
 1

Planned missing data design: stronger inferences, increased research 1 

efficiency and improved animal welfare in ecology and evolution 2 

 3 

Daniel W.A. Noble1,* and Shinichi Nakagawa1, 2,* 
4 

 
5 

1 Ecology and Evolution Research Centre, School of Biological, Earth and Environmental 6 

Sciences, The University of New South Wales, Kensington NSW 2052, Sydney 7 
2 Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria 8 

Street, Darlinghurst, Sydney, NSW 2010, Australia  9 

 10 

* To whom correspondence should be addressed: 11 

Daniel Noble: daniel.wa.noble@gmail.com 12 

Shinichi Nakagawa: s.nakagawa@unsw.edu.au 13 

 14 

Abstract: 15 

1. Ecological and evolutionary research questions are increasingly requiring the 16 

integration of research fields along with larger datasets to address fundamental local 17 
and global scale problems. Unfortunately, these agendas are often in conflict with 18 

limited funding and a need to balance animal welfare concerns.  19 

2. Planned missing data design (PMDD), where data are randomly and deliberately 20 
missed during data collection, is a simple and effective strategy to working under 21 

greater research constraints while ensuring experiments have sufficient power to 22 

address fundamental research questions. Here, we review how PMDD can be 23 

incorporated into existing experimental designs by discussing alternative design 24 

approaches and evaluating how data imputation procedures work under PMDD 25 

situations. 26 

3. Using realistic examples and simulations of multilevel data we show how a variety of 27 

research questions and data types, common in ecology and evolution, can be aided by 28 

utilizing a PMDD and data imputation procedures. More specifically, we show how 29 
PMDD can improve statistical power in detecting effects of interest even with high 30 

levels (50%) of missing data and moderate sample sizes. We also provide examples of 31 

how PMDD can facilitate improved animal welfare all the while reducing research 32 
costs and constraints that would make endeavours for integrative research 33 

challenging.  34 

4. Planned missing data designs are still in their infancy and we discuss some of the 35 
difficulties in their implementation and provide tentative solutions. Nonetheless, data 36 

imputation procedures are becoming more sophisticated and more easily implemented 37 

and it is likely that PMDD will be an effective and powerful tool for a wide range of 38 

experimental designs, data types and problems common in ecology and evolution.  39 

 40 

 41 
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Introduction 46 

Missing data is a widespread problem in ecological and evolutionary research (Nakagawa & 47 

Freckleton 2010; Nakagawa & Freckleton 2011; Ellington et al. 2015; Nakagawa 2017), 48 

often resulting in the exclusion of a substantial amount of data. This contributes to a major 49 

reduction in statistical power and, if the nature of ‘missingness’ is not considered carefully, 50 

leads to biased parameter estimates (Enders 2001b; Graham 2009; Nakagawa & Freckleton 51 

2010; Little et al. 2013). Theoretical frameworks for dealing with missing data, however, 52 

have received substantial attention and missing data theory is now a well-developed field of 53 

research grounded in solid statistical theory (Graham, Hofer & MacKinnon 1996; Enders 54 

2001a; Little & Rubin 2002; Graham 2003; Graham 2009; van Buuren 2012; Little et al. 55 

2013). Nonetheless, while social scientists have been at the forefront of applied missing data 56 

techniques, ecologists and evolutionary biologists have lagged behind  (Nakagawa & 57 

Freckleton 2010).  58 

 Missing data is traditionally viewed by ecologists and evolutionary biologists with a 59 

sense of disdain and annoyance. But, what if including missing data in analyses could be 60 

advantageous? Indeed, social scientists have taken a rather different stance to missing data – 61 

instead embracing its power to help address fundamental research questions (Graham et al. 62 

2006). Planned missing data design (PMDD) is an approach that involves deliberately 63 

planning to ‘miss’ data as an integral part of an experiment. In other words, deliberately not 64 

collecting data on certain variables or experimental subjects. While this seems like an odd 65 

thing to do, if missing data in the variables of interest is completely random or can be made 66 

random, existing statistical frameworks are known to do an excellent job at recovering 67 

parameter estimates and standard errors compared to complete case analyses (Schafer & 68 

