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Abstract 45 

To comprehensively study extracellular small RNAs (sRNA) by sequencing (sRNA-seq), we developed 46 

a novel pipeline to overcome current limitations in analysis entitled, “Tools for Integrative Genome 47 

analysis of Extracellular sRNAs (TIGER)”. To demonstrate the power of this tool, sRNA-seq was 48 

performed on mouse lipoproteins, bile, urine, and liver samples. A key advance for the TIGER pipeline 49 

is the ability to analyze both host and non-host sRNAs at genomic, parent RNA, and individual fragment 50 

levels. TIGER was able to identify approximately 60% of sRNAs on lipoproteins, and >85% of sRNAs in 51 

liver, bile, and urine, a significant advance compared to existing software. Results suggest that the 52 

majority of sRNAs on lipoproteins are non-host sRNAs derived from bacterial sources in the 53 

microbiome and environment, specifically rRNA-derived sRNAs from Proteobacteria. Collectively, 54 

TIGER facilitated novel discoveries of lipoprotein and biofluid sRNAs and has tremendous applicability 55 

for the field of extracellular RNA.  56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 23, 2018. ; https://doi.org/10.1101/246900doi: bioRxiv preprint 

https://doi.org/10.1101/246900


3 

 

Introduction 66 

High-throughput small RNA sequencing (sRNA-seq) is a state-of-the-art method for profiling sRNAs, 67 

and is widely-used across many disciplines. Although many software are currently available for sRNA-68 

seq data analysis, most fail to meet the present demands for the study of host and non-host sRNAs 69 

across diverse RNA classes. This is particularly important for the investigation of extracellular RNA 70 

(exRNA), which have recently been found to be heterogeneous pools of host (e.g. human) and non-71 

host (e.g. bacteria) sRNAs1-3. Furthermore, individual sRNA classes harbor distinct features, e.g. 72 

miRNA 3’ non-templated additions (NTA)4-6, and these features each require unique strategies for 73 

alignments and quantification. A key objective for data analysis is to account for all reads in the sRNA-74 

seq dataset, and current approaches to sRNA profiling now require sophisticated analysis strategies. 75 

Therefore, we developed a novel data analysis pipeline entitled, “Tools for Integrative Genome analysis 76 

of Extracellular sRNAs (TIGER).” This pipeline integrated host and non-host sRNA analysis through 77 

both genome and database alignments, and greatly improved the ability to account for a larger number 78 

of reads in sRNA-seq datasets. The TIGER pipeline was designed for the study of lipoprotein sRNAs; 79 

however, it has great applicability to all sRNA-seq studies. 80 

The most extensively studied class of sRNAs is microRNAs (miRNA)7 and many sRNA-seq analysis 81 

tools are limited to only miRNA quantification8. In addition to miRNAs, many other classes of sRNAs are 82 

present in sRNA-seq datasets9. These include sRNAs derived from parent transfer RNAs (tRNA), 83 

ribosomal RNAs (rRNA), small nucleolar RNAs (snoRNA), small nuclear RNAs (snRNA), long non-84 

coding RNAs (lncRNA), Y RNAs, and several other miscellaneous non-coding RNAs10, 11. For 85 

consistency in nomenclature, here, we will refer to these novel sRNA classes as tRNA-derived sRNAs 86 

(tDR), rRNA-derived sRNAs (rDR), lncRNA-derived sRNAs (lncDR), snRNA-derived sRNAs (snDR), 87 

snoRNA-derived SRNAs (snoDR), Y RNA-derived sRNAs (yDR) and other miscellaneous sRNAs 88 

(miscRNA). Outside of miRNAs and tDRs, the biological function(s) of these other endogenous sRNAs 89 

are unknown11, 12. Nevertheless, similar to miRNAs, many of these endogenous sRNAs are present in 90 
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biological fluids and hold great potential as disease biomarkers or intercellular communication signals; 91 

however, tools for their analysis in sRNA-seq datasets are very limited13, 14.  92 

In plasma and other biofluids, exRNAs are carried by extracellular vesicles (EV), lipoproteins, and 93 

ribonucleoproteins, which protect exRNAs against RNase-mediated degradation15, 16. Previously, we 94 

reported that lipoproteins - low-density lipoproteins (LDL) and high-density lipoproteins (HDL) - 95 

transport miRNAs in plasma, and lipoprotein miRNA signatures are distinct from exosomes17. Using 96 

real-time PCR-based TaqMan arrays, we further identified HDL-miRNAs that were significantly altered 97 

in hypercholesterolemia and atherosclerosis17. Currently, it is unknown if lipoproteins transport other 98 

sRNAs in addition to miRNAs. In a previous study, we reported that HDL transfer miRNAs to recipient 99 

cells and this process is regulated by HDL’s receptor, scavenger receptor BI (SR-BI), in hepatocytes17. 100 

SR-BI is a bidirectional transporter of cholesterol and a critical factor in reverse cholesterol transport 101 

pathway in which HDL returns excess cholesterol to the liver for excretion to bile. Currently, it is 102 

unknown if miRNAs, and potentially other sRNAs, on lipoproteins follow cholesterol and are transported 103 

to the liver for secretion to bile. Likewise, as SR-BI can export cholesterol to HDL, it is unclear whether 104 

SR-BI directly influences sRNAs on lipoproteins or in biofluids.  105 

To demonstrate the power of the TIGER pipeline, we present results from our comprehensive 106 

analysis of lipoprotein sRNAs by high-throughput sRNA-seq. Using TIGER, we found that lipoproteins 107 

transport a wide-variety of host and non-host sRNAs, most notably, HDL and APOB particles transport 108 

non-host bacterial tDRs and rDRs. TIGER analysis was also used to demonstrate that lipoprotein sRNA 109 

signatures were distinct from liver, bile, and urine for host sRNAs. Moreover, TIGER analysis was used 110 

to determine the role of SR-BI in the regulation of exRNAs on lipoproteins and in biofluids. At the parent 111 

RNA level, SR-BI-deficiency had minimal impact on sRNA levels; however, by organizing sRNAs at the 112 

individual fragment level, we found that loss of SR-BI in mice resulted in significant changes to specific 113 

sRNA classes in different sample types. TIGER was designed to overcome many of the barriers and 114 
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challenges in sRNA-seq analysis, particularly for exRNA, and its application uncovered many novel 115 

observations for sRNAs on lipoproteins and in liver and biological fluids. 116 

 117 

Results 118 

Lipoproteins transport distinct miRNA signatures.  119 

The full-compendium of exRNAs on lipoproteins has not been investigated and an unbiased approach 120 

to identifying and quantifying sRNAs on lipoproteins was warranted. To address this gap, high-121 

throughput sRNA-seq was used to profile sRNAs on HDL and apoB-containing particles (APOB) 122 

purified from mouse plasma by size-exclusion chromatography (Figure 1-Figure Supplement 1A-C), 123 

and lipoprotein profiles were compared to mouse liver, bile, and urine. For host sRNAs, the TIGER 124 

pipeline prioritized annotated sRNAs in ranking order; miRNAs, tDRs, rDRs, snDRs, snoDRs, yDRs, 125 

lncDRs, miscellaneous sRNAs (miscRNA), and unannotated host genome sRNAs (Figure 1). sRNAs 126 

can be normalized by reads per million total reads (RPM) or reads per million class reads, e.g. total 127 

miRNA reads (RPM miR). To compare miRNA content between groups, real-time PCR was performed 128 

for 9 miRNAs across all samples and correlations between PCR results and sRNA-seq results based 129 

on each normalization method were compared by rank correlations. For these data, normalization by 130 

RPM (R2=0.45) showed a higher correlation between PCR and sequencing results than RPM miR 131 

(R2=0.17) (Figure 2A, Figure 2 – Source Data 1) Lipoproteins, specifically APOB particles, were found 132 

to have less miRNA content, as reported by total miRNA counts (RPM), than livers which had the 133 

largest fraction of miRNAs per total reads (RPM) (Figure 2B). To compare miRNA signatures across 134 

sample types, Principal Coordinate Analysis (PCoA) was used, and lipoprotein and biofluid clusters 135 

were distinct from livers (Figure 2C). To quantify differences in the homogeneity of the miRNA profile 136 

multivariable distributions (miRNAs) within each groups, PERMANOVA tests were performed, and 137 

miRNA profiles of lipoproteins (HDL and APOB) and biofluids (bile and urine) were significantly different 138 
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than livers (wild-type, WT, mice) – APOB (F=9.57, p=0.001), HDL (F=7.11, p=0.001), bile (F=5.56, 139 

p=0.001), and urine (F=8.42, p=0.001) (Figure 2 – Source Data 2). Next, beta-dispersion tests were 140 

used to determine that lipoprotein (high-dispersions) and biofluid (high-disperisons) samples were 141 

significantly (ANOVA P<0.05) more dispersed (less consistent) than livers (low-dispersion) – APOB 142 

