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Abstract 

CRISPR/Cas9 knockout screens have been widely used to interrogate gene functions across a 

wide range of cell systems. However, the screening outcome is biased in amplified genomic 

regions, due to the ability of the Cas9 nuclease to induce multiple double-stranded breaks and 

strong DNA damage responses at these regions. We developed algorithms to correct biases 

associated with copy number variations (CNV), even when the CNV profiles are unknown. We 

demonstrated that our methods effectively reduced false positives in amplified regions while 

preserving signals of true positives. In addition, we developed a sliding window approach to 

estimate regions of high copy numbers for cases in which CNV information is not available. 

These copy number estimations can subsequently be used to effectively correct CNV-related 

biases in CRISPR screening experiments. Our approach is integrated into the existing 

MAGeCK/MAGeCK-VISPR analysis pipelines and provides a convenient framework to 

improve the precision of CRISPR screening results. 
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Introduction 

The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated 

9) system has been shown to be a highly effective genome editing tool for mammalian cells [1-

3]. This system has led to the application of CRISPR/Cas9 loss-of-function genome screening [4, 

5], in which tens of thousands of genes are knocked out and evaluated for association with cell 

proliferation (or other phenotypes). While CRISPR screens have demonstrated great promise for 

investigating gene functions in cancer and other research areas [6, 7, 8], the outcomes of 

CRISPR/Cas9 knockout screens are influenced by the copy number variations (CNVs) of regions 

targeted by single guide RNAs (sgRNAs) [9]. In regions with high CNVs, sgRNAs direct Cas9 

to induce cuts at every single copy, triggering a stronger DNA damage response, cell cycle 

arrest, and decreasing cell proliferation. This leads to sgRNA depletion in screening readouts, 

even if the function of targeted regions is unrelated to the screening phenotype [10]. This 

problem is particularly relevant for cancer cells, as copy number alterations are common in 

human cancers [11]. Therefore, reducing or correcting these copy number-related effects is 

critical for improving the precision of downstream CRISPR screening analysis.   

 

Currently, CERES is the only known computational method to decouple the copy number bias in 

CRISPR screens [12]. It models sgRNA readouts as the combination of both CNV bias and 

underlying gene knockout effects and uses a constrained least square optimization model to 

decouple both effects. While this approach is effective in reducing the effect of copy number bias 

in a large number of cell lines, it does not take into consideration many of the other biases that 

exist in CRISPR screen analyses, including frequent absence of replicates, variability in sgRNA 

knockout efficiencies, and variability in read count distributions. Furthermore, the model 
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requires CNV profiles for each cell type as input and, thus, cannot be applied to cells with 

unknown CNV profiles.   

 

We introduced two computational correction methods to correct copy number biases in CRISPR 

screens. For cells with known CNV profiles, we built a regression model to capture the 

relationship between CNV and gene essentiality, and subsequently correct the effects of CNV 

biases. We demonstrated that our method is effective in reducing the prevalence of false 

positives in high copy number regions, while retaining robust results for the identification of 

essential genes with CRISPR screens. In addition, we developed a computational model to 

approximate the relative CNVs for genomic regions that are susceptible to copy number biases. 

It operates by locally analyzing sgRNA read count changes over a broad genomic region, and 

subsequently estimating the copy number status based on the behaviors of all sgRNAs in the 

region. This approach is particularly suitable for screening experiments in which CNV profiles 

are unknown. We demonstrated that this approach correctly identified known amplified regions. 

Both methods are integrated into MAGeCK [13] and MAGeCK-VISPR [14], two computational 

algorithms we previously developed for the analysis of CRISPR screens.    

 

Methods 

MAGeCK and MAGeCK-VISPR 

MAGeCK and MAGeCK-VISPR are algorithms we developed to estimate the effects of gene 

knockouts in CRISPR screens. MAGeCK builds a mean-variance model to estimate the variance 

of the read counts, and uses these variance estimations to model the read count changes for each 

sgRNA in the treatment samples relative to the control samples. The read count changes 
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(calculated as “sgRNA scores” in MAGeCK) of all sgRNAs targeting each gene are then ranked 

and summarized into one score for the gene (“gene score”), using a modified robust ranking 

aggregation (RRA) algorithm. For clarification, we refer to this approach as “MAGeCK-RRA”.  

