary sRNAs, host sRNAs were filtered based on parent RNA mapping and 

then analyzed at the individual fragment level for differential expression. Strikingly, the abundance of 

many individual fragments were found to be significantly altered in SR-BI KO mice compared to WT 

mice and distinct patterns were detected (Figs.9,S25). For example, SR-BI-deficiency resulted in a 

significant decrease to 21 individual miRNA fragments (Fig.9, Table S14). Conversely, we found 57 

snDR fragments that were significantly increased on HDL from SR-BI KO mice compared to WT mice; 

many of these fragments are very similar in sequence and length (Fig.9, Table S14). Likewise, we 
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found 8 HDL-rDR fragments that were significantly increased in SR-BI KO mice (Fig.9, Table S14). In 

livers, we found 14 snDRs and 16 rDRs that were significantly increased at the fragment level; 

however, these were not identical sequences to fragments found to be decreased on HDL for these 

classes (Fig.9, Table S14). These results suggest that SR-BI may play a limited role in regulating 

sRNAs circulating on HDL and in livers. Nevertheless, these results strongly support the need to 

analyze host sRNAs not just at the parent level, but also the fragment level, as many critical 

observations may be lost in the grouping of similar sequences for parent analysis.  

In addition to the liver, SR-BI is also expressed in the intestine and commensal bacteria likely 

regulate SR-BI, as both intestinal and hepatic SR-BI expression was reported to be increased in germ-

free mice compared to control specific pathogen-free mice30. Nevertheless, SR-BI regulation the gut 

microbiome is unclear and the role of SR-BI in regulating circulating non-host bacterial sRNAs on 

lipoproteins is completely unknown. To determine if SR-BI contributes to exogenous sRNAs on 

lipoproteins and in biofluids, differential expression analysis was performed at both the genome and 

fragment levels. Only one bacterial species was found to be significantly altered in urine between SR-BI 

KO and WT mice, as determined by genome counts (Fig.S26A, Table S16). Likewise, only 3 individual 

sRNAs that aligned to bacterial genomes in the environment were significantly affected in by SR-BI-

deficiency in mice; one each in APOB, bile, and urine samples (Fig.S26B, Table S17). These results 

suggest that SR-BI does not likely regulate non-host bacterial sRNAs on lipoproteins or in biofluids. 

Conversely, we found that SR-BI-deficiency resulted in a significant increase in all fungal genome 

counts in SR-BI KO mice compared to WT mice (Fig.S26A, Table S16). These observations were not 

likely the result of a few reads that were shared across all fungal genomes as we failed to find any 

individual fungal sRNAs that were significantly affected by loss of SR-BI (Fig.S26B). To determine if 

SR-BI-deficiency in mice results in changes to the most abundant sequences in each group, 

independent of RNA class or genotype, differential expression analysis was performed for the top 100 

reads filtered in the class-independent analysis, as described above. For APOB and HDL, 8-9 highly 
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abundant reads were found to be significantly altered in SR-BI KO mice compared to WT mice; 

however, we failed to find any significant changes in the expression of the most abundant reads in liver, 

bile, and urine samples (Fig.S27, Table S17). 

 

Discussion 

High-throughput sequencing of sRNAs has revealed a complex landscape of various types of sRNAs in 

cells and extracellular fluids, many of which have not been studied. Currently, there is a great need for 

tools that can extract novel sRNAs and distinct features from sequencing datasets. Previously, we have 

reported that HDL and LDL transport specific miRNAs, as quantified by real-time PCR-based TaqMan 

arrays16. Here, we used sRNA-seq and the TIGER pipeline to profile all sRNA classes on HDL and 

APOB particles and compared these profiles to liver, bile, and urine. Using this approach, we found that 

HDL and APOB particles transport a wide-variety of host sRNAs, including tDRs, rDRs, snDRs, and 

many other miscRNAs. Moreover, we found that exRNAs on lipoproteins harbored unique features, e.g. 

enrichment of poly-uridylation NTA events on miRNAs and discrete length distributions for HDL and 

APOB particles. Moreover, lipoproteins were found to transport a multitude of non-host sRNAs from 

exogenous bacterial and fungal species likely the microbiome and environment. Many of these non-

host sRNAs were found to be likely processed from parent tRNAs and rRNAs. Using TIGER, we were 

also able to define each sample type by their most abundant sRNAs independent of class or species 

which is particularly suited for the study of exRNA. Furthermore, the TIGER pipeline allows for the 

quantification and differential expression analysis of sRNAs at both the parent and fragment levels. This 

strategy allowed our determination that SR-BI has a limited role in regulating cellular and extracellular 

sRNAs, which would not have been feasible with other analysis strategies focused solely on the parent 

RNA organization. Overall, this study demonstrates the power of expanding sRNA-seq analysis beyond 

canonical miRNAs and exploring the full breadth of host and non-host sRNAs in every dataset. 
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Although many researchers are using high-throughput sequencing to quantify sRNAs, many 

investigators do not take advantage of the enormous amount of information contained within sRNA-seq 

datasets. The mammalian transcriptome is immensely diverse and complex, and thus, requires new 

analytical tools and novel strategies to address the many distinct features of different sRNA classes 

and contributing species7, 9, 31. The TIGER pipeline is designed to incorporate both host and non-host 

sRNA analysis into a modular design that allows for custom prioritization and parallel alignments to 

both genomes and transcripts (libraries), and organizes data at the parent RNA, fragment, and class-

independent levels. The 7 modules include preprocessing, host genome and database, non-host 

library, non-host genome, class-independent, summary, and unmapped. For host miRNAs, we 

expanded miRNA analysis to include 5’ and 3’ terminal isomiRs and 3’ NTAs. Furthermore, we 

extended our analysis of annotated host sRNAs to include tDRs, rDRs, snDRs, snoDRs, lncDRs, and 

many other less studied classes, e.g. yDRs. A key feature of the TIGER pipeline is the alignment 

strategy for host tDRs and rDRs which includes mapping to the host genome and mature transcripts in 

corresponding databases, which overcomes specific issues, e.g. introns32, 33. Another key advance in 

our pipeline is the parallel analysis of host sRNAs at the parent and individual fragment levels. 