(F=31.03, p<0.0001), HDL (F=23.20, p<0.0001), bile (F=17.09, p<0.0001), and urine (F=15.47, 143 

p<0.0001)  (Figure 2C). To further compare miRNA signatures between groups, high-end analyses 144 

were performed using hierarchical clustering and correlations of group means. Lipoprotein profiles 145 

clustered separately from liver and biofluids, and lipoproteins displayed high correlations between HDL 146 

and APOB groups and modest correlations to liver, bile, and urine groups (Figure 2D). These results 147 

suggest that HDL and APOB transport unique miRNA signatures that are distinct from liver with 148 

decreased homogeneity and increased dispersion. 149 

Due to imprecise cleavage of miRNAs from precursor miRNA hairpins18-20, one miRNA locus can 150 

produce multiple isoforms, termed isomiRs, which can differ by one or two nts at the 5’ start position. 151 

Consequently, the canonical miRNA “seed” sequence is altered, potentially conferring recognition of 152 

different mRNA targets19-21. Therefore, it is important that miRNA analysis includes quantification of 153 

isomiRs and all samples in our study contained 5’ isomiRs, the largest fraction was found on HDL 154 

(8.42%) followed by urine (7.2%), APOB (6.53%), bile (4.54%), and liver (4.34%) (Figure 2-Figure 155 

Supplement 1A,B). In addition, we found specific examples of miRNAs with different 5’ terminal start 156 

positions than their reported canonical forms, e.g. miR-142-5p (-2), miR-133a-3p (+1) and miR-192-5p 157 

(+1), and these patterns were consistent across all sample types (Figure 2E). Most interestingly, we 158 

found evidence that miRNAs may be partitioned to cellular and extracellular pools by their isomiR 159 

forms, as lipoproteins and biofluids contained significantly more 5’ (-1) isomiRs of miR-101a-3p than 160 

liver samples (Figure 2E). Mature miRNAs also harbor extensive variability on their 3’ terminal ends 161 

due to imprecise processing and NTAs, e.g. extra non-genomic 3’ nts added by cytoplasmic 162 

nucleotidyltransferases6, 22. A substantial fraction of miRNAs (17-32%) across all sample types were 163 
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modified with NTAs (Figure 2–Figure Supplement 1C). As a percentage of total miRNAs, APOB 164 

particles contained significantly more miRNAs harboring non-templated additions (NTA) than liver 165 

samples (Figure 2-Figure Supplement 1B,C). A previous study proposed that poly-uridylation (NTA-166 

U) was increased on extracellular miRNAs (released in exosomes) and miRNA poly-adenylation (NTA-167 

A) was associated with cellular retention23. To determine if lipoproteins and/or biofluids are similarly 168 

enriched for poly-uridylation, NTA patterns were compared between groups, and similar to exosomes, 169 

HDL and APOB samples were indeed observed to be significantly enriched with NTA-U compared to 170 

liver samples which were enriched with NTA-A (Figure 2F). Intriguingly, extracellular miRNAs in bile 171 

and urine from WT mice were not enriched for either NTA; however, in urine, loss of SR-BI (KO mice) 172 

was found to significantly increase the NTA-U/A ratio (Figure 2F). Collectively, these results 173 

demonstrate that miRNAs on lipoproteins are distinct for many features from hepatic miRNAs, including 174 

5’ isomiRs and 3’ NTAs. 175 

 176 

Lipoproteins transport many classes of host sRNAs 177 

Most, if not all, non-coding RNAs are processed to smaller fragments creating an enormously diverse 178 

pool of sRNAs in cells and extracellular fluids12. To determine if lipoproteins also transport non-miRNA 179 

sRNAs and to compare annotated host sRNAs across sample types, reads were aligned to the host 180 

(mouse) genome, as well as to mature transcripts for specific RNA classes with genes containing 181 

introns, e.g tRNAs and rRNAs24. For liver samples, the most abundant class of sRNAs was rDRs, which 182 

were predominantly 42-45 nts in length (Figures 3A,B). rDRs were also present on HDL and APOB 183 

particles; however, their lengths were variable (Figures 3A,C,D). We also detected snoDRs (57-64 nts 184 

in length) in livers; however, snoDRs were largely absent from lipoproteins and biofluids, suggesting 185 

that the liver and other tissues may not export this class of sRNAs to lipoproteins or into bile or urine 186 

(Figures 3A-F). Both lipoproteins and biofluids contained tDRs 28-36 nts in length which suggests that 187 

these sRNA are likely tRNA-derived halves (tRHs), a sub-class of tDRs approximately 31-35 nts in 188 
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length (Figures 3A,C,D)42, 47. Most tDRs on lipoproteins and in biofluids aligned to the 5’ halves of 189 

parent tRNAs, particularly amino acid anticodons for glutamate (GluCTC), glycine (GlyGCC), aspartate 190 

(AspGTC), and valine (ValCAC) (Figure 4A, Figure 4-Figure Supplement 1). Strikingly, 68.9% of tDR 191 

reads on HDL and APOB particles from WT mice aligned to the parent tRNA GluCTC (Figure 4A, 192 

Figure 4-Figure Supplements 2A,B). A key feature of the TIGER pipeline is the ability to analyze 193 

sRNAs based on their parent RNAs or individually as fragments. At the parent level for tDR signatures, 194 

all groups overlapped; however, at the fragment level, tDR signatures for lipoproteins, bile, and urine 195 

were found to be clearly delineated from livers (Figures 4B,C). These results were supported by 196 

PERMANOVA analysis which indicated that lipoprotein and biofluids were significantly distinct from liver 197 

based on tDR fragments: APOB (F=5.32, p=0.001), HDL (F=2.94, p=0.014), bile (F=10.22, p=0.001), 198 

and urine (F=7.08, p=0.001) (Figure 2-Source Data 2). Hierarchical clustering and correlation analyses 199 

further support that the profile of individual fragments, rather than parent tRNAs, define tDR expression 200 

across sample types (Figure 4-Figure Supplements 3A,B). Strikingly, this pattern where groups are 201 

defined by organizing sRNAs based on individual fragments instead of parent RNAs was consistent for 202 

other host sRNAs, including rDRs and snDRs (Figure 4-Figure Supplements 3C-F,4A-F; Figure 2-203 

Source Data 2). 204 

To validate candidate host sRNAs on lipoproteins and in biofluids identified by sRNA-seq, real-time 205 

PCR using custom locked-nucleic acid (LNA)-based assays (Exiqon) were completed. For tDRs, both 206 

tDR-GluCTC (38 nts in length) and tDR-GlyGCC (32 nts in length) were confirmed to be highly-207 

abundant on HDL and APOB particles, and were not detected in the negative control (buffer) solution 208 

used to isolate the lipoproteins (Figure 4D,E). Furthermore, two novel snDRs and a candidate sRNA 209 

cleaved from a ribozyme (miscRNA) were also detected by PCR on lipoproteins at comparable levels to 210 

a previously reported miRNA on lipoproteins (miR-223-3p) (Figure 4-Figure Supplements 5A-D). 211 

Although the general, regional cleavage patterns for specific parent RNAs were consistent for tRNAs 212 

(Figure 4-Figure Supplement 1) and snRNAs (Figure 4-Figure Supplement 6), and specific 213 
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candidate sRNAs can be quantified by PCR as single products (based on melting curves), most 214 

individual fragments were variable across samples due to slight differences in length or sequences. To 215 

more clearly illustrate this point, we performed correlations at both the parent RNA and individual 216 

fragment levels within each sRNA class. For tDRs (Figure 4F) and other RNA classes (Figure 4-217 

Figure Supplement 7), we found high correlation between samples at the parent level and poor 218 

correlation between samples at the fragment level for HDL, APOB, bile, and urine. For liver samples, 219 

high correlation was detected for sRNAs at both the parent and fragment levels (Figure 4F, Figure 4-220 

Figure Supplement 7). These results suggest that, although individual fragments define sRNA classes 221 

across groups, further investigation of individual candidate sRNAs (fragments) may be challenging due 222 

to variability across samples. 223 

 224 

Lipoproteins are enriched in exogenous sRNAs  225 

Reads aligning to non-human transcripts have previously been detected in human plasma samples1; 226 

however, it is unknown which carriers transport non-host sRNAs in host circulation. To determine if 227 

lipoproteins carry exogenous bacterial and fungal sRNAs, reads >20 nts in length that failed to map to 228 

the host (mouse) genome were aligned in parallel to A.) Annotated non-host transcripts curated in 229 