Graham 2002; van Buuren 2012). The PMDD approach comes with a substantial number of 69 

benefits that have been largely ignored by ecologists and evolutionary biologists.  70 

Here, we argue that PMDD can expand the scope, reduce the costs and improve 71 

animal welfare, facilitating higher impact research with more power. We begin our 72 

discussion by briefly introducing missing data theory and then describe a few core statistical 73 

tools that can be used to impute / augment (i.e., ‘fill in’) missing data. Using simulations, we 74 

show that, when missing data is ‘completely’ random (see next section), existing data 75 

imputation techniques can be excellent at recovering parameter estimates and their standard 76 

errors – even with hierarchically structured data that is common in ecological and 77 

evolutionary research (Enders, Mistler & Keller 2016; Quartagno & Carpenter 2016; Resche-78 
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Rigon & White 2016). We then describe PMDD, overviewing some of the different 79 

experimental approaches that can be implemented, what they involve and important design 80 

considerations. Following from this discussion, we overview the important benefits of 81 

utilizing a PMDD and end with a discussion on some of the challenges to their use – 82 

providing suggestions for how these can be rectified. 83 

A brief introduction to missing data theory 84 

Missing data patterns can generally be classified as falling into one of three different types – 85 

based on the different mechanisms generating missing data – missing completely at random 86 

(MCAR), missing at random (MAR) and missing not at random (MNAR) (Rubin 1976; Little 87 

& Rubin 2002; Graham 2009; Nakagawa & Freckleton 2010; van Buuren 2012; Nakagawa 88 

2017). The distinction between these three missing data mechanisms is important to 89 

understanding the power of PMDD, which we will introduce below. Missing data (either in 90 

response or predictor variables) are considered to be MCAR when missingness is random 91 

with respect to both observed and unobserved (i.e., not collected in the study) variables 92 

(Enders 2001b; Nakagawa 2017). In other words, the observed data is simply a random sub-93 

sample of complete data (Enders 2001b). In contrast, missing data are considered MAR when 94 

the missing values in a dataset depend on observed values of other variables in the dataset 95 

(Enders 2001b; Graham 2009). For example, if we were interested in understanding the 96 

correlation between survival to 1 year and mass at 6 months we would find that individuals 97 

that die before 6 months are missing data on mass, however, missing data on mass is 98 

correlated with their lifespan, which is known. Missing not at random (MNAR), however, 99 

occurs when missing values depend on unobserved variables that have not been quantified in 100 

the study, or on the variable itself. For example, we may be missing behavioural data on 101 

small sized animals within a population because they tend to be ‘shy’ and difficult to capture 102 

(e.g, Biro & Dingemanse 2009), in which case we would be missing both behavioural and 103 

morphological data. Under these situations, dealing with missing data is difficult (possibly 104 

even impossible) because statistical techniques for recovering missing information when data 105 

are MNAR are difficult to implement given the need to explicitly model the process of 106 

missingness (Schafer & Graham 2002).  107 

These missing data mechanisms have different consequences on statistical results 108 

when missing data is excluded prior to analysis, as is often the case (i.e., referred to as 109 

‘complete case’, ‘pairwise deletion’ or ‘listwise deletion’). While MCAR results in a loss of 110 

power when missing data is excluded from an analysis, it does not bias parameter estimates 111 
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(Enders 2001b; Schafer & Graham 2002; Graham 2009; Nakagawa & Freckleton 2010). In 112 

contrast, when missingness data is MAR or MNAR, excluding missing data will result in 113 

both a loss of power and biased parameter estimates (sometimes severly so; Enders 2001b; 114 

Schafer & Graham 2002; Graham 2009; Nakagawa & Freckleton 2010). To better appreciate 115 

the impact missing data can have on sample size (and thus statistical power), assume that we 116 

have 10 variables, each containing 5% missing data, and a total complete dataset of N = 117 