Organization of sRNAs at the parent level allows for categorical analysis and positional coverage 

alignments which provides information on parent RNA processing (cleavage). Conversely, analysis of 

sRNAs at the individual sequence (fragment) level aids biomarker discovery and is critical to 

determining biological functions. Collectively, these features represent a substantial advance for the 

analysis of endogenous host sRNAs.  

The TIGER pipeline allowed for extensive comparisons between lipoproteins, biofluids, and liver 

samples across many different levels and features. We found many examples where sRNAs on 

lipoproteins were different than sRNAs in liver, bile, or urine. For example, host sRNAs on lipoproteins 

differ dramatically from liver sRNAs based on class, as demonstrated by hierarchical clustering and 

PCoA plots for every RNA class at the individual fragment level. Notably, lipoproteins are also distinct 
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from liver profiles independent of class organization, as observed within the class-independent module 

in the TIGER pipeline. Nonetheless, the breakdown of sRNA classes on lipoproteins is different than 

liver, bile, and urine. For example, although lipoproteins transport miRNAs, the fraction of miRNAs per 

total reads (2.2% APOB, 6.2% HDL) was less than what was observed for liver samples (16.2%). The 

distribution of sRNA lengths within each class likely contributes to the overall differences between 

sRNAs in lipoproteins, livers, and biofluids. Lipoproteins were found to transport tDRs 30-36 nts in 

length, likely tRHs, which were only a minor fraction of total reads in liver samples. Conversely, sRNAs 

in bile and urine sRNA were predominantly tDRs. All sample types contained rDRs; however, liver rDRs 

were primarily 42-46 nts in length, whereas rDRs in lipoproteins and biofluids were variable in length. 

These results suggest that rRNA processing in the liver may be highly-regulated to produce these 

specific length fragments. Another observation was that liver samples contained snoDRs >50 nts in 

length which were largely absent from HDL or APOB profiles. These results suggest that snoDRs are 

likely retained in cells and not exported to lipoproteins, bile, or urine. In addition to differences in sRNA 

classes and length, liver samples were found to have more miRNA 5’ isomiRs than APOB samples, but 

less 3’ NTA events. Moreover, liver miRNAs were heavily poly-adenylated (NTA-A), where miRNAs on 

HDL and APOB were enriched for poly-uridylation (NTA-U) events. These results suggest that miRNAs 

on HDL and APOB particles are distinct from liver miRNAs and may be evidence of partitioning 

miRNAs between cellular and extracellular pools based on NTAs. In comparing lipoproteins to other 

sample types, we found evidence that suggests studying extracellular non-miRNAs may be more 

challenging than previous research into miRNAs, as non-miRNAs displayed large variability in 

sequences on lipoproteins and biofluids. For example, all samples within groups were highly correlated 

when compared at the parent RNA level; however, there is only a limited number of parent RNAs to 

align individual sRNAs to for each RNA class. When samples were compared for individual fragments, 

we found low correlations amongst samples within each group for lipoproteins and biofluids. This was 

not the case for liver where all RNA classes were highly correlated at both the parent and fragment 

levels. In comparison, miRNAs were modestly to highly correlated in both lipoprotein and biofluid 
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datasets at the parent and fragment levels. These results are likely due to precise cleavage and 

processing for miRNAs and less precision for non-miRNA sRNAs. The observed high variability of 

sequences for exRNAs, i.e. sRNAs on lipoproteins and in biofluids, may be due to the contribution of 

many heterogeneous cell-types to these compartments. Moreover, sRNAs on lipoproteins may 

encounter further nucleotide hydrolysis from circulating RNases, thus producing variable sRNA 

sequences (lengths) between samples. Most interestingly, sRNA length was a key difference between 

HDL and APOB samples, as shorter length fragments were enriched on HDL compared to APOB 

particles for tDRs and rDRs. This may be due to differences in lipoprotein particle sizes -- HDL is 

smaller in diameter (12 nm) than APOB particles (22-70 nm) -- and particle size may confer protection 

from ribonucleases. The unique distribution of lengths between HDL and APOB particles was also 

evident for non-host bacterial and fungal sRNAs. 

A critical difference between cellular RNA and exRNA profiles is the presence of non-host sRNAs 

present in exRNA samples12, 34, 35. ExRNAs hold great potential as disease biomarkers, indicators of 

specific cell phenotypes and damage, intercellular communication signals, and drug targets for future 

therapies36-38. Current sRNA-seq analysis pipelines are not particularly suitable for the study of exRNAs 

as many are restricted to only canonical miRNAs, or a limited number of host sRNAs, and lack analysis 

of non-host sRNAs which will likely be a major focus of future investigations. Based on a previous study 

reporting that bacterial sRNAs are present in human plasma, the TIGER pipeline was designed to 

identify exogenous bacterial and fungal sRNAs. Strikingly, we found that the majority of sRNAs on HDL 

and APOB particles are likely from bacteria present in the microbiome and environment. This was 

achieved through mapping non-host reads to bacterial and fungal genomes, as well as to mature 