GtRNAdb (tRNA), SILVA (rRNA), and miRBase (miRNA) databases, and B.) Genomes of bacteria and 230 

fungi of the microbiome (human microbiome, HMB) or environment (ENV) (Figure 1). To identify 231 

exogenous miRNAs (xenomiRs), reads were aligned (perfect match only) to non-host mature miRNA 232 

sequences (miRBase.org); however, only a few xenomiRs were detected within our datasets and 233 

overall contributions to each profile were minimal (Figure 5-Source Data 1). To determine the levels of 234 

exogenous tDRs on lipoproteins, non-host reads were aligned to parent tRNAs curated in the GtRNAdb 235 

library. Both HDL and APOB particles were found to transport a diverse set of exogenous tDRs across 236 

multiple kingdoms, which accounted for approximately 2.5% of sRNAs (total reads) circulating on each 237 

lipoprotein class (Figure 5A, Figure 5-Source Data 2). Bacterial tDRs were the most represented 238 
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taxon, and the most abundant bacterial species were Pseudomonas fluorescens, Pseudomonas 239 

aeruginosa, and Acinetobacter baumanni (Figure 5-Figure Supplements 1A,B). The parent tRNAs 240 

(based on amino acid anticodons) with the highest normalized read counts were fMetCAT, GluTTC, 241 

AspGTG, and AsnGTT (Figure 5-Figure Supplement 1C). In contrast to host tDRs that predominantly 242 

aligned to the 5’ halves of parent tRNAs (Figure 4A, Figure 4-Figure Supplement 1), positional 243 

coverage analysis demonstrated that bacterial tDRs aligned across the entirety of tRNA transcripts 244 

(Figure 5B, Figure 5-Figure Supplements 2 and 3). To identify exogenous rDRs on lipoproteins, non-245 

host reads were separately aligned to known rRNA transcripts curated in the SILVA database, and 246 

remarkably, non-host rDRs accounted for approximately 25% of total reads in each of the HDL and 247 

APOB datasets (Figure 5C, Figure 5-Source Data 3). Although rDRs from every taxonomical kingdom 248 

were present on lipoproteins, bacterial rDRs were the most abundant (Figure 5C, Figure 5-Figure 249 

Supplement 4, Source Data 3). The overall content of non-host sRNAs on HDL and APOB particles 250 

were similar; however, HDL were found to be enriched for shorter length non-host tDRs and rDRs 251 

compared to APOB particles (Figures 5D,E). Collectively, these results suggest that lipoproteins 252 

transport exogenous tDR and rDRs, most of which are likely bacterial in origin. 253 

Aligning reads to transcripts in databases is biased in that only known (annotated) RNAs are 254 

queried, and thus, limits the power of discovery in sRNA-seq datasets. To comprehensively analyze 255 

exogenous sRNAs, non-host reads were also aligned to bacterial genomes within the NIH HMB Project 256 

(hmpdacc.org). The HMB database currently holds 3,055 genomes, many of which are closely related; 257 

therefore, to address potential multi-mapping issues, we collapsed these species into 206 258 

representative genomes that spanned 11 phyla and accounted for every genera within the HMB. 259 

Alignment of non-host reads to HMB genomes identified many bacterial sRNAs on lipoproteins and in 260 

biofluids, reported as summarized genome read counts per million total reads (RPM) (Figure 6-Figure 261 

Supplement 1A-B, Source Data 1). To perform taxonomical analyses of lipoprotein-associated 262 

bacterial sRNAs, circular tree maps were generated. As shown by concentric rings in the tree maps, the 263 
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vast majority of both HDL and APOB bacterial reads mapped to the Proteobacteria phylum (green), 264 

followed by the Actinobacteria (blue) and Firmicutes (yellow) phylums (Figure 6A, Figure 6-Figure 265 

Supplement 2A). Within the Proteobacteria phylum, the majority of reads aligned to the 266 

Gammaproteobacteria class, particularly the orders of Pseudomonadales and Enterobacteriales. 267 

Among individual genera (inner-most circles), counts for the genus Pseudomonas (Proteobacteria 268 

phylum) were consistently the high, as were Micrococcus (Actinobacteria phylum) (Figure 6A, Figure 269 

6-Figure Supplement 2A). 270 

Most interestingly, many reads that aligned to bacterial rRNA transcripts failed to align to the HMB 271 

genomes, thus suggesting that some sRNAs may originate from bacteria not presently curated in the 272 

HMB database. Using BLASTn (NCBI), many highly abundant reads were perfect matches to bacterial 273 

genomes of environmental bacterial species of soil and water, but could be associated with 274 

opportunistic infections. Therefore, to increase our non-host coverage, 167 additional bacterial 275 

genomes representing non-redundant genera of 8 taxonomical phyla were added, termed here as 276 

environmental bacteria (ENV). The ENV species with the highest normalized genome counts for WT 277 

lipoproteins were Pseudomonas fluorescens, Pseudomonas putida, Propionibacterium acnes, and 278 

Stenotrophomonas maltophilia (Figure 6-Figure Supplements 1C,D, and 2B,C, Source Data 2). 279 

Although many non-host reads aligned to both HMB and ENV genomes, a majority of all non-host 280 

bacterial reads could be assigned exclusively to only one database, suggesting a complex origin for 281 

bacterial sRNAs on circulating lipoproteins (Figure 6-Figure Supplements 3). In addition to bacterial 282 

sRNAs, we also identified fungal sRNAs on lipoproteins, and the highest normalized genome counts for 283 

fungal species on WT HDL were Fusarium oxysporum, Histoplasma capsulatum, Cryptococcus 284 

neoformans (Figure 6-Figure Supplements 4A,B, Source Data 3). 285 

To assess bacterial sRNA profiles across samples, non-host sRNAs (HMB and ENV) on 286 

lipoproteins were correlated between samples. For both databases, we identified high correlations 287 

between samples at the genome level and low correlations at the fragment level (Figures 6B,C). These 288 
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data suggest that similar bacteria are contributing sRNAs to circulating lipoproteins across all mice. 289 

Nevertheless, these bacteria may contribute different sRNAs (sequences) to HDL and APOB particles 290 

in different mice or the processing of bacterial sRNAs before and/or during HDL and APOB trafficking is 291 

differentially regulated. A key difference between HDL and APOB bacterial sRNAs was length, as HDL 292 

were enriched for shorter sRNAs than APOB particles; this pattern was evident for both HMB and ENV 293 

sRNAs (Figures 6D,E). A similar trend was observed for reads mapping to fungal genomes (Figure 6-294 

Figure Supplement 5). To determine if HDL and APOB particles transport different exogenous (non-295 

host) sRNA signatures, PCoA and PERMANOVA analyses were completed. At the genome level, the 296 

HDL and APOB particles were indistinguishable for HMB and ENV bacteria (Figure 6-Figure 297 

Supplement 6A,B); however, HDL and APOB profiles clustered separately at the fragment level and 298 

HDL and APOB profiles were distinct (F=1.7, p=0.048) for ENV bacterial sRNAs by PERMANOVA 299 

(Figure 6-Figure Supplement 6C,D, Source Data 4).  300 

The lack of strong correlation at the fragment level for non-host sRNAs is likely due to differences in 301 

read lengths and sequences (e.g. terminal nts) for similar reads due to imprecise processing of parent 302 

RNAs, and thus variable read counts across samples. These observations present unique challenges 303 

to study individual sRNAs for biological function; however, many candidate sRNAs do exist within the 304 

very large pool of non-host reads. Using real-time PCR, we quantify candidate bacterial sRNAs on 305 

lipoproteins, and confirmed that HDL and APOB particles transport a 22 nt rDR (5’-306 

AGAGAACUCGGGUGAAGGAACU-3’) likely from bacteria of the Proteobacteria phylum (Figure 6F, 307 

Figure 6-Figure Supplement 7). Likewise, HDL and APOB were also found to transport another rDR 308 

of the Proteobacteria phylum, likely from the order of Burkholderiales (33 nts, 5’-309 

GACCAGGACGUUGAUAGGCUGGGUGUGGAAGUG-3’) (Figure 6G, Figure 6-Figure Supplement 310 

8). In addition to bacterial sRNAs, real-time PCR was also used to confirm that lipoproteins transport a 311 

fungal rDR from the Verticillium genus (21 nts 5’-UGGGUGUGACGGGGAAGCAGG-3’) (Figure 6-312 

Figure Supplement 9). These results suggest that HDL and APOB transport non-host sRNAs derived 313 
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from bacterial and fungal sources in the microbiome and environment. Bile and urine samples also 314 

contained non-host sRNAs, albeit a lesser fraction of total reads. Collectively, these observations 315 

support the need to include non-host sRNAs in the analysis of sRNA-seq data. 316 

 317 

Lipoproteins are defined by their most abundant sRNAs 318 

To determine which RNA class and species contribute to the most abundant sRNAs in each sample 319 

type, the top 100 ranked reads for each sample were filtered and redundant reads were removed for 320 

each group. For liver and bile samples, the top ranked reads were predominantly host sRNAs (Figure 321 

7A,B). On the contrary, the top most abundant reads on lipoproteins were comprised of both host and 322 

non-host sRNAs (Figures 7C,D). The top ranked reads in urine samples were found to be largely host 323 

sRNAs (e.g. tDRs); however, many links to exogenous bacterial sRNAs were identified (Figure 7E). 324 