 

In contrast, MAGeCK-VISPR consists of an algorithm named “MAGeCK-MLE” that estimates 

the essentiality of genes in a CRISPR screen via a maximum likelihood approach. MAGeCK-

MLE initially takes in as input a raw table of reads, and the read count of each sgRNA for each 

sample is modeled as a negative binomial (NB) random variable. For each sgRNA 𝑖 in sample 𝑗, 

the mean of the NB random variable is subsequently modeled as 𝜇𝑖𝑗~ exp (𝛽𝑖0 + ∑ 𝑑𝑗𝑟𝛽𝑔𝑟𝑟 ), 

where 𝛽𝑖0 represents the initial abundance of sgRNA 𝑖,  and 𝛽𝑔𝑟  describes the effect of knocking 

out targeting gene g for condition r. Importantly, 𝛽𝑔𝑟  (named the “𝛽 score”) represents the 

essentiality of gene g in condition r and can be interpreted similarly to a log-fold change value: a 

negative 𝛽 score suggests that gene g is negatively selected in condition r, and vice versa. The 

value of 𝛽𝑔𝑟  is inferred by maximizing the joint log-likelihood of observing the read counts 

associated with all sgRNAs targeting gene g for condition r. 

 

CNV Bias Correction for CRISPR Screen Experiments using MAGeCK-MLE 

To correct for copy number biases in MAGeCK-MLE, we model the relationship between 𝛽 

scores and copy numbers for all genes in condition r with the following equation: 

 𝛽𝑔,𝑟
̂ (𝐶𝑔,𝑟) = {

𝑏𝑔𝑟 − 𝛿𝑟𝐶𝑔,𝑟 ,   𝑖𝑓 0 < 𝐶𝑔,𝑟 < 𝑝𝑟

𝑏𝑔𝑟 − 𝛿𝑟𝑝𝑟 ,       𝑖𝑓 𝐶𝑔,𝑟 ≥ 𝑝𝑟
  

where 𝐶𝑔𝑟 is the copy number estimation of gene g, 𝛿𝑟 is a constant describing the relative effect 

of CNV profiles on 𝛽 score, 𝑝𝑟 is the copy number threshold at which the cell cycle arrest is 
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fully activated, and 𝑏𝑔𝑟  is the 𝛽 score for a gene whose knockout does not trigger any DNA 

damage response mechanism (i.e., no CNV effect). The values of 𝑏𝑔𝑟 , 𝑝𝑟, and 𝛿𝑟 are estimated 

for each condition r by minimizing the least squared error between the observed 𝛽 scores and the 

𝛽 scores estimated by the equation defined with these parameters. An example of the model 

defining the relationship between 𝛽 scores and gene copy numbers for MCF7 cells is presented 

in Figure 1a.  

 

After defining the 𝛽 score-copy number model, the 𝛽 score for each gene g in condition r is 

adjusted by an additive correction factor Δ. The value of Δ is equivalent to the magnitude of the 

bias associated with the gene’s copy number relative to the bias associated with a gene of copy 

number 2. In other words, the adjusted 𝛽 scores for gene g in condition r is defined as 𝛽𝑔,𝑟
𝑎𝑑𝑗

=

𝛽𝑔,𝑟
𝑟𝑎𝑤 + Δ = 𝛽𝑔,𝑟

𝑟𝑎𝑤 + [ 𝛽𝑔,𝑟
̂ (2.0) −  𝛽𝑔,𝑟

̂ (𝐶𝑁𝑔,𝑟)].  

 

CNV Bias Correction for CRISPR Screen Experiments using MAGeCK-RRA  

In the MAGeCK-RRA algorithm, we correct for CNV biases in the sgRNA scores, or the sgRNA 

read count changes between two conditions (as calculated via the NB model). Similar to the 

MAGeCK-MLE CNV correction model, we model sgRNA scores and gene CNV profiles as 

follows:  

 𝑠𝑔,�̂�(𝐶𝑔,𝑟) = {
𝑠𝑔𝑟 − 𝛿𝑟𝐶𝑔,𝑟 ,   𝑖𝑓 0 < 𝐶𝑔,𝑟 < 𝑝𝑟

𝑠𝑔𝑟 − 𝛿𝑟𝑝𝑟 ,       𝑖𝑓 𝐶𝑔,𝑟 ≥ 𝑝𝑟
 

where 𝑠𝑖,𝑟 is the score of sgRNA i in comparison r. An example of the sgRNA score and copy 

number variation is shown in Figure 1b. The sgRNA scores are similarly corrected for the copy 

number bias effect by introducing the additive corrective factor Δ to each sgRNA score: 𝛽𝑔,𝑟
𝑎𝑑𝑗

=
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𝛽𝑔,𝑟
𝑟𝑎𝑤 + Δ = 𝛽𝑔,𝑟

𝑟𝑎𝑤 + [𝑓(2.0) − 𝑓(𝐶𝑁𝑔,𝑟)]. After adjusting the sgRNA scores, the sgRNAs are 

ranked by their scores, and gene essentiality is estimated via the RRA algorithm. An example of 

the model defining the relationship between sgRNA scores and gene copy numbers for MCF7 

cells is presented in Figure 1b. 

 

A schematic of the CNV correction procedure for both MAGeCK-RRA and MAGeCK-MLE is 

presented in Figure 1c. 