transcripts of non-host miRNAs, tDRs, and rDRs across all kingdoms. Exogenous bacterial and fungal 

sRNAs on lipoproteins are not likely contamination products due to several observations. First, we were 

not able to detect candidate bacterial sRNAs in control buffer used to isolate the lipoproteins by real-

time PCR. Moreover, reads aligning to bacterial and fungal genomes were not likely contamination of 
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reagents used for sequencing preparation as most of these reads were not present in liver or bile 

datasets. Next, we found very low correlation between lipoprotein samples for non-host bacterial and 

fungal sRNAs suggesting that there was not a common source of bacterial or fungal RNA in the 

preparation reagents. In addition, we found that bacterial and fungal sRNAs on HDL were enriched for 

short length sRNAs as compared to APOB particles, a pattern that was also observed for host sRNAs, 

thus supporting a common mechanism of loading or association for sRNAs that is different for HDL and 

APOB particles. Moreover, we found that non-host bacterial sRNA profiles were distinct for HDL and 

APOB as demonstrated by PCoA and PERMANOVA. Collectively, these results strongly support that 

HDL and APOB particles transport distinct sets of exogenous (non-host) sRNAs that are not likely due 

to bacterial and fungal contamination or foreign RNA in reagents or the research environment. 

Currently, the biological functions of non-host sRNAs in host circulation are unknown; however, 

research into potential cross-kingdom gene regulation has been proposed, albeit met with controversy. 

For example, sRNA-seq has been applied to study dietary miRNAs (xenomiRs), exogenous miRNAs 

absorbed through the gut and proposed to regulate host gene expression and phenotype39. Studies 

from at least two independent labs have provided evidence for such cross-kingdom gene regulatory 

networks39-41; however, other groups have argued against these claims42-45. Most of the investigation 

into exogenous sRNAs regulating host gene expression is limited to known plant or animal miRNAs, 

and lost in this controversy is the potential for non-miRNA sRNAs mediating cross-kingdom gene 

regulation. In fact, there have been reports of exogenous non-miRNA sRNAs stably circulating in 

human plasma that are likely derived from organisms across several kingdoms12, 46, 47. If exogenous 

sRNAs, e.g. bacterial tDRs and rDRs, do indeed regulate gene expression through post-transcriptional 

or other mechanisms in human cells, this would represent an important link between humans and their 

environment at the gene regulation level. Moreover, this would suggest that the initial studies of dietary 

xenomiRs are thus, very limited in their scope by only studying annotated miRNAs. Nevertheless, 

cross-kingdom gene regulation is not a new concept as plants, bacteria, and fungi have been 
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extensively studied for their ability to utilize both miRNAs and non-miRNA sRNAs to regulate gene 

expression in cross-kingdom networks48-50.  

The inclusion of non-host reads in our analysis greatly increased our ability to account for reads in 

lipoprotein datasets. Nevertheless, there are many exogenous sRNAs in biological fluids that are 

neither processed from annotated transcripts in databases nor originate from species currently 

represented in the HMB project. Therefore, another key feature of the TIGER pipeline is the ability to 

analyze data independent of species identification or library annotation. This is critically important for 

the study of exRNAs as non-host sRNAs in these samples are very diverse and many of the most 

abundant sRNAs are not processed from transcripts in RNA databases or originate from species 

currently collected in the HMB database. As such, class-independent analysis extracts more data and 

eliminates a major barrier to the discovery of biomarkers and intercellular communication signals. 

Notably, class-independent analysis of exRNAs captures sRNA sequence, length, and abundance 

which are the important defining characteristics of biomarkers in extracellular fluids and bioactivity in 

recipient cells. The TIGER pipeline also advances sRNA-seq analysis through the incorporation of high-

end comparative analyses and data visualizations, including PCoA, PERMANOVA, hierarchical 

clustering and correlations, positional coverage maps, circular tree maps, circos linkage maps, and 

ternary plots. The TIGER pipeline addresses many issues in sRNA-seq analysis; however, we have 

identified a few limitations to the software. Although the TIGER pipeline is designed to quantify 5’ and 3’ 

variants, it does not currently identify internal modifications, ADAR editing events, or single nucleotide 

polymorphisms. This feature would aid in the study of tDRs, which are heavily modified, and would 

potentially improve analysis of non-host bacterial sRNAs where reference genomes may be lacking. 

The ability to quantify internal variance is a key feature of Chimira, as well as other software, including 

UEA workbench51, and MAGI52. Furthermore, the TIGER pipeline does not include the analysis of PIWI-

Interacting RNAs (piRNA) and a few other sRNAs, including promoter-associated sRNAs, which 

present unique challenges in alignments, quantification, and nomenclature53. Future versions of the 
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pipeline will include less studied sRNA classes and the ability to discover new host sRNAs, as the 

current pipeline does not have the feature to identify novel miRNAs based on adjacent genomic 

sequences which is an output of other pipelines54, 55. Despite these limitations, the TIGER pipeline sets 

forth many improvements to sRNA-seq analysis.  