1000. If we used all variables in a statistical model we may need to exclude as much as 500 118 

observations, resulting in a substantial decrease in power and severely compromising our 119 

ability to detect significant effects (see ‘Recovering power of experimental designs’ for more 120 

on this issue). Statistical techniques for dealing with missing data rely on the assumption of 121 

missing data being MCAR or MAR, and if this assumption is met, then both power and bias 122 

in parameter estimates can be recovered (Enders 2001b; Schafer & Graham 2002; Nakagawa 123 

& Freckleton 2010; van Buuren 2012; Ellington et al. 2015; Nakagawa 2017).  124 

Statistical procedures for dealing with missing data  125 

Planned missing data design hinges on the ability of researchers to make use of statistical 126 

procedures for handling missing data (Little & Rubin 2002; Graham et al. 2006; Enders 127 

2010). It is therefore pertinent that we briefly review existing missing data techniques and 128 

provide some guidance on their implementation when data has been collected using a PMDD. 129 

We do not discuss these topics in great depth as there are a number of important, accessible 130 

reviews and books on these subjects already, which we direct the reader to for more details 131 

(Schafer 1997; Enders 2001b; Little & Rubin 2002; McKnight et al. 2007; Allison 2012; van 132 

Buuren 2012; Nakagawa 2017).  133 

As mentioned above, imputation methods fall under two broad categories and we 134 

follow the general categorization of McKnight et al. (2007) in classifying them in to those 135 

implementing data augmentation (DA) techniques  and those utilizing multiple imputation 136 

(MI) with the help of Rubin’s rules (Rubin 1987; Enders 2010). Data augmentation 137 

procedures incorporate both observed and missing data into a single joint modelling approach 138 

that proceeds through the following steps: 1) the parameters of a model are estimated using 139 

observed data; 2) parameters estimated in step 1 are then used to augment missing data and 3) 140 

model parameters are re-assessed conditional on both the observed and imputed data (Figure 141 

1a; Nakagawa 2017). These steps are re-iterated until the model converges (i.e., maximum 142 

likelihood or stable posterior distribution) (Figure 1a). Data augmentation is advantageous in 143 
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that it is fast, easily implemented (under the assumption of multivariate normality) and results 144 

in robust parameter estimates and standard errors (McKnight et al. 2007).  145 

In contrast, multiple imputation proceeds by generating a set of m (usually m = 40–50 146 

performs well under a variety of situations and has high efficiency; Nakagawa & de 147 

Villemereuil 2015; Nakagawa 2017) complete datasets where missing data is imputed using 148 

variables of interest. These m datasets can then be analysed normally (i.e., as if a complete 149 

dataset existed) and the results (i.e., parameter estimates and standard errors) pooled across 150 

the m datasets (Figure 1b; Schafer 1997; Schafer & Olsen 1998; Little & Rubin 2002; van 151 

Buuren & Groothuis-Oudshoorn 2011; van Buuren 2012; Nakagawa 2017). Multiple 152 

imputation provides a number of advantages over data-augmentation. First, it is extremely 153 

flexible, easily accommodating different distributions (i.e., Bernoulli, Poisson etc.), variables 154 

and model types if needed. Second, since MI creates m complete datasets it allows one to 155 

separate out the imputation step from the analysis step. In other words, we can have a set of 156 

auxiliary variables (see ‘Auxiliary variables to aid in imputation’ below) that are used to 157 

impute missing values and then subsequently use only the variables of biological interest to 158 

run the analysis on m imputed datasets. This is particularly advantageous because including 159 

unnecessary variables in DA procedures can complicate the interpretation of model results 160 

(McKnight et al. 2007; Enders 2010). Lastly, MI procedures account better for imputation 161 

uncertainty as variation in parameter estimates across data sets can be explicitly incorporated 162 

in pooled estimates, protecting against type I errors (McKnight et al. 2007). Additionally, the 163 

effect of missing data on analysis results (i.e. efficiency) can be explicitly quantified and 164 

presented by deriving statistics summarising the variability in parameter estimates across 165 

imputed datasets (McKnight et al. 2007). Given the flexibility, ease of implementation and 166 

their general tendency to produce robust parameter estimates, it is unsurprising that Rubin 167 