Although our host and non-host analyses were thorough, many of the top ranked sequences remained 325 

unidentified. Therefore, we sought to further analyze sRNA profiles using a class-independent strategy, 326 

in which we focused on only the most abundant reads for each group. To assess the similarity of 327 

profiles between groups for the top ranked sRNAs, hierarchical clustering and correlations were 328 

performed, and lipoproteins displayed modest correlations with other groups and clustered separately 329 

from livers, bile, and urine (Figure 7-Figure Supplement 1). These observations were confirmed by 330 

PCoA, as lipoprotein samples overlapped and clustered together, separately from bile, urine and liver 331 

samples (Figure 7F). PERMANOVA analysis found that every group was significantly distinct from 332 

each other based on the most abundant sRNAs (Figure 7-Source Data 1). These results suggest that 333 

each sample type can be defined by their most abundant sRNAs independent of parent RNA class or 334 

contributing host or non-host species which is highly appropriate for the study of heterogeneous pools 335 

of exRNAs.  336 

 337 
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Advances in sRNA-seq analysis. 338 

To compare the TIGER pipeline to other sRNA-seq analysis software, APOB, HDL, and liver samples 339 

from WT mice were analyzed by Chimira8, Oasis14, ExceRpt25, and miRge13 software (Figure 8-Source 340 

Data 1). Although the pipelines are designed for different outputs, each can quantify host miRNAs for 341 

which we used to compare analyses, and we found that all the pipelines were comparable in their ability 342 

to quantify host canonical miRNAs for different sample types and the pipelines were highly correlated 343 

for miRNAs (Figure 8-Figure Supplement 1A,B). Most available software for sRNA-seq data analysis 344 

are restricted to miRNAs or endogenous (host) sRNAs, including Chimira, Oasis, and miRge (Figure 8-345 

Source Data 1). This approach may be suitable for liver samples (red circles), as demonstrated by 346 

ternary plots, but HDL (blue circles) and APOB (green circles) samples remain largely unexplained 347 

(Figure 8A). Incorporation of both endogenous and exogenous sRNAs, a key feature of the TIGER 348 

pipeline, is essential to studying lipoprotein sRNAs as this strategy accounts for substantially more 349 

reads in the datasets, as depicted by the left shifts of blue and green circles in the ternary plots (Figure 350 

8B, Figure 8-Source Data 2). A key metric for comparing pipelines is the amount of (useable) 351 

information extracted from the data by the software, i.e. the percent of assigned quality reads. 352 

Remarkably, the TIGER pipeline accounted for 87.95% bile, 87.9% of liver, 85.3% urine, 71.5% HDL, 353 

and 62.2% APOB reads in WT mice (Figure 8C, Figure 8-Source Data 3). In comparison to other 354 

pipelines, the TIGER pipeline accounted for significantly more reads in lipoprotein datasets, and 355 

significantly more reads than Chimira, Oasis, and ExceRpt for liver datasets which are largely host 356 

sRNAs (Figures 8C,D). After the TIGER pipeline performs the non-host read analyses, the top ranked 357 

most abundant sequences of the unexplained reads that remain were searched using BLASTn (Figure 358 

1). Collectively, the TIGER pipeline provides an opportunity to analyze sRNA-seq with increased depth 359 

and detail which is particularly suited for analysis of exRNA and sRNAs on lipoproteins. 360 

 361 

SR-BI Regulation of Lipoprotein sRNAs 362 
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SR-BI is highly-expressed in the liver and plays a fundamental role in reverse cholesterol transport 363 

mediating hepatic uptake of HDL-cholesteryl esters and biliary cholesterol secretion26-28. Loss-of-364 

function variants in human SCARB1 (SR-BI) were associated with increased in circulating HDL-C 365 

levels29. Likewise, Scarb1 mutations in mice also resulted in increased HDL-C levels30. We have 366 

previously reported that HDL-delivery of miRNAs to hepatocytes in vitro requires SR-BI17. Based on 367 

these observations, we hypothesized that SR-BI may regulate sRNA levels on lipoproteins as well as 368 

miRNAs in liver and bile. To quantify the impact of SRBI-deficiency on exRNAs in vivo, host sRNAs 369 

were compared at both the parent and fragment levels. For miRNAs, loss of SR-BI in mice did not alter 370 

miRNA content in liver, urine, bile, or APOB particles at the parent level, and only one miRNA (mmu-371 

miR-143-3p, 0.199-fold, adjp= 0.00042) was significantly altered in SR-BI KO mice compared to WT 372 

mice (Figure 9A, Figure 9-Source Data 1). We also identified a limited number of significantly altered 373 

non-miRNA host sRNAs at the parent level in SR-BI KO mice compared to WT mice (Figure 9A, 374 

Figure 9-Figure Supplements 1, Figure 9-Source Data 1). SR-BI may regulate urinary miRNA NTAs 375 

as SR-BI KO mice were found to have a significant increase in urinary miRNA NTAs (p<0.001) 376 

compared to WT mice (Figure 2-Figure Supplement 1C). Moreover, we found a significant (p=0.0021) 377 

change in NTA-A/U ratios in urine from SR-BI KO mice compared to WT mice, as urine samples from 378 

WT mice were enriched for poly-adenylated miRNAs (NTA-A) and samples from SRBI KO mice were 379 

enriched for poly-uridylated miRNAs (NTA-U) (Figure 2F).  380 

The impact of SR-BI-deficiency on lipoprotein sRNAs may not be evident by grouping individual 381 

sRNAs by their likely parent RNAs and differential expression analyses of individual fragments for each 382 

RNA class may be necessary, as the expression of many individual fragments were found to be 383 

significantly altered in SR-BI KO mice compared to WT mice and distinct patterns were detected 384 

(Figure 9). For example, SR-BI-deficiency resulted in a significant decrease to 21 individual miRNA 385 

sequences (Figure 9, Figure 9-Souce Data 2). Conversely, we found 57 snDR and 8 rDR fragments 386 

that were significantly increased on HDL (Figure 9-Souce Data 2). In livers from SR-BI KO mice, we 387 
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found 14 snDRs and 16 rDRs that were significantly increased at the fragment level, although these 388 

were not identical sequences to fragments found to be decreased on HDL for these classes (Figure 9, 389 

Figure 9-Souce Data 2). These results suggest that SR-BI may play a limited role in regulating sRNAs 390 

circulating on HDL and in livers. Nevertheless, these results strongly support the need to analyze host 391 

sRNAs not just at the parent level, but also the fragment level, as potentially critical observations may 392 

be lost in the grouping of similar sequences for parent analysis. 393 

Although bacteria may regulate SR-BI expression31, SR-BI regulation of the gut microbiome is 394 

unclear, and the role of SR-BI in regulating circulating non-host bacterial sRNAs on lipoproteins is 395 

completely unknown. To determine if SR-BI contributes to exogenous sRNAs on lipoproteins and in 396 

biofluids, differential expression analysis was performed at both the genome and fragment levels. Only 397 

one bacterial species was found to be significantly altered between SR-BI KO and WT mice, decreased 398 

Streptomyces in urine, as determined by genome counts (Figure 9-Figure Supplement 2A, Figure 9-399 

Source Data 3). At the individual fragment level, only 3 bacterial sRNAs were significantly altered by 400 

SR-BI-deficiency; one each in APOB, bile, and urine samples (Figure 9-Figure Supplement 2B, 401 

Figure 9-Source Data 4). These results suggest that SR-BI does not likely regulate non-host bacterial 402 

sRNAs on lipoproteins or in biofluids. Conversely, we found a significant increase in all fungal genome 403 

counts in SR-BI KO mice compared to WT mice (Figure 9-Figure Supplement 2A, Figure 9-Source 404 

Data 3). These observations were not likely the result of a few dominant reads shared across all fungal 405 

genomes as we failed to find any individual fungal sRNAs that were significantly affected by the loss of 406 

SR-BI (Figure 9-Figure Supplement 2B). To determine if SR-BI-deficiency in mice results in changes 407 

to the most abundant sequences in each group, independent of RNA class or genotype, differential 408 

expression analysis was performed for the top 100 reads filtered in the class-independent analysis. 409 

Nonetheless, we only found changes to the most abundant reads on lipoproteins in SR-BI KO mice 410 

compared to WT mice (Figure 9-Figure Supplement 3, Figure 9-Source Data 5). 411 

 412 
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Discussion 413 

High-throughput sequencing of sRNAs has revealed a complex landscape of various types of sRNAs in 414 

cells and extracellular fluids, many of which have not been studied. Currently, there is a great need for 415 

tools that can extract many types of sRNAs and their distinct features from sequencing datasets. Here, 416 

we used sRNA-seq and TIGER to profile most sRNA classes on HDL and APOB particles and 417 

compared these profiles to liver, bile, and urine. Using this approach, we found that HDL and APOB 418 

particles transport a wide-variety of host sRNAs, including tDRs, rDRs, snDRs, and many other 419 

miscRNAs. Moreover, we found that exRNAs on lipoproteins harbored unique features, such as, 420 

enrichment of poly-uridylation NTA events on miRNAs and discrete length distributions for HDL and 421 