Here, we demonstrated the advanced features of the TIGER pipeline for sRNA-seq analysis to 

determine SR-BI’s regulatory role of exRNA. SR-BI is a bidirectional transporter of cholesterol and 

HDL’s primary receptor56. Furthermore, SR-BI is also a strong contributor of biliary cholesterol 

secretion27. The ability of the TIGER pipeline to analyze sRNAs at the parent and fragment levels 

allowed for us to determine that the impact of SR-BI-deficiency occurs at the fragment level, but not the 

parent level. However, due to the number of individual reads, the chances of observing false positives 

are much greater at the fragment level than the parent level. Results suggest that SR-BI likely does not 

regulate the levels of extracellular miRNAs circulating on lipoproteins, in liver or bile when organized at 

the parent level. Nevertheless, loss of SR-BI resulted in a significant decrease of individual fragments 

that aligned to miRNA coordinates. SR-BI-deficiency in mice also resulted in a significant increase in 

fragments that aligned to parent snRNAs and rRNAs; however, these changes were not inversely 

altered in liver or other sample types suggesting that these changes on HDL were not likely due to 

inhibition of a potential systemic clearance mechanism for lipoprotein sRNAs, e.g. HDL-liver-bile. Most 

interestingly, SR-BI-deficiency in mice resulted in changes to miRNAs in urine. We found that urine 

samples from SR-BI KO mice contained a significant increase in miRNA 3’ NTA events and a 

concomitant increase in NTA-U/A ratio in absence of a significant increase in total miRNA counts. 

These results suggest that SR-BI specifically inhibits the secretion of miRNAs harboring 3’ poly-

uridylation to urine. To determine if SR-BI regulates exogenous sRNAs on lipoproteins, liver or 

biofluids, differential expression analyses were performed for the different non-host sRNA groupings 

and features. A previous report has demonstrated that SR-BI expression in the intestine and liver may 

be inhibited be commensal bacteria, as SR-BI expression was demonstrated to be increased in germ-
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free mice30; however, it is currently unknown if SR-BI regulates bacteria in the microbiome. Results 

from our study suggest that SR-BI does not regulate bacterial sRNAs on lipoproteins, liver, or biofluids. 

Nevertheless, SR-BI may regulate fungal sRNAs in bile, as genome counts for all fungal species 

analyzed were significantly increased in bile from SR-BI KO mice compared to WT mice. 

In summary, the value of any sequencing data analysis pipeline, ultimately, is the ability to extract 

the most useable information from the generated data; therefore, the goal of the TIGER pipeline was to 

assess both host and non-host sRNAs which greatly improved the ability to account for more reads in 

our sRNA-seq datasets, particularly exRNAs. The TIGER pipeline also advances the field in its ability to 

analyze host sRNAs at the parent and fragment levels and non-host sRNAs at the genome and 

fragment levels. This approach may be critical to discovering novel biomarkers and intercellular 

communication signals that would be masked by analyzing the sRNAs by their parent RNAs and 

nomenclature. Likewise, the TIGER pipeline analyzes sRNAs by class and species (genome) as well as 

class-independent approaches. This is very important for exRNAs where the contributing exogenous 

species for sRNAs may not be curated in bacterial or fungal genome databases, or the contributing 

parent RNA may not be annotated for the host genome. The TIGER pipeline is particularly suited for 

lipoprotein sRNAs which are predominantly rRNA-derived fragments of bacterial origin. Using TIGER, 

we were able to make critical observations comparing lipoprotein sRNAs to liver and biofluids that 

would not be observed by existing pipelines. Therefore, this tool is well-suited for the analysis of 

exRNA. 

 

Materials and Methods: 

Animal Studies: Plasma, basal bile, urine, and livers were collected from wild-type (WT) and SR-BI-

deficient (B6;129S2-Scarb1tm1Kri/J, SR-BI KO) mice, as previously described57. Mice were 

anesthetized with urethane (1g/kg, i.p.). The common bile duct was ligated and the gall bladder 
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cannulated to divert bile into collection tubes. Basal bile was collected for a period of 30 min. Mice were 

then exsanguinated, blood was collected from the abdominal aorta in EDTA coated tubes and placed 

on wet ice, and tissues were dissected and snap frozen in liquid nitrogen. Plasma and tissues were 

stored at -80oC prior to analysis.  All animal procedures were completed under active and approved 

IACUC protocols. 

 

Lipoprotein isolation: To separate HDL and apolipoprotein B (APOB)-containing lipoproteins from 

mouse plasma, 200 µL of 0.22-µm filtered-plasma samples were diluted to 500 µL in size-exclusion 

chromatography (SEC) running buffer (10 mM Tris-HCl, 0.15 M NaCl, 0.2% NaN3) and injected an 

ÄKTA SEC system (GE Healthcare) with three in-series Superdex-200 Increase gel filtration columns 

(10/300 GL; GE Healthcare). Samples were applied to the column with a flow rate of 0.3 mL/min at 

room temperature and eluate collected as 72 x 1.5 mL fractions using a F9-C 96-well plate fraction 

collector (GE Healthcare). Each fraction was analyzed for total protein (BCA; Pierce), total cholesterol 

(Raichem), and triglycerides (Raichem) to identify fractions corresponding with HDL and APOB 

particles. Due to the SEC set-up, we were not able to separate VLDL from LDL particles, and thus, we 

collected fractions covering both lipoprotein classes, referred to here as APOB. Fractions 

corresponding with each lipoprotein group were pooled, concentrated with Amicon Ultra-4 10 kDa 

centrifugal filters (Millipore) to <200 µL volume, and protein concentrations were quantified by BCA 

assays (Pierce). Based on the distribution of total cholesterol, triglycerides, and protein, fractions 

corresponding to HDL and APOB were collected, pooled, and concentrated.  

 

RNA Isolation: To differentiate lipoprotein sRNA signatures from liver and biofluids, and determine the 

impact of SR-BI-deficiency, samples were collected from Scarb1-/- (SR-BI KO) and wild-type (WT) mice. 