(1996) recommends MI procedures over DA.  168 

 169 

Auxiliary variables to aid imputation 170 

Auxiliary variables are variables that are not necessarily of interest with respect to the 171 

biological question at hand, but that are correlated with other variables, or missing data itself, 172 

within the dataset (Collins, Schafer & Kam 2001; Graham 2003). Including auxiliary 173 

variables has been shown to improve the accuracy and stability of estimates and to reduce 174 

their standard error (Enders 2010; Allison 2012; von Hippel & Lynch 2013). The best 175 

auxiliary variables are those that are easy and cheap to collect and that are strongly correlated 176 

with a number of other variables within the data set (Collins, Schafer & Kam 2001; Graham 177 
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2003; von Hippel & Lynch 2013). Collins et al. (2001) have shown that auxiliary variables 178 

can be particularly useful when the missing data is in the response variable, when they 179 

change the missing data mechanism from MNAR to MAR and when the correlation between 180 

auxiliary variables and response is high (r = 0.9). Adding even just 2–3 auxiliary variables 181 

can improve imputation procedures and for the most part, an inclusive analysis strategy  182 

where a large number of auxiliary variable are included in the analysis  is recommended 183 

(Enders 2010 p.g. 128). However, this procedure can be slightly more complex than this in 184 

practice. Hardt et al. (2012) show that the inclusion of too many (> 10) can start to lead to a 185 

downward bias in regression coefficients and a decrease in precision. In addition, auxiliary 186 

variables will have little impact when the correlations between variables in the dataset are 187 

low (r = 0.10) (Hardt, Herke & Leonhart 2012). Therefore, we recommend including 36 188 

auxiliary variables with moderate to high correlations (0.4–0.8) when utilizing imputation 189 

procedures where unplanned missing data might cause data to follow MNAR conditions. 190 

Experiments in ecology and evolution often collect variables that are not necessarily 191 

of interest, but can be used as auxiliary variables. These variables can include body 192 

dimensions, sex, age, spatial data, or even researcher ID. These types of auxiliary variables 193 

can be included in imputation procedures (e.g., MI) with unplanned missing data to ensure 194 

that the MAR assumption is met, but then discarded when testing the biological questions and 195 

hypotheses of interest (Graham 2003). Considering these variables more carefully with 196 

respect to their potential correlations with other variables, and possibly with missing data 197 

itself, is an important aspect of imputation because it can change missing data from MNAR 198 

to MAR satisfying assumptions of imputation procedures. As an illustrative example, 199 

consider mark-recapture field studies that often collect spatial coordinates (i.e., UTM 200 

positions) of animals. While the spatial position may not be of interest to the question of 201 

interest, it may be the case that spatial positions are correlated with missing data. This might 202 

be the case, if for example, observations are missing for some animals because their 203 

territories are located in thick impenetrable forest or are on the boundaries of the study site. 204 

One way to use these spatial coordinates might be to generate a spatial covariance matrix 205 

between observations be (possibly using the SpatialTools package in R – French 2016) and 206 

decompose this matrix into a set of principle components (PCs). The PCs could be then 207 

included into a multiple imputation model (e.g. those using mice or mi – Table 2) to help 208 

recover missing data on individuals that were not observed on a given sampling occasion. 209 

Similar approaches have been developed that make use of phylogenetic covariance matrices 210 
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(Nakagawa & de Villemereuil 2015) as well as the relatedness matrices (Hadfield 2008), and 211 

these have been shown to do an excellent job at recovering missing data.  212 

Planned missing data designs and their application in ecology and 213 

evolution 214 

Planned missing data designs (PMDD) allow researchers to collect incomplete data from 215 

subjects or observations of subjects on purpose by randomly assigning them to have missing 216 

measurements or measurement occasions (Graham et al. 2006; Rhemtulla & Little 2012; 217 