APOB particles. Furthermore, lipoproteins were found to transport a multitude of non-host sRNAs likely 422 

derived from bacterial and fungal species of the microbiome and environment. Many of these non-host 423 

sRNAs were found to be likely processed from parent tRNAs and rRNAs. Using TIGER, we were also 424 

able to define each sample type by their most abundant sRNAs independent of class or species, which 425 

is particularly suited for the study of exRNA. Furthermore, the TIGER pipeline allows for the 426 

quantification and differential expression analysis of sRNAs at both the parent and fragment levels. This 427 

strategy allowed our determination that SR-BI has a limited role in regulating cellular and extracellular 428 

sRNAs, which would not have been feasible with other analysis strategies that focus solely on the 429 

parent RNA organization. Overall, this study demonstrates the power of expanding sRNA-seq analysis 430 

beyond canonical miRNAs and exploring the full breadth of host and non-host sRNAs in every dataset. 431 

Although many researchers are using high-throughput sequencing to quantify sRNAs, many 432 

investigators do not take advantage of the enormous amount of information contained within sRNA-seq 433 

datasets. The mammalian transcriptome is immensely diverse and complex, and thus, requires new 434 

analytical tools and novel strategies to address the many distinct features of different sRNA classes 435 

and contributing species10, 12, 32. TIGER is designed to incorporate both host and non-host sRNA 436 

analysis into a modular design that allows for custom prioritization and parallel alignments to both 437 
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genomes and transcripts (libraries), and organizes data at the parent RNA, fragment, and class-438 

independent levels. The seven modules include preprocessing, host genome and database, non-host 439 

library, non-host genome, class-independent, summary, and unmapped. For host miRNAs, we 440 

expanded miRNA analysis to include 5’ and 3’ terminal isomiRs and 3’ NTAs. Furthermore, we 441 

extended our analysis of annotated host sRNAs to include tDRs, rDRs, snDRs, snoDRs, lncDRs, and 442 

many other less studied classes, e.g. yDRs. A key feature of TIGER is the alignment strategy for host 443 

tDRs and rDRs which includes mapping to the host genome and mature transcripts in corresponding 444 

databases, which overcomes challenges posed by introns24, 33. Another key advance in our pipeline is 445 

the parallel analysis of host sRNAs at the parent and individual fragment levels. Organization of sRNAs 446 

at the parent level allows for categorical analysis and positional coverage alignments which provides 447 

information on parent RNA processing (cleavage). Conversely, analysis of sRNAs at the individual 448 

sequence (fragment) level aids biomarker discovery and is critical to determining biological functions. 449 

Collectively, these features represent a substantial advance for the analysis of endogenous host 450 

sRNAs across all types of samples.  451 

A critical difference between cellular RNA and exRNA profiles is the presence of non-host sRNAs 452 

present in exRNA samples1, 34, 35. ExRNAs hold great potential as disease biomarkers, indicators of 453 

specific cell phenotypes and damage, intercellular communication signals, and drug targets for future 454 

therapies36-38. Current sRNA-seq analysis pipelines are not particularly suitable for the study of exRNAs 455 

as many are restricted to only canonical miRNAs, or a limited number of host sRNAs, and lack analysis 456 

of non-host sRNAs, which will likely be a major focus of future investigations. Based on a previous 457 

study reporting that bacterial sRNAs are present in human plasma, TIGER was designed to identify 458 

exogenous bacterial and fungal sRNAs. Strikingly, we found that the majority of sRNAs on HDL and 459 

APOB particles are likely from bacteria present in the microbiome and environment. These non-host 460 

sRNAs are not likely contamination products due to several observations. First, we were not able to 461 

detect candidate bacterial sRNAs in control buffer used to isolate the lipoproteins by real-time PCR. 462 
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Moreover, reads aligning to bacterial and fungal genomes were not likely contamination of reagents 463 

used for sequencing preparation as most of these reads were not present in liver datasets. Next, we 464 

found very low correlation between lipoprotein samples for non-host bacterial and fungal sRNAs 465 

suggesting that there was not a common source of bacterial or fungal RNA in the preparation reagents. 466 

In addition, we found that bacterial and fungal sRNAs on HDL were enriched for short length sRNAs as 467 

compared to APOB particles, a pattern that was also observed for host sRNAs, thus supporting a 468 

common mechanism of loading or association for sRNAs that is different for HDL and APOB particles. 469 

Moreover, we found that non-host bacterial sRNA profiles were distinct for HDL and APOB at the 470 

fragment level, as demonstrated by PCoA and PERMANOVA. Collectively, these results strongly 471 

support that HDL and APOB particles transport distinct sets of non-host sRNAs that are not likely due 472 

to bacterial and fungal contamination or foreign RNA in reagents or the research environment.  473 

The inclusion of non-host reads in our analysis greatly increased our ability to account for reads in 474 

lipoprotein datasets. Nevertheless, there are many exogenous sRNAs that could be neither processed 475 

from annotated transcripts in databases nor originate from species currently represented in the HMB 476 

project. Therefore, another key feature of the TIGER pipeline is the ability to analyze data independent 477 

of species identification or library annotation. As such, class-independent analysis extracts more data 478 

and eliminates a potential barrier to the discovery of biomarkers and intercellular communication 479 

signals. Notably, class-independent analysis of exRNAs captures sRNA sequence, length, and 480 

abundance which are the important defining characteristics of biomarkers in extracellular fluids and 481 

bioactivity in recipient cells. The TIGER pipeline also advances sRNA-seq analysis through the 482 

incorporation of high-end comparative analyses and data visualizations, including PCoA, 483 

PERMANOVA, hierarchical clustering and correlations, positional coverage maps, circular tree maps, 484 

circos linkage maps, and ternary plots. The TIGER pipeline addresses many issues in sRNA-seq 485 

analysis; however, we have identified a few limitations to the software. Although the TIGER pipeline is 486 

designed to quantify 5’ and 3’ variants, it does not currently identify internal modifications, ADAR editing 487 
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events, or single nucleotide polymorphisms. This feature would aid in the study of tDRs, which are 488 

heavily modified, and would potentially improve analysis of non-host sRNAs where reference genomes 489 

may be lacking. The ability to quantify internal variance is a key feature of Chimira, as well as other 490 

software, including UEA workbench39, and MAGI40. Furthermore, the TIGER pipeline does not include 491 

the analysis of PIWI-Interacting RNAs (piRNA) and a few other sRNAs, including promoter-associated 492 

sRNAs, which present unique challenges in alignments, quantification, and nomenclature41. Future 493 

versions of the pipeline will include less studied sRNA classes and the ability to discover new host 494 

sRNAs, as the current pipeline does not have the feature to identify novel miRNAs based on adjacent 495 

genomic sequences which is an output of other pipelines42, 43. Despite these limitations, the TIGER 496 

pipeline sets forth many improvements to sRNA-seq analysis.  497 

In summary, the value of any sequencing data analysis pipeline, ultimately, is the ability to extract 498 

the most useable information from the generated data. Therefore, the goal of TIGER was to assess 499 

both host and non-host sRNAs, which greatly improved the ability to account for more reads in our 500 

sRNA-seq datasets, particularly exRNAs. TIGER also advances the field in its ability to analyze host 501 

sRNAs at the parent and fragment levels and non-host sRNAs at the genome and fragment levels. This 502 

approach may be critical to discovering novel biomarkers and intercellular communication signals that 503 

would be masked by analyzing the sRNAs by their parent RNAs. Likewise, TIGER analyzes sRNAs by 504 

class and species (genome) as well as class-independent approaches. This is very important for the 505 

study of exRNAs where the contributing parent RNA may not be annotated for the host genome, or the 506 

contributing (exogenous) species for highly abundant sRNAs may not be curated in microbiome 507 

databases. The TIGER pipeline is particularly suited for lipoprotein sRNAs which are predominantly 508 

rRNA-derived fragments of bacterial origin. Using TIGER, we were able to make critical observations 509 

comparing lipoprotein sRNAs to liver and biofluids that would not be observed by existing pipelines. 510 

Therefore, this tool is well-suited for the analysis of exRNA. 511 

 512 
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Materials and Methods: 513 

Animal Studies: Plasma, basal bile, urine, and livers were collected from wild-type (WT) and SR-BI-514 

deficient (B6;129S2-Scarb1tm1Kri/J, SR-BI KO) mice, as previously described44. Mice were 515 

anesthetized with urethane (1g/kg, i.p.). The common bile duct was ligated and the gall bladder 516 

cannulated to divert bile into collection tubes. Basal bile was collected for a period of 30 min. Mice were 517 

then exsanguinated, blood was collected from the abdominal aorta in EDTA coated tubes and placed 518 

on wet ice, and tissues were dissected and snap frozen in liquid nitrogen. Plasma and tissues were 519 

stored at -80oC prior to analysis.  All animal procedures were completed under active and approved 520 