Total RNA was extracted from HDL (WT N=7, SR-BI KO N=7) and APOB (WT N=7, SR-BI KO N=7) 
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particles, as well as livers (WT N=7, SR-BI KO N=7), bile (WT N=7, SR-BI KO N=6), and urine (WT 

N=5, SR-BI KO N=6). RNA was isolated from equal inputs of either bile (volume), liver (mg), HDL 

(protein) or APOB (protein) using miRNAEasy Mini kits (Qiagen). Specifically, 30 µL of primary bile, 120 

μg of APOB, 180 μg of HDL or 20 mg of liver were added to 1 mL of Qiazol. Livers were homogenized 

in Qiazol with High-Impact Zirconium beads using a Bead Bug Homogenizer (Benchmark Scientific).  

After removal of beads, subsequent steps for liver RNA extraction were followed according to 

manufacturer’s protocol. Bile, APOB and HDL RNA isolations were processed according to 

manufacturer’s protocol, except that after addition of ethanol, samples were incubated at -80oC 

overnight before application to isolation columns, and were eluted with a volume of 50 μL. Liver RNA 

samples were quantified by Take3 plates (BioTek). 

 

Real-Time PCR: Total RNA from equimolar amounts of HDL or APOB protein and equivolume amounts 

of bile or urine samples were diluted 1:10; 50 ng of total RNA from liver was used for reverse 

transcription using either miRCURY LNA universal RT kit (Exiqon) or TaqMan miRNA Reverse 

Transcription kit, as per manufacturer’s instructions. Real-time PCR was performed with the 

QuantStudio 12K Flex Real-Time PCR System (Life Technologies) using either: A) miRCURY LNA 

SYBR Green PCR kit (Exiqon) and either miRNA-specific or custom-sequence specific LNA probes 

(Exiqon; Table S19) or B) TaqMan miRNA-specific probes. Relative quantitative values (RQV) were 

determined for both HDL and cellular miRNA analyses. RQV = 2-dCt. For HDL, APOB, bile, and urine 

samples, an arbitrary housekeeping Ct = 32 was applied, and RQVs for liver sRNAs were normalized 

by U6. 

 

Small RNA sequencing: NEXTflex Small RNA Library Preparation Kits v3 for Illumina® Platforms (BioO 

Scientific) were used to generate cDNA libraries for sRNA-seq. Briefly, 1 µg of liver total RNA was used 

as input for adapter ligation, as per manufacturer’s protocol. For bile, APOB and HDL RNA, 10.5 μL 
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(21%) of the RNA isolation eluate was used as input for adapter ligation. Library generation was 

performed according to manufacturer’s protocol (BioO Scientific) with a modification to the amplification 

step, as liver libraries received 18 cycles and bile, APOB and HDL libraries received 27 cycles. After 

amplification, samples were size-selected using a Pippin-Prep (Sage Science) -- set for a range of 135-

200 nts in length -- and subsequently purified and concentrated using DNA Clean and Concentrator 5 

kit (Zymo). Individual libraries were then screened for quality by High-Sensitivity DNA chips using a 

2100 Bioanalyzer (Agilent) and quantified using High-Sensitivity DNA assays with Qubit (Life 

Technologies). Equal concentrations of all individual libraries were pooled for multiplex sequencing 

runs, and concentrated using DNA Clean and Concentrator 5 kit (Zymo). For rigor in down-stream 

comparisons, all 66 sequencing libraries were randomized and run independently on three individual 

sequencing lanes. Single-end sequencing (75 cycles) of multiplexed libraries were performed on an 

Illumina NextSEQ 500 at the Vanderbilt Technologies for Advanced Genomics (VANTAGE) core 

laboratory. Each library was sequenced at an average depth of 16.28 million reads/sample.  

 

Data analysis: The TIGER pipeline has many unique analysis features built into seven modules for low-

level and high-level analyses with data visualization packages. The first module contains pre-

processing steps (green) prior to data analysis (Fig.1). To assess raw data quality, FastQC was 

performed at the raw read level to check for base quality, total read counts, and adapter identification. 

Cutadapt was then used to trim 3’ adapters from processed reads (-a 

TGGAATTCTCGGGTGCCAAGG). Although this pipeline can analyze sRNA-seq data prepared by 

different library generation methods, TIGER was optimized to analyze sRNA-seq data prepared by 

ligation of adapters containing 4 terminal degenerate bases, which reduce ligation bias (e.g. BioO 

Scientific NEXTflex Small RNA-seq kit v3). Cutadapt was then used to remove the first and last 4 bases 

from the trimmed reads and all trimmed reads <16 nts in length were removed (-m 16 -u 4 -u -4). After 

trimming, read length distributions were plotted and FastQC was performed on trimmed reads to 
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validate the efficiency of adapter trimming. The processed reads were then summarized and plotted. To 

generate identical read files, trimmed reads in each sample were collapsed into non-redundant 

“identical” reads in FASTQ format and copy numbers were recorded for downstream analysis. 

Preprocessed reads were then analyzed by the Host Genome & Database (blue) and Class-

Independent (red) modules in parallel (Fig.1). In the Host Genome & Database alignment module 

(blue), bowtie (v1.1.2) was used to map reads to a costumed database with option (-a -m 100 --best -

strata -v 1) which allows 1 mismatch (MM) and 100 multi-mapped loci, and only the best matches were 

recorded. The costumed database was constructed by the host genome and known sequences of host 

mature transcripts curated in specific library databases – tRNAs (http://gtrnadb.ucsc.edu/GtRNAdb2/) 

and rRNA (http://archive.broadinstitute.org/cancer/cga/rnaseqc_download). A small number of parent 

tRNA genes contain introns and the mature transcript differs from the genomic sequence; therefore, the 

incorporation of mature tRNA transcripts from GtRNAdb database into the genomic alignment 

overcame these limitations. This approach allows for the detection of tDRs spanning exon junctions and 

allows reads the chance to be mapped to other non-tRNA loci in the genome with best alignment score 

which reduces the false positive tDR reads that can result from database only alignment strategies. 