Little & Rhemtulla 2013). Researchers can then utilize data augmentation and multiple 218 

imputation techniques (discussed above) to fill in missing data such that the data contains 219 

complete information for all variables and experimental units within the dataset. Importantly, 220 

PMDD should always conform to the MCAR assumption because missing data is random by 221 

virtue of the experimental design making it ideal for use with imputation methods (Little & 222 

Rhemtulla 2013).  223 

 224 

Subset Measurement Design 225 

Planned missing data design was first developed for research utilising questionnaires 226 

or surveys to help deal with participant fatigue, and is particularly useful when there are also 227 

logistical and financial constraints to asking many different questions (Graham, Hofer & 228 

Piccinin 1994; Graham et al. 2006). For example, a common type of PMDD called the multi-229 

form design (MFD) involves creating alternative questionnaires that each contain overlapping 230 

questions and a sample of new questions (Graham et al. 2006; Little & Rhemtulla 2013). 231 

Combining data on participants across the questionnaires, and then treating the questions 232 

participants were not given as missing information, allows missing data to be imputed based 233 

on the covariance between known answers (Graham et al. 2006).  234 

In ecology and evolutionary biology, we often do not use questionnaires to collect 235 

data (aside from the field of ethnobiology; see Albuquerque et al. 2014), therefore, an 236 

analogous design is what we refer to as a subset measurement design (SMD) (Table 1a). 237 

Similar to the MFD, a SMD involves quantifying a common set of variables across all 238 

individuals (e.g., body size) and then randomly allocating subjects to be quantified on a 239 

subset of other variables (e.g., hormone concentrations, metabolism etc.) (Table 1a). 240 

Common variables can be those that are easily or cheaply quantified, such as body size 241 

indices (e.g., mass, body / wing length) or age (if this is known). In contrast, variables that 242 

are expensive or logistically challenging to quantify (e.g., gene expression, hormone 243 
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concentrations) can be randomly sampled on a subset of subjects during the experiment. 244 

When using a SMD one should also consider, a priori, any potential interactions (Table 1a) 245 

of interest and whether the planned missingness provides sufficient power to test these 246 

interactions (Enders 2010).  247 

 248 

Two-Method Design 249 

The SMD can also be applied to situations where researchers have a choice between 250 

two variables that quantify similar constructs or have similar meaning, but where one is more 251 

easily and cheaply quantified but has large measurement error and the second is more 252 

logistically challenging but is considered the ‘gold standard’ (i.e., lower measurement error / 253 

more informative to the question). The latter design is referred to as a two-method design 254 

(TMD) in the social sciences (Little & Rhemtulla 2013), and can be a useful way at 255 

improving data quality, particularly when some measurement variables are recognized as 256 

being more powerful in addressing certain questions than others. For example, we may be 257 

interested in measuring ‘metabolism’ using both whole-organism resting metabolic rate and 258 

by quantifying a major metabolic hormone, thyroxine (T4) (Table 1a). Thyroxine is known to 259 

impact cell metabolism but is both costly and a more indirect measure of assessing metabolic 260 

rate because it is only a single hormone in a cascade of hormone signalling pathways that 261 

affect ATP turnover in a cell. As such, depending on our question we may actually measure 262 

more animals on whole-organism metabolic rate and fewer on T4, as it better represents 263 

whole-organism metabolic rate per se and is cheaper.  264 

 265 

Wave Missingness Design 266 

Longitudinal research questions, where repeated measurements on a set of 267 

independent individuals is of interest, can utilize a PMDD called wave missingness (Table 268 

1b) such that a group of experimental subjects are assigned to a wave or set of measurement 269 

occasions randomly (Little & Rhemtulla 2013; Rhemtulla et al. 2014). Waves can be blocked 270 

such that some animals are measured at the beginning and end and others in the middle (i.e., 271 

pseudo-randomised missingness; Rhemtulla & Little 2012; Rhemtulla et al. 2014), or 272 

individuals can be randomized to a set number of waves were the measurement occasions are 273 

completely random (as in Table 1b). The specific design utilized will largely depend on the 274 

research question and the constraints faced in executing the study. For example, assume we 275 

are interested in understanding seasonal changes in individual hormone profiles and we 276 

would like to sample the same set of individuals at monthly intervals over the active season 277 
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(6 months). If we have 60 wild animals (that we can regularly re-capture) we may decide to 278 

randomly allocate 10 individuals to one of 6 sampling waves. The first wave samples a set of 279 