IACUC protocols. 521 

 522 

Lipoprotein isolation: To separate HDL and apolipoprotein B (APOB)-containing lipoproteins from 523 

mouse plasma, 200 µL of 0.22-µm filtered-plasma samples were diluted to 500 µL in size-exclusion 524 

chromatography (SEC) running buffer (10 mM Tris-HCl, 0.15 M NaCl, 0.2% NaN3) and injected an 525 

ÄKTA SEC system (GE Healthcare) with three in-series Superdex-200 Increase gel filtration columns 526 

(10/300 GL; GE Healthcare). Samples were applied to the column with a flow rate of 0.3 mL/min at 527 

room temperature and eluate collected as 72 x 1.5 mL fractions using a F9-C 96-well plate fraction 528 

collector (GE Healthcare). Each fraction was analyzed for total protein (BCA; Pierce), total cholesterol 529 

(Raichem), and triglycerides (Raichem) to identify fractions corresponding with HDL and APOB 530 

particles. Due to the SEC set-up, we were not able to separate VLDL from LDL particles, and thus, we 531 

collected fractions covering both lipoprotein classes, referred to here as APOB. Fractions 532 

corresponding with each lipoprotein group were pooled, concentrated with Amicon Ultra-4 10 kDa 533 

centrifugal filters (Millipore) to <200 µL volume, and protein concentrations were quantified by BCA 534 

assays (Pierce). Based on the distribution of total cholesterol, triglycerides, and protein, fractions 535 

corresponding to HDL and APOB were collected, pooled, and concentrated.  536 
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 537 

RNA Isolation: To differentiate lipoprotein sRNA signatures from liver and biofluids, and determine the 538 

impact of SR-BI-deficiency, samples were collected from Scarb1-/- (SR-BI KO) and wild-type (WT) mice. 539 

Total RNA was extracted from HDL (WT N=7, SR-BI KO N=7) and APOB (WT N=7, SR-BI KO N=7) 540 

particles, as well as livers (WT N=7, SR-BI KO N=7), bile (WT N=7, SR-BI KO N=6), and urine (WT 541 

N=5, SR-BI KO N=6). RNA was isolated from equal inputs of either bile (volume), liver (mg), HDL 542 

(protein) or APOB (protein) using miRNAEasy Mini kits (Qiagen). Specifically, 30 µL of primary bile, 120 543 

μg of APOB, 180 μg of HDL or 20 mg of liver were added to 1 mL of Qiazol. Livers were homogenized 544 

in Qiazol with High-Impact Zirconium beads using a Bead Bug Homogenizer (Benchmark Scientific).  545 

After removal of beads, subsequent steps for liver RNA extraction were followed according to 546 

manufacturer’s protocol. Bile, APOB and HDL RNA isolations were processed according to 547 

manufacturer’s protocol, except that after addition of ethanol, samples were incubated at -80oC 548 

overnight before application to isolation columns, and were eluted with a volume of 50 μL. Liver RNA 549 

samples were quantified by Take3 plates (BioTek). 550 

 551 

Real-Time PCR: Total RNA from equimolar amounts of HDL or APOB protein and equivolume amounts 552 

of bile or urine samples were diluted 1:10; 50 ng of total RNA from liver was used for reverse 553 

transcription using either miRCURY LNA universal RT kit (Exiqon) or TaqMan miRNA Reverse 554 

Transcription kit, as per manufacturer’s instructions. Real-time PCR was performed with the 555 

QuantStudio 12K Flex Real-Time PCR System (Life Technologies) using either: A) miRCURY LNA 556 

SYBR Green PCR kit (Exiqon) and either miRNA-specific or custom-sequence specific LNA probes 557 

(Exiqon) or B) TaqMan miRNA-specific probes. Relative quantitative values (RQV) were determined for 558 

both HDL and cellular miRNA analyses. RQV = 2-dCt. exo_rDR_Pflo23S 5’-559 

AGAGAACTCGGGTGAAGGAACT-3’, exo_rDR_Vsp 5’-TGGGTGTGACGGGGAAGCAGG-3’, 560 

exo_rDR_Jliv 5’-GACCAGGACGTTGATAGGCTGGGTGTGGAAGTG-3’, miscRNA_Rpph1 5’-561 
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CGGGCCTCATAACCCAATTCAGACTACTCTCCCCCGCCCTC-3’, snDR_Gm26232 5’-562 

GCGGGAAACTCGACTGCATAATTTGTGGTAGTGGGGGACTGCGTTCGCGCTCTCCCCTG-3’, 563 

snDR_Gm22866 5’-ATAATTTGTGGTAGTGGGG-3’, tDR-GluCTC 5’-564 

TCCCTGGTGGTCTAGTGGTTAGGATTCGGCGCTCTC-3’, and tDR-GlyGCC 5’-565 

GCATTGGTGGTTCAGTGGTAGAATTCTCGC-3’. For HDL, APOB, bile, and urine samples, an 566 

arbitrary housekeeping Ct = 32 was applied, and RQVs for liver sRNAs were normalized by U6. 567 

 568 

Small RNA sequencing: NEXTflex Small RNA Library Preparation Kits v3 for Illumina® Platforms (BioO 569 

Scientific) were used to generate cDNA libraries for sRNA-seq. Briefly, 1 µg of liver total RNA was used 570 

as input for adapter ligation, as per manufacturer’s protocol. For bile, APOB and HDL RNA, 10.5 μL 571 

(21%) of the RNA isolation eluate was used as input for adapter ligation. Library generation was 572 

performed according to manufacturer’s protocol (BioO Scientific) with a modification to the amplification 573 

step, as liver libraries received 18 cycles and bile, APOB and HDL libraries received 27 cycles. After 574 

amplification, samples were size-selected using a Pippin-Prep (Sage Science) -- set for a range of 135-575 

200 nts in length -- and subsequently purified and concentrated using DNA Clean and Concentrator 5 576 

kit (Zymo). Individual libraries were then screened for quality by High-Sensitivity DNA chips using a 577 

2100 Bioanalyzer (Agilent) and quantified using High-Sensitivity DNA assays with Qubit (Life 578 

Technologies). Equal concentrations of all individual libraries were pooled for multiplex sequencing 579 

runs, and concentrated using DNA Clean and Concentrator 5 kit (Zymo). For rigor in down-stream 580 

comparisons, all 66 sequencing libraries were randomized and run independently on three individual 581 

sequencing lanes. Single-end sequencing (75 cycles) of multiplexed libraries were performed on an 582 

Illumina NextSEQ 500 at the Vanderbilt Technologies for Advanced Genomics (VANTAGE) core 583 

laboratory. Each library was sequenced at an average depth of 16.28 million reads/sample.  584 

 585 
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Data analysis: The TIGER pipeline has many unique analysis features built into seven modules for low-586 

level and high-level analyses with data visualization packages. The first module contains pre-587 

processing steps (green) prior to data analysis (Figure 1). To assess raw data quality, FastQC was 588 

performed at the raw read level to check for base quality, total read counts, and adapter identification. 589 

Cutadapt was then used to trim 3’ adapters from processed reads (-a 590 

TGGAATTCTCGGGTGCCAAGG). Although this pipeline can analyze sRNA-seq data prepared by 591 

different library generation methods, TIGER was optimized to analyze sRNA-seq data prepared by 592 

ligation of adapters containing 4 terminal degenerate bases, which reduce ligation bias (e.g. BioO 593 

Scientific NEXTflex Small RNA-seq kit v3). Cutadapt was then used to remove the first and last 4 bases 594 

from the trimmed reads and all trimmed reads <16 nts in length were removed (-m 16 -u 4 -u -4). After 595 

trimming, read length distributions were plotted and FastQC was performed on trimmed reads to 596 

validate the efficiency of adapter trimming. The processed reads were then summarized and plotted. To 597 

generate identical read files, trimmed reads in each sample were collapsed into non-redundant 598 

“identical” reads in FASTQ format and copy numbers were recorded for downstream analysis. 599 

Preprocessed reads were then analyzed by the Host Genome & Database (blue) and Class-600 

Independent (red) modules in parallel (Fig.1). In the Host Genome & Database alignment module 601 

(blue), bowtie (v1.1.2) was used to map reads to a costumed database with option (-a -m 100 --best -602 

strata -v 1) which allows 1 mismatch (MM) and 100 multi-mapped loci, and only the best matches were 603 

recorded. The costumed database was constructed by the host genome and known sequences of host 604 

mature transcripts curated in specific library databases – tRNAs (http://gtrnadb.ucsc.edu/GtRNAdb2/) 605 

and rRNA (http://archive.broadinstitute.org/cancer/cga/rnaseqc_download). A small number of parent 606 

tRNA genes contain introns and the mature transcript differs from the genomic sequence; therefore, the 607 

incorporation of mature tRNA transcripts from GtRNAdb database into the genomic alignment 608 

overcame these limitations. This approach allows for the detection of tDRs spanning exon junctions and 609 

allows reads the chance to be mapped to other non-tRNA loci in the genome with best alignment score 610 

which reduces the false positive tDR reads that can result from database only alignment strategies. 611 
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Counting and differential expression analysis of miRNAs, tDRs, rDRs, snDRs, snoDRs, and other 612 

miscellaneous sRNAs (miscRNA), including yDRs and lincDRs, were performed. The pipeline does not 613 

quantify Piwi-interacting RNA (piRNA) or circular RNAs (circRNA), but this function can be amended. 614 