Counting and differential expression analysis of miRNAs, tDRs, rDRs, snDRs, snoDRs, and other 

miscellaneous sRNAs (miscRNA), including yDRs and lincDRs, were performed. The pipeline does not 

quantify Piwi-interacting RNA (piRNA) or circular RNAs (circRNA), but this function can be amended. 

All prepossessed quality reads were assigned to different classes of annotated sRNAs using distinct 

rules -- miRNA: 1 MM, ≥16nt, offset -2, -1, 0, 1, 2 and tDR, snDRs, snoDRs, yDRs, and miscRNAs: 1 

MM, ≥16nt, overlap ≥0.9 overlap. Based on the extensive genomic coverage of lncRNAs and repetitive 

elements and conservation of rRNAs, the TIGER pipeline applies more stringent assignment rules for 

lncDRs and rDRs – perfect match, ≥20 nt, and ≥90% overlap with parent lncRNAs or rRNAs. 

Furthermore, reads assigned to lncDRs must only be aligned to lncRNA coordinates and not to any 

other loci in the genome. All reads ≥20 nts in length and not aligned to the costumed database were 

extracted and tested for alignment as non-host reads. After tabulation of read counts, high-end 
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analyses were performed on host sRNAs. These include principal component analysis, hierarchical 

clustering and correlation of samples and groups at the parent and individual fragment levels. 

Differential expression of tabulated read counts were performed by DEseq258. Differential expression 

result was plotted as volcano plot, venn diagram, and heatmap. Categorical analyses of tDRs based on 

amino acid and anti-codons of the parent tRNAs were also quantified and plotted. Likewise, categorical 

analysis of snDRs based on U class were analyzed and plotted. In addition, miRNAs were analyzed at 

the canonical, isomiR, NTA, NTA base, and isomiR NTA levels. Non-host reads were then analyzed 

using the Non-Host Genome (Purple) and Non-Host Library (Gold) modules in parallel (Fig.1). In the 

Non-Host Genome module, reads were aligned in parallel to two collections of bacterial genomes: a 

human microbiome (HMB) collection and a hand-curated list of environmental bacteria observed during 

sequencing of human and mouse lipoproteins. The HMB list was compiled by reducing 3,055 bacterial 

genomes available from the Human Microbiome Project (www.hmpdacc.org) to single non-redundant 

genera, and extracting the largest available complete genome for each genera. Conversely, to generate 

the environmental bacteria list, the top 100 most abundant sequences in a control HDL cohort, that 

were not mapped to the host genome, were submitted to NCBI for BLASTn. All hits that showed 100% 

coverage and 100% identity were then compiled; non-redundant genera were extracted; redundant 

genera to the HMB were removed. Representative genomes from the remaining species were then 

compiled to the environmental bacteria list (ENV). Additionally, a small group of fungal genomes 

associated with the human pathology were also collected. The HMB, ENV, and fungal modules contain 

206, 167, 8 representative genomes, respectively. Due to high conservation between bacterial 

genomes and multi-mapping issues, a different bowtie option (-a -m 1000 --best -strata -v 0) was used 

which allowed perfect match only and 1000 multi-mapped loci. Reads were aligned to the HMB, ENV, 

and fungal groups in parallel and, thus, the same reads could have been counted in multiple groups. 

The fraction of reads that align to both databases (HMB, ENV) and the reads that are unique to specific 

databases were plotted. Differential expression and high-end analyses, as described above, were 

performed at the genome level (total normalized read count for each genome) and at the individual read 
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level. In parallel, non-host reads were also analyzed by the Non-Host Library (Gold) module where they 

were aligned to non-coding RNA databases with same bowtie option as non-host genome analysis. To 

identify possible non-host miRNAs (xenomiRs) in sRNA-seq datasets, all non-host reads were aligned 

perfectly to annotated miRNAs in miRBase (miRBase.org) and tabulated. Similarly, non-host reads 

were aligned to all tRNAs in the GtRNAdb database (GtRNAdb2). Extensive categorical analysis of 

parent non-host tRNAs were performed at the kingdom, genome (species), amino acid, anti-codon, and 

fragment (read) levels. All assigned non-host tDRs underwent differential expression analysis, high-end 

analysis, and data visualization, as described above. Non-host reads were also aligned to prokaryotic 

and eukaryotic rRNA transcripts in SILVA database (https://www.arb-silva.de). TIGER limits the 

analysis of non-host rDR to the kingdom level for counting, differential expression analysis and high-

end analysis. 

The TIGER pipeline also analyzed the top most abundant reads independent of class or annotation 

in parallel of the host genome, non-host genome, and database modules. The Class-Independent 

module (red) ranked and filtered the top 100 most abundant reads in each sample independent of 

genomic annotation. The list of top 100 reads from all samples were combined, a count file table was 

generated and top 100 overall reads were used to perform hierarchical clustering and correlations at 

the individual sample and group levels. Differential expression analyses were performed by DEseq2, 

and significantly altered sequences were searched in NCBI nucleotide database using BLASTn to 

identify possible sources (species). All results from the host genome, class-independent, non-host 

genome, and non-host database modules were then analyzed by the Summary & Data Visualization 

(dark blue) module (Fig.1). In this module, TIGER summarized and organized many of the individual 

comparisons. For example, individual volcano plots were graphed into larger matrices grouping 

different classes of sRNAs and/or genomic groups (e.g. bacteria and fungi). This module also 

generated a comprehensive table for all mapped reads listing the assignments for each read across 

modules. Moreover, positional coverage of sRNAs against host parent RNAs were plotted for miRNAs, 
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tDRs, snDRs, and rDRs. Positional base coverages were also plotted for individual samples, groups, 

and significantly altered tDRs and snDRs. For groups, the means of normalized positional coverage 

counts (base positional counts per million mapped total reads) for individual samples in the groups 

were plotted. Furthermore, this module identified sRNA classes and genomes for the top 100 ranked 

reads (analyzed earlier in the Class-Independent module) and graphed the linkages by circos plots. 