10 random individuals across all months, whereas the second wave samples a different 10 280 

animals at months 2, 3, 5 and 6 (Table 1b). We can continue this such that any one animal in 281 

waves 2–6 is sampled a total of 3–4 times. Missing measurement occasions within waves are 282 

random, but animals in wave one are deliberately sampled on each occasion to ensure we can 283 

get a complete picture of hormone changes across time at least on a subset of animals. The 284 

full dataset would contain a total of 360 blood samples if each animal was sampled once. 285 

However, with our design (Table 1) we would have 240 blood samples and approximately 286 

33% of the data would be missing. We could then impute missing data for subjects not 287 

measured on a given occasion.  288 

 289 

Considerations for and General Performance of Missing Data Designs 290 

We have overviewed three of the more common designs that can be applied to 291 

experimental systems, however, it is important to note that PMDD’s can be diverse and are 292 

often not necessarily mutually exclusive of one another (Enders 2010; Rhemtulla & Little 293 

2012; Little & Rhemtulla 2013; Rhemtulla et al. 2014). Combinations of the designs 294 

described above are probably necessary in many real research situations. Regardless of which 295 

PMDD is used, researchers should choose the variables that are most pertinent to the specific 296 

hypothesis being tested, or those that are likely to have small effect sizes (and lower power), 297 

as those being measured with as little missing data as possible (i.e., having complete 298 

measurements on these variables). This ensures that the most pertinent questions can be 299 

tested rigorously (Graham et al. 2006). In addition, researchers should also consider the 300 

hypothesized correlation between variables. More tightly correlated variables (� > 0.50) may 301 

allow for one to plan for a greater level of missing data then two variables that are weakly 302 

correlated.  303 

While these designs can be powerful tools in aiding the testing of research questions, 304 

it is still unclear what designs work best at recovering parameter estimates and standard 305 

errors across various situations. Graham et al. (2006) and Enders (2010) (pg. 23–36) provide 306 

an excellent overview of the power of various PMDD’s. Graham et al. (2006) showed that 307 

with moderate sample sizes (n = 200–300), subset measurement type designs can have >0.80 308 

power in estimating even small effects in many situations (i.e., d > 0.20). Rhemtulla et al. 309 

(2014) also show that with reasonably large sample sizes (n = 300 for multi-form design and 310 

n = 500 for wave missing and hybrid designs) that parameter estimates and standard errors in 311 
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latent growth models show little bias. In many situations, any loss in power resulting from 312 

missing data seems to be rather small relative to the gains in the number of questions that can 313 

be tested and the logistical and cost improvements for a given experiment (Enders 2010). 314 

PMDDs have, in some cases, even been shown to be more powerful than complete case 315 

designs under certain situations (See below for an example; Graham et al. 2006; Enders 316 

2010).  317 

 318 

Benefits of planned missing data design 319 

The PMDDs outlined above provide a number of important advantages for ecologists and 320 

evolutionary biologists. Below we discuss these benefits more thoroughly utilizing realistic 321 

simulations and examples to support our arguments. 322 

 323 

(i) Improved statistical power  324 

We have already indicated above that missing data procedures can substantially increase the 325 

power of a given study by increasing the effective sample size. In the presence of missing 326 

data standard errors are estimated with less efficiency and thus the power to test the 327 

significance of an effect will decline (Little & Rhemtulla 2013). Studies in ecology and 328 

evolutionary biology are known to be under-powered in many cases (Møller & Jennions 329 