All prepossessed quality reads were assigned to different classes of annotated sRNAs using distinct 615 

rules -- miRNA: 1 MM, ≥16nt, offset -2, -1, 0, 1, 2 and tDR, snDRs, snoDRs, yDRs, and miscRNAs: 1 616 

MM, ≥16nt, overlap ≥0.9 overlap. Based on the extensive genomic coverage of lncRNAs and repetitive 617 

elements and conservation of rRNAs, the TIGER pipeline applies more stringent assignment rules for 618 

lncDRs and rDRs – perfect match, ≥20 nt, and ≥90% overlap with parent lncRNAs or rRNAs. 619 

Furthermore, reads assigned to lncDRs must only be aligned to lncRNA coordinates and not to any 620 

other loci in the genome. All reads ≥20 nts in length and not aligned to the costumed database were 621 

extracted and tested for alignment as non-host reads. After tabulation of read counts, high-end 622 

analyses were performed on host sRNAs. These include categorical analysis and visualization, 623 

principal component analysis, hierarchical clustering and correlation of samples and groups at the 624 

parent and individual fragment levels. Differential expression detection of tabulated read counts were 625 

performed by DEseq245. In addition, miRNAs were analyzed at the canonical, isomiR, NTA, NTA base, 626 

and isomiR NTA levels. Non-host reads were then analyzed using the Non-Host Genome (Purple) and 627 

Non-Host Library (Gold) modules in parallel (Fig.1). In the Non-Host Genome module, reads were 628 

aligned in parallel to two collections of bacterial genomes: a human microbiome (HMB) collection and a 629 

hand-curated list of environmental bacteria observed during sequencing of human and mouse 630 

lipoproteins. The HMB list was compiled by reducing 3,055 bacterial genomes available from the 631 

Human Microbiome Project (www.hmpdacc.org) to single non-redundant genera, and extracting the 632 

largest available complete genome for each genera. Conversely, to generate the environmental 633 

bacteria list, the top 100 most abundant sequences in a control HDL cohort, that were not mapped to 634 

the host genome, were submitted to NCBI for BLASTn. All hits that showed 100% coverage and 100% 635 

identity were then compiled; non-redundant genera were extracted; redundant genera to the HMB were 636 

removed. Representative genomes from the remaining species were then compiled to the 637 
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environmental bacteria list (ENV). Additionally, a small group of fungal genomes associated with the 638 

human pathology were also collected. The HMB, ENV, and fungal modules contain 206, 167, 8 639 

representative genomes, respectively. Due to high conservation between bacterial genomes and multi-640 

mapping issues, a different bowtie option (-a -m 1000 --best -strata -v 0) was used which allowed 641 

perfect match only and 1000 multi-mapped loci. Reads were aligned to the HMB, ENV, and fungal 642 

groups in parallel and, thus, the same reads could have been counted in multiple groups. The fraction 643 

of reads that align to both databases (HMB, ENV) and the reads that are unique to specific databases 644 

were plotted. Differential expression and high-end analyses, as described above, were performed at the 645 

genome level (total normalized read count for each genome) and at the individual read level. In parallel, 646 

non-host reads were also analyzed by the Non-Host Library (Gold) module where they were aligned to 647 

non-coding RNA databases with same bowtie option as non-host genome analysis. To identify possible 648 

non-host miRNAs (xenomiRs) in sRNA-seq datasets, all non-host reads were aligned perfectly to 649 

annotated miRNAs in miRBase (miRBase.org) and tabulated. Similarly, non-host reads were aligned to 650 

all tRNAs in the GtRNAdb database (GtRNAdb2). Extensive categorical analysis of parent non-host 651 

tRNAs were performed at the kingdom, genome (species), amino acid, anti-codon, and fragment (read) 652 

levels. All assigned non-host tDRs underwent differential expression analysis, high-end analysis, and 653 

data visualization, as described above. Non-host reads were also aligned to prokaryotic and eukaryotic 654 

rRNA transcripts in SILVA database (https://www.arb-silva.de). TIGER limits the analysis of non-host 655 

rDR to the kingdom level for counting, differential expression analysis and high-end analysis. 656 

The TIGER pipeline also analyzed the top most abundant reads independent of class or annotation 657 

in parallel of the host genome, non-host genome, and database modules. The Class-Independent 658 

module (red) ranked and filtered the top 100 most abundant reads in each sample independent of 659 

genomic annotation. The list of top 100 reads from all samples were combined, a count file table was 660 

generated and top 100 overall reads were used to perform hierarchical clustering and correlations at 661 

the individual sample and group levels. Differential expression analyses were performed by DEseq2, 662 
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and significantly altered sequences were searched in NCBI nucleotide database using BLASTn to 663 

identify possible sources (species). All results from the host genome, class-independent, non-host 664 

genome, and non-host database modules were then analyzed by the Summary & Data Visualization 665 

(dark blue) module (Fig.1). In this module, TIGER summarized and organized many of the individual 666 

comparisons. For example, individual volcano plots were graphed into larger matrices grouping 667 

different classes of sRNAs and/or genomic groups (e.g. bacteria and fungi). This module also 668 

generated a comprehensive table for all mapped reads listing the assignments for each read across 669 

modules. Moreover, positional coverage of sRNAs against host parent RNAs were plotted for miRNAs, 670 

tDRs, snDRs, and rDRs. Positional base coverages were also plotted for individual samples, groups, 671 

and significantly altered tDRs and snDRs. For groups, the means of normalized positional coverage 672 

counts (base positional counts per million mapped total reads) for individual samples in the groups 673 

were plotted. Furthermore, this module identified sRNA classes and genomes for the top 100 ranked 674 

reads (analyzed earlier in the Class-Independent module) and graphed the linkages by circos plots. 675 

Finally, this module summarized the read counts in each task and determined the fraction of total reads 676 

that were assigned to any module, genome, or database. For example, pie charts and stacked bar 677 

charts were generated to illustrate the fraction of reads mapped to the host genome and non-host 678 

genome and the fraction of unmapped reads. All unmapped and unaccounted for reads entered the 679 

Final Unmapped Analysis (orange) module (Fig.1). In this module, the top 100 analysis was reapplied 680 

to all unmapped and unaccounted reads, as described above. After ranking, filtering, and tabulation, 681 

differential expression analysis was performed and the significantly altered unmapped reads were 682 

searched in BLASTn to identify possible genomes not contained in the TIGER analysis. These unique 683 

features were designed to extensively and exhaustively analyze sRNA-seq data on lipoproteins (e.g. 684 

HDL and apoB particles) and extracellular fluids (e.g. bile and urine) which have many different types of 685 

sRNAs and diverse species. 686 

 687 
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Data Visualization: Read counts were reported as both raw counts and normalized count per million 688 

total counts (RPM). RPMs were used for stacked bar plots in each module. Cluster analysis were 689 

performed and visualized by heatmap346. Principle component analysis were performed based on 690 

normalized expression value calculated by the variance stabilizing transformation in DESeq2. DESeq2 691 

was used to perform miRNA, tDR and other sRNA differential expression analyses. Significantly 692 

differential expressed sRNAs with adjusted p-value less <0.05 and absolute fold change >1.5 will be 693 

highlighted in volcano plot (red, increased; blue, decreased) and outputted as tabulated file for further 694 

validation. Differential expression results were plotted as volcano plot, venn diagram, and heatmap. 695 

Categorical analyses of tDRs based on amino acid and anti-codons of the parent tRNAs were also 696 

quantified and plotted. Likewise, categorical analysis of snDRs based on U class were analyzed and 697 

plotted.  Non-metric multidimensional scaling of Bray-Curtis dissimilarity indexes, homogeneity analysis 698 

of group dispersions, and principal coordinate analysis visualization was performed using R package 699 

“vegan”. R Packages ggplot2, vegan, ggraph, igraph, reshape2, data.table, RColorBrewer, circlize, 700 

ggtern, and XML were used for data visualization.  701 

 702 

Statistics: For continuous variables, mean and standard error of the mean (S.E.M.) were used. 703 