Finally, this module summarized the read counts in each task and determined the fraction of total reads 

that were assigned to any module, genome, or database. For example, pie charts and stacked bar 

charts were generated to illustrate the fraction of reads mapped to the host genome and non-host 

genome and the fraction of unmapped reads. All unmapped and unaccounted for reads entered the 

Final Unmapped Analysis (orange) module (Fig.1). In this module, the top 100 analysis was reapplied 

to all unmapped and unaccounted reads, as described above. After ranking, filtering, and tabulation, 

differential expression analysis was performed and the significantly altered unmapped reads were 

searched in BLASTn to identify possible genomes not contained in the TIGER analysis. These unique 

features were designed to extensively and exhaustively analyze sRNA-seq data on lipoproteins (e.g. 

HDL and apoB particles) and extracellular fluids (e.g. bile and urine) which have many different types of 

sRNAs and diverse species. 

 

Data Visualization: Read counts were reported as both raw counts and normalized count per million 

total counts (RPM). RPMs were used for stacked bar plots in each module. Cluster analysis by 

heatmap359. Principle component analysis were performed based on normalized expression value 

calculated by the variance stabilizing transformation in DESeq2. DESeq2 was used to perform miRNA, 

tDR and other sRNA differential expression analyses. Significantly differential expressed sRNAs with 

adjusted FDR less than 0.05 and absolute fold change larger than 1.5 will be highlighted in volcano plot 

(red, increased; blue, decreased) and outputted as tabulated file for further validation. Non-metric 

multidimensional scaling of Bray-Curtis dissimilarity indexes, homogeneity analysis of group 
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dispersions, and principal coordinate analysis visualization was performed using R package “vegan”. R 

Packages ggplot2, vegan, ggraph, igraph, reshape2, data.table, RColorBrewer, circlize, ggtern, and 

XML were used for data visualization.  

 

Statistics: For continuous variables, mean and standard error of the mean (S.E.M.) were used. 

Comparisons with two variables were calculated using Welch two sample t-tests, two-way Student’s t-

tests, or Mann-Whitney nonparametric tests. For comparisons with more than two variables, linear one-

way analysis of variance (ANOVA) were used. Spearman ranked method was used for calculating the 

correlation coefficient (R). Two-sided p values ≤0.05 were considered statistically significant. Statistical 

analyses were performed using R version 3.4.3. 
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Figure Legends: 

Figure 1. Schematic of the TIGER sRNA-seq analysis workflow. 
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Figure 2. Host miRNAs on lipoproteins have distinct features compared to liver. WT, wild-type 

mice; SR-BI KO, Scavenger receptor BI Knockout mice (Scarb1-/-). (A) Correlation of sRNA-seq reads 

per million total reads (RPM, blue) and miRNA reads (RPM miR, gray) to real-time PCR relative 

quantitative values (RQV). Spearman correlation. HDL, APOB, liver, bile, and urine samples, N=66. (B-

F) Results from sRNA-seq analysis. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI 

KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; 

Urine SR-BI KO, N=6. (B) Abundance of canonical miRNAs. Mean ±S.E.M. (C) Principal Coordinate 

Analysis (PCoA) of canonical miRNA profiles for samples from WT (empty circles) and SR-BI KO (filled 

circles) mice. NMDS1, Non-metric multidimensional scaling. (D) Heatmap of hierarchical clustered 

pairwise correlation (Spearman, R) coefficients between group means for canonical miRNAs. (E) Start 

position analysis of 5’ miRNA variants (isomiR) for combined (WT and SR-BI KO) mouse samples. (F) 

Ratio of non-templated U (poly-uridylation) to A (poly-adenylation) for miRNAs. Mean ±S.E.M. One-way 

ANOVA. *p<0.05; **p<0.01 

 

Figure 3. Host sRNAs account for a minor fraction of total reads in lipoprotein sRNA-seq 

datasets. WT, wild-type mice; SR-BI KO, Scavenger receptor BI Knockout mice (Scarb1-/-). (A-F) 

Results from sRNA-seq analysis. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI 

KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; 

Urine SR-BI KO, N=6. Host tDRs (yellow), rDRs (red), miRNAs (blue), snoDRs (purple), snDRs (green), 

miscellaneous RNA (pink), and unannotated genome (black). (A) Percent of total reads for host sRNA 

classes. Mean ±S.E.M. (B-F) Distribution of read length by host sRNA classes (colors) and total reads 

(gray), as reported by percent of total reads. Mean ±S.E.M. (B) Liver. (C) APOB particles. (D) HDL. (E) 

Bile. (F) Urine. 