 

CNV Estimation using sgRNA Read Counts from CRISPR Screen Experiments 

The method mentioned above and other methods (like CERES) require CNV profiles as an input. 

In the absence of relevant copy number data, we estimate the relative gene copy numbers via a 

sliding window approach, in which we model sgRNA abundance changes within large genomic 

regions. This approach uses a 2 Mb window and a step size of 0.1 Mb as default settings to scan 

across entire chromosomes for all chromosomes in the genome. For each window, the log-fold 

change values associated with all sgRNAs in the window are aggregated. The mean of these 

values is then assigned as a window score if the corresponding window encompass 5 or more 

genes. Once all window scores are computed, each gene is assigned a gene score 𝑤𝑔,𝑟 that equals 

the mean of the window scores corresponding to the windows that overlap the gene. The relative 

copy number for each gene g in condition r is then calculated from the distribution of gene 

scores as follows: 𝐶𝑔,𝑟 =
1

𝜎𝑟
(𝑐𝑔,𝑟 − 𝜇𝑟) + 𝜇𝑟, where 𝑐𝑔,𝑟 = −𝑤𝑔,𝑟  is the negated gene score, 𝐶𝑔,𝑟 

is the estimated relative copy number,  𝜎𝑟 is the standard deviation of the distribution of the 𝑐𝑔,𝑟 

values, and 𝜇𝑟 is the mean of the 𝑐𝑔,𝑟  values.  𝜎𝑟 is introduced to adjust for the variability in 
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essentiality scores across different cell lines (i.e. some cell lines will have more negative/positive 

essentiality scores than others). 

 

The relative copy number estimates can subsequently be incorporated into the copy number bias 

correction algorithms described above. In order to account for the strongly amplified genomic 

regions, only the sgRNA scores or 𝛽 scores of the genes with the highest 2% of copy number 

estimates are adjusted.   

 

Results and Discussion 

CNV Bias Correction Reduces False Positives in Gene Essentiality Identification 

We first applied the correction algorithms of MAGeCK-MLE and MAGeCK-RRA to CRISPR 

screens performed on MCF7 and T47D, two breast cancer cell lines. The MCF7 cell line 

possesses a high copy number region in Chromosome 17 that does not exist in the T47D cell line 

(Figure 2a). As expected, a high correlation was observed between amplified regions and 

strongly negative 𝛽 scores (calculated by MAGeCK-MLE) and RRA scores (calculated by 

MAGeCK-RRA) before adjustment (Figure 2a). MAGeCK-MLE decreased the magnitude of 𝛽 

scores in these regions, reducing the effects of amplifications. Similar corrections to RRA scores 

were observed in MCF7 (Figure 2b). As for T47D, the raw and adjusted 𝛽 (and RRA) scores 

showed little difference due to the absence of high copy numbers within this same region 

(Figures 2c, d).  

 

We systematically evaluated the relationship between copy numbers and CRISPR screening 

results in T47D and MCF7. Genes that have the highest copy numbers demonstrated 
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significantly smaller 𝛽 scores relative to the remaining genes in both cell lines (p < 2.2e-16 and p 

= 1.085e-9, respectively, using the Kolmogorov-Smirnov test). Upon inclusion of the CNV 

correction feature in MAGeCK-MLE, the difference in the distribution of 𝛽 scores between the 

two groups of genes is smaller (p = 1.999e-4 and p = 0.5058 for MCF7 and T47D, respectively; 

Figure 3a-b). The same reduction of differences between high CNV genes and other genes is 

observed for RRA scores as well (Figure 3c-d).  

 

Gene set enrichment analysis (GSEA) also demonstrated that genes with high copy numbers are 

less enriched after CNV bias correction in negatively selected gene sets for MCF7 cells (Figure 

4). Genes in amplified regions are less enriched after bias correction in T47D cells as well.  

 

CNV Bias Correction Retains Robust Results from MAGeCK-MLE and MAGeCK 

We next tested whether the correction algorithms affected the identification of essential genes, 

by examining known essential genes in the amplified region of Chromosome 17. PPM1D, 

BRIP1, and PECAM1 are three known oncogenes in breast cancer cells that are frequently 

amplified in Chromosome 17 [15-19]. These genes are strongly negatively selected in the 

amplified region of MCF7 cells and remained strongly negatively selected after CNV correction, 

an indication that both correction algorithms do not eliminate truly essential genes in the screen 

(Figure 5a-b). In contrast, these genes only demonstrated moderate negative selection in T47D 

cells, which do not have amplifications in the corresponding genomic region (Figure 5c-d).  