Comparisons with two variables were calculated using Welch two sample t-tests, two-way Student’s t-704 

tests, or Mann-Whitney nonparametric tests. For comparisons with more than two variables, linear one-705 

way analysis of variance (ANOVA) were used. Spearman ranked method was used for calculating the 706 

correlation coefficient (R). Two-sided p value <0.05 was considered statistically significant. Statistical 707 

analyses were performed using R version 3.4.3. 708 
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Figure 1. Schematic of the TIGER sRNA-seq analysis workflow. 841 
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Figure 2. Host miRNAs on lipoproteins have distinct features compared to liver. WT, wild-type 847 

mice; SR-BI KO, Scavenger receptor BI Knockout mice (Scarb1-/-). (A) Correlation of sRNA-seq reads 848 

per million total reads (RPM, blue) and miRNA reads (RPM miR, gray) to real-time PCR relative 849 

quantitative values (RQV). Spearman correlation. HDL, APOB, liver, bile, and urine samples, N=66. (B-850 

F) Results from sRNA-seq analysis. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI 851 

KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; 852 

Urine SR-BI KO, N=6. (B) Abundance of canonical miRNAs. Mean ±S.E.M. (C) Principal Coordinate 853 

Analysis (PCoA) of canonical miRNA profiles for samples from WT (empty circles) and SR-BI KO (filled 854 

circles) mice. NMDS1, Non-metric multidimensional scaling. (D) Heatmap of hierarchical clustered 855 

pairwise correlation (Spearman, R) coefficients between group means for canonical miRNAs. (E) Start 856 

position analysis of 5’ miRNA variants (isomiR) for combined (WT and SR-BI KO) mouse samples. (F) 857 

Ratio of non-templated U (poly-uridylation) to A (poly-adenylation) for miRNAs. Mean ±S.E.M. One-way 858 

ANOVA. *p<0.05; **p<0.01 859 
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Figure 3. Host sRNAs account for a minor fraction of total reads in lipoprotein sRNA-seq 874 

datasets. WT, wild-type mice; SR-BI KO, Scavenger receptor BI Knockout mice (Scarb1-/-). (A-F) 875 

Results from sRNA-seq analysis. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI 876 

KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; 877 

Urine SR-BI KO, N=6. Host tDRs (yellow), rDRs (red), miRNAs (blue), snoDRs (purple), snDRs (green), 878 

miscellaneous RNA (pink), and unannotated genome (black). (A) Percent of total reads for host sRNA 879 

classes. Mean ±S.E.M. (B-F) Distribution of read length by host sRNA classes (colors) and total reads 880 

(gray), as reported by percent of total reads. Mean ±S.E.M. (B) Liver. (C) APOB particles. (D) HDL. (E) 881 

Bile. (F) Urine. 882 
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Figure 4. Lipoproteins, bile, and urine contain distinct tDR profiles. WT, wild-type mice; SR-BI KO, 908 

Scavenger receptor BI Knockout mice (Scarb1-/-). (A-C,F) Results from sRNA-seq analysis. (A) 909 

Positional coverage maps of tDRs for parent tRNA amino acid anti-codons, as reported as mean 910 

cumulative read fractions (read counts / total counts). (B-C) Principal Coordinate Analysis (PCoA) of 911 

tDR profiles based on (B) parent tRNAs and (C) individual fragments for samples from WT (empty 912 

circles) and SR-BI KO (filled circles) mice. NMDS1, Non-metric multidimensional scaling. (D-F) Real-913 

time PCR analysis of candidate tDRs with predicted folding structures and sequences for (D) tDR-914 

GluCTC and (E) tDR-GlyGCC. WT, white circles; SR-BI KO, red circles. (F) Heatmaps of correlation 915 

coefficients (Spearman, R) for tRNA parents and individual tDR fragments across samples within each 916 

group. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; 917 

Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 918 
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Figure 5. Lipoproteins transport exogenous non-host tDRs and rDRs. WT, wild-type mice; SR-BI 937 

KO, Scavenger receptor BI Knockout mice (Scarb1-/-). (A) Stacked bar plots of non-host tDRs aligned 938 

to parent tRNAs across kingdoms and higher organizations – bacteria, blue; eukaryota, yellow; fungi, 939 

red; embryophyta, orange; vertebrata, purple; archaea, green – as reported as percent of total reads. 940 

(B) Positional coverage maps of non-host tDRs for parent tRNA amino acid anti-codons, as reported as 941 

mean cumulative read fractions (read counts / total counts) for HDL and APOB particles. (C) Stacked 942 

bar plots of non-host rDRs aligned to parent rRNAs across kingdoms and higher organizations – 943 

bacteria, yellow; eukaryota, red; fungi, white; protists, purple; archaeplastida, dark blue; embryophyta, 944 

light blue; archaea, green – as reported as percent of total reads. (D-F) Distribution of read lengths, as 945 

reported as percent of total reads, for all non-host (D) tDRs and (F) rDRs. Two-tailed Student’s t-tests. 946 

*p<0.05. HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; 947 

Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 948 
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Figure 6. Lipoproteins are enriched for sRNAs derived from proteobacteria in the microbiome 962 

and environment. WT, wild-type mice; SR-BI KO, Scavenger receptor BI Knockout mice (Scarb1-/-). 963 

(A) Circular tree maps for non-host bacterial sRNAs on HDL from WT mice, as organized by taxonomy 964 

– proteobacteria, green; actinobacteria, blue; firmicutes, yellow; bacteroidetes, red. Diameter is 965 

proportional to the mean number of reads at the genome level (counts). (B-C) Heatmaps of correlation 966 

coefficients (Spearman, R) for non-host sRNAs (on HDL and APOB particles) for bacterial genomes 967 

and individual bacterial fragments across samples grouped by (B) human microbiome (HMB) and (C) 968 

environment (ENV) species. (D-E) Distribution of read lengths, as reported as percent of total reads, for 969 

non-host bacterial sRNAs grouped by (D) HMB and (E) ENV species. Two-tailed Student’s t-tests. 970 

*p<0.05. (F-G) Real-time PCR analysis of candidate non-host bacterial sRNAs for (F) exogenous rDR 971 

Pseudomonas fluorescens 23S (exo_rDR_Pflo23S) and (G) exogenous rDR Janthinobacterium lividum 972 

23S (exo_rDR_Jliv). WT, white circles; SR-BI KO, red circles. HDL WT, N=7; HDL SR-BI KO N=7; 973 

APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI 974 

KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 975 
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Figure 7. The most abundant sRNAs on lipoproteins are bacterial rDRs. (A-E) Circos plots linking 985 

the most abundant (top 100) sequences to assigned groups for non-host libraries (rRNA lib, tRNA lib), 986 

host sRNAs (rDR, osRNA, tDRs, snDRs, snoDRs, miRNAs) and non-host genomes (fungi, 987 

environment, and microbiome) for (A) liver, (B) bile, (C) APOB, (D) HDL, and (E) urine. (F) Principal 988 

Coordinate Analysis (PCoA) of sRNA profiles based on class-independent analyses. Wild-type mice, 989 

WT (open circles); Scavenger receptor BI Knockout mice (Scarb1-/-), SR-BI KO (filled circles). HDL WT, 990 

N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; Liver SR-BI KO, 991 

N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 992 
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Figure 8. TIGER analysis pipeline accounts for significantly more reads than other software for 1010 

lipoprotein sRNA-seq data. (A-B) Ternary plots of sRNA profiles for all samples displayed as (A) 1011 

percent unexplained (blue), miRNAs (green), and non-miRNA host sRNAs (red); (B) percent 1012 

unexplained (blue), exogenous sRNAs (green), and host genome (red). WT, wild-type mice; SR-BI KO, 1013 

Scavenger receptor BI Knockout mice (Scarb1-/-). (C) Pie charts illustrating the mean fraction of reads 1014 

assigned to host sRNA (red), host genome (blue), non-host (purple), too short for mapping (green), and 1015 

unmapped (orange). HDL WT, N=7; HDL SR-BI KO N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver 1016 

WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, 1017 

N=6. (D) Comparisons of sRNA-seq data analysis pipelines, as reported as percent assigned per total 1018 

reads for TIGER (black), Chimira (blue), Oasis (red), ExceRpt (green), and miRge (yellow) for HDL, 1019 

APOB, and liver samples from WT mice. HDL WT, N=7; APOB WT, N=7, Liver WT, N=7. Mann-1020 

Whitney non-parametric tests. *p<0.05. 1021 
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Figure 9. SR-BI regulates HDL-sRNAs at the individual fragment level, not parent level. 1037 

Differential expression analysis by DEseq2. Volcano plots of demonstrating significant (adjusted 1038 

p>0.05) differential (>1.5-absolute fold change) abundances for miRNAs, snDRs, and rDRs at the 1039 

parent and individual fragment levels - red, increased; blue, decreased. HDL WT, N=7; HDL SR-BI KO 1040 

N=7; APOB WT, N=7, APOB SR-BI KO N=7; Liver WT, N=7; Liver SR-BI KO, N=7; Bile WT, N=7; Bile 1041 

SR-BI KO, N=6; Urine WT, N=5; Urine SR-BI KO, N=6. 1042 
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