 

Figure 4. Lipoproteins, bile, and urine contain distinct tDR profiles. WT, wild-type mice; SR-BI KO, 

Scavenger receptor BI Knockout mice (Scarb1-/-). (A-C,F) Results from sRNA-seq analysis. (A) 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 11, 2018. ; https://doi.org/10.1101/246900doi: bioRxiv preprint 

https://doi.org/10.1101/246900


37 

 

Positional coverage maps of tDRs for parent tRNA amino acid anti-codons, as reported as mean 

cumulative read fractions (read counts / total counts). (B-C) Principal Coordinate Analysis (PCoA) of 

tDR profiles based on (B) parent tRNAs and (C) individual fragments for samples from WT (empty 

circles) and SR-BI KO (filled circles) mice. NMDS1, Non-metric multidimensional scaling. (D-F) Real-

time PCR analysis of candidate tDRs with predicted folding structures and sequences for (D) tDR-

GluCTC and (E) tDR-GlyGCC. WT, white circles; SR-BI KO, red circles. (F) Heatmaps of correlation 

coefficients (Spearman, R) for tRNA parents and individual tDR fragments across samples within each 

group. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; 

Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 

 

Figure 5. Lipoproteins transport exogenous non-host tDRs and rDRs. WT, wild-type mice; SR-BI 

KO, Scavenger receptor BI Knockout mice (Scarb1-/-). (A) Stacked bar plots of non-host tDRs aligned 

to parent tRNAs across kingdoms and higher organizations – bacteria, blue; eukaryota, yellow; fungi, 

red; embryophyta, orange; vertebrata, purple; archaea, green – as reported as percent of total reads. 

(B) Positional coverage maps of non-host tDRs for parent tRNA amino acid anti-codons, as reported as 

mean cumulative read fractions (read counts / total counts) for HDL and APOB particles. (C) Stacked 

bar plots of non-host rDRs aligned to parent rRNAs across kingdoms and higher organizations – 

bacteria, yellow; eukaryota, red; fungi, white; protists, purple; archaeplastida, dark blue; embryophyta, 

light blue; archaea, green – as reported as percent of total reads. (D-F) Distribution of read lengths, as 

reported as percent of total reads, for all non-host (D) tDRs and (F) rDRs. Two-tailed Student’s t-tests. 

*p<0.05. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; 

Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 

 

Figure 6. Lipoproteins are enriched for sRNAs derived from proteobacteria in the microbiome 

and environment. WT, wild-type mice; SR-BI KO, Scavenger receptor BI Knockout mice (Scarb1-/-). 

(A) Circular tree maps for non-host bacterial sRNAs on HDL from WT mice, as organized by taxonomy 
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– proteobacteria, green; actinobacteria, blue; firmicutes, yellow; bacteroidetes, red. Diameter is 

proportional to the mean number of reads at the genome level (counts). (B-C) Heatmaps of correlation 

coefficients (Spearman, R) for non-host sRNAs (on HDL and APOB particles) for bacterial genomes 

and individual bacterial fragments across samples grouped by (B) human microbiome (HMB) and (C) 

environment (ENV) species. (D-E) Distribution of read lengths, as reported as percent of total reads, for 

non-host bacterial sRNAs grouped by (D) HMB and (E) ENV species. Two-tailed Student’s t-tests. 

*p<0.05. (F-G) Real-time PCR analysis of candidate non-host bacterial sRNAs for (F) exogenous rDR 

Pseudomonas fluorescens 23S (exo_rDR_Pflo23S) and (G) exogenous rDR Janthinobacterium lividum 

23S (exo_rDR_Jliv). WT, white circles; SR-BI KO, red circles. HDL WT, N=7; HDL SR-BI KO N=7; 

APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI 

KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 

 

Figure 7. The most abundant sRNAs on lipoproteins are bacterial rDRs. (A-E) Circos plots linking 

the most abundant (top 100) sequences to assigned groups for non-host libraries (rRNA lib, tRNA lib), 

host sRNAs (rDR, osRNA, tDRs, snDRs, snoDRs, miRNAs) and non-host genomes (fungi, 

environment, and microbiome) for (A) liver, (B) APOB, (C) HDL, (D) urine, and (E) bile. (F) Principal 

Coordinate Analysis (PCoA) of sRNA profiles based on class-independent analyses. Wild-type mice, 

WT (open circles); Scavenger receptor BI Knockout mice (Scarb1-/-), SR-BI KO (filled circles). HDL WT, 

N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; Liver SR-BI KO, 

N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 

 

Figure 8. TIGER analysis pipeline accounts for significantly more reads than other software for 

lipoprotein sRNA-seq data. (A-B) Ternary plots of sRNA profiles for all samples displayed as (A) 

percent unexplained (blue), miRNAs (green), and non-miRNA host sRNAs (red); (B) percent 

unexplained (blue), exogenous sRNAs (green), and host genome (red). WT, wild-type mice; SR-BI KO, 
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Scavenger receptor BI Knockout mice (Scarb1-/-). (C) Pie charts illustrating the mean fraction of reads 

assigned to host sRNA (red), host genome (blue), non-host (purple), too short for mapping (green), and 

unmapped (orange). HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver 

WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, 

N=6. (D) Comparisons of sRNA-seq data analysis pipelines, as reported as percent assigned per total 

reads for TIGER (black), Chimira (blue), Oasis (red), ExceRpt (green), and miRge (yellow) for HDL, 

APOB, and liver samples from WT mice. HDL WT, N=7; APOB WT, N=7, Liver WT, N=7. Mann-

Whitney non-parametric tests. *p<0.05. 

 

Figure 9. SR-BI regulates HDL-sRNAs at the individual fragment level, not parent level. 

Differential expression analysis by DEseq2. Volcano plots of demonstrating significant (adjusted 

p>0.05) differential (>1.5-absolute fold change) abundances for miRNAs, snDRs, and rDRs at the 

parent and individual fragment levels - red, increased; blue, decreased. HDL WT, N=7; HDL SR-BI KO 

N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile 

SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 
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