 

To comprehensively evaluate the overall effects of CNV correction across the genome, we 

examined the enrichment of known essential genes in the negatively selected gene list. These 
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genes include genes in the pathways associated with ribosomes and spliceosomes, both are 

known to be highly essential across the vast majority of cells. In both the MCF7 and T47D 

samples, ribosomes and splicesomes (either ranked by 𝛽 scores or RRA scores) remain strongly 

enriched in essential gene list before and after correction (Figure 6), providing evidence that our 

algorithms preserve the signals from truly essential genes identified in CRISPR screens.  

 

CNV Correction without CNV profiles 

For samples without CNV profiles, we employed a sliding window approach to estimate gene 

copy numbers by averaging the log-fold change values of sgRNAs within broad genomic 

windows across the entire genome. We applied this approach to MCF7 cells and compared the 

results with known MCF7 CNV profiles. The CNV estimates were highly correlated with actual 

CNV measurements in MCF7 cells, especially for regions with strong amplifications and deep 

deletions (Pearson’s correlation coefficient, r = 0.630; Figure 7a). In particular, the estimates of 

relative gene copy numbers in the region of Chromosome 17 correspond well to the actual CNV 

measurements within this same region (Figure 7b). Furthermore, when using the estimated CNV 

profiles for CNV bias correction, both MAGeCK-MLE and MAGeCK-RRA reduced the effects 

of CNV amplifications in Chromosome 17 (Figure 7c-d). Therefore, in cases where the copy 

number data is absent, our approach serves as a valuable tool for correcting copy number biases 

in CRISPR screening results.  

 

Conclusion 

Copy number variations (CNVs) are one of the major sources of false positives in CRISPR/Cas9 

knockout screens. Supplementing the current MAGeCK and MAGeCK-VISPR computational 
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frameworks, we introduced CNV bias correction algorithms to effectively reduce biases 

associated with copy numbers. In addition, we developed an approach to correct CNV biases 

when CNV profiles are unknown, expanding the applicability of these algorithms to a broad 

range of CRISPR screening datasets for which CNV profiles are not available. We demonstrated 

that our algorithms reduced the prevalence of false positives while simultaneously retaining true 

essential genes, further enhancing the results of MAGeCK and MAGeCK-VISPR. 
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Figure 1. CNV Bias Modeling and Correction in MAGeCK-MLE and MAGeCK for 

MCF7. (a-b) Relationship between (a) 𝛽 scores and gene copy numbers, and (b) sgRNA scores 

and gene copy numbers for the MCF7 cell line. Each blue point corresponds to the 𝛽 (or sgRNA) 

score and copy number for a single gene. The function in red corresponds to the modeled 

relationship between all 𝛽 (or sgRNA) scores and gene copy numbers for MCF7. (c) Workflow 

of the MAGeCK-MLE and MAGeCK algorithms with the inclusion of the CNV bias correction 

feature. 
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Figure 2. Essentiality Score Adjustments in a Variable Copy Number Region in 

Chromosome 17. High CN regions are highlighted in gray. (a) 𝛽 scores in a high CN region in 

MCF7. (b) log(RRA scores) in a high CN region in MCF7. (c) 𝛽 scores in a low CN region in 

T47D. (d) log(RRA scores) in a low CN region T47D.  
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Figure 3. Comparison of Essentiality Score Distributions Between High Copy Number 

Genes and Remaining Genes. “High CNV genes” are the set of genes with the highest 1% of 
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copy numbers. (a-b) Distribution of 𝛽 scores from MAGeCK-MLE without copy number bias 

correction (a) and with copy number bias correction (b). (c-d) Distribution of log(RRA scores) 

from MAGeCK without copy number bias correction (c) and with copy number bias correction 

(d).  
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Figure 4. Enrichment of High Copy Number Genes from Ranked Essentiality Scores using 

Gene Set Enrichment Analysis (GSEA). (a-b) Enrichment of high CN genes in MCF7 based 

on the gene rankings before (a) and after (b) CNV correction. (c-d) Enrichment of high CN 

genes in T47D on the gene rankings before (c) and after (d) CNV correction. NES: Normalized 

Enrichment Score. 
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Figure 5. Retention of Essentiality for PPM1D, BRIP1, and PECAM1. (a) 𝛽 scores 

adjustments in MCF7. (b) 𝛽 score adjustments in T47D. (c) log(RRA score) adjustments in 

MCF7. (d) log(RRA score) adjustments in T47D.  
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Figure 6. Retention of Enrichment for Highly Essential Housekeeping Genes in 

KEGG_RIBOSOME and KEGG_SPLIECEOSOME Pathways.   
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Figure 7. Copy Number Estimation using sgRNA Log-Fold Change. (a) Relationship 

between actual CNV values and estimated CNV values for genes with estimated CNVs in the 

bottom and top 2%. (b) Comparison of actual and estimated CNV (normalized by the max CNV 

value) in a high CNV region in MCF7. (c) 𝛽 scores in a high CNV region in MCF7. (d) RRA 

scores in a high CNV region in MCF7. 
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