2002; Jennions & Møller 2003) and so this has important consequences for the inferences 330 

drawn in a given study. This is particularly true for multi-level data that often require large 331 

sample sizes to achieve sufficiently high power (van de Pol 2012) or even in genotype–332 

phenotyping mapping studies, such as GWAS (here using imputation can also improve 333 

power; e.g., Marchini & Howie 2010). Integrating a PMDD into one’s experiment can 334 

recover the power lost after excluding missing data, facilitating the detection of small to 335 

moderate effects. To demonstrate how PMDD can improve inferences, even with multi-level 336 

hierarchical data, we conducted a couple simulations. In the first simulation, assume we are 337 

interested in estimating the between-individual level correlation between two traits (X1 = 338 

“boldness” and X2 = “time to emerge after predatory attack”) using a multi-response model. 339 

We simulated three variables (X1, X2 and X3) that follow a multi-variate normal distribution 340 

(MVN) with between (B) and within (W)-individual covariance matrices (assuming a 341 

standard deviation (SD) = 1) as follows: 342 

     � ~ ��� �	 2410� , � � � �                    eqn. 1 343 
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 � �  � 1 0.40 00.40 1 00 0 1� , � �  �1 0 00 1 00 0 1�   344 

 345 

Note here that X3 is not of interest, but if it was correlated with X1, X2 or missing data itself, 346 

it could be used as an auxiliary variable to improve the imputation process. For this example, 347 

we simulated 1500 datasets under varying sample sizes (100 – 1000) and levels of missing 348 

data (5–50%) and estimated the between– and within–individual covariance matrices using 349 

data augmentation (maximum likelihood approaches) in ASReml–R (vers. 3.4.1). Missing 350 

data was assumed to be MCAR throughout the data sets, as would be the case in a PMDD, 351 

and we evaluated how well imputation and complete case analyses performed in estimating 352 

the covariance between X2 and X1 under these varying situations (Figure 2). As expected, 353 

given our MCAR assumption, we did not see much impact at all on the point estimate (~0.40; 354 

Figure 2a & b). Imputation procedures actually tended to do slightly better at estimating the 355 

point estimate as there was a slight downward bias (although not significantly so) for the 356 

complete case analysis with small sample sizes and high levels of missing data in our 357 

simulation (Figure 2a & b). Despite this, we observed a major improvement in the estimation 358 

of standard errors when imputing data in comparison to the complete case analysis (Figure 2c 359 

& d), suggesting that imputation procedures, even with hierarchical data such as this, can lead 360 

to fairly substantial improvements in power. This is particularly important as many areas of 361 

research, such as quantitative genetics and behavioural ecology, are indeed interested 362 

variance partitioning methods such as this (Dingemanse & Dochtermann 2013; Brommer & 363 

Class 2017; Careau & Wilson 2017).  364 

 Ecological and evolutionary questions are often more complex than simply estimating 365 

variance components. Experiments will often combine experimental manipulations of 366 

independent individuals and repeatedly measure these individuals across their life. To 367 

understand the benefits of PMDD at improving statistical inferences when both fixed and 368 

random effects might be of interest we conducted a second simulation. Assume we have 369 

manipulated the early thermal environment of a sample of lizard eggs – a common approach 370 

in lizard research (e.g., Noble, Stenhouse & Schwanz 2017). We might be interested in 371 

understanding how these thermal environments affect the growth curves of animals within 372 

each treatment (Figure 3). We simulated data assuming that individuals follow a linear 373 

growth trajectory (random regression model), at least over the period in which we measured 374 

their weight, according to the following model: 375 
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 ��� �  ��� �  ��� � ����� �  ��� � ������ � ������ · ��� �  !��        eqn. 2 377 

 378 

where ��� is the mass of individual i for observation j,  ��� is a dummy variable (‘0’ or ‘1’) 379 

indicating whether individual i belongs to the control group (23ºC) or the treatment group 380 

(26ºC), ��� is the age of individual i at observation j, ��is the contrast between the control 381 

group mean at age 0 ���� and the treatment mean at age 0, �� is the effect of age on mass, 382 

and  �� is the interaction effect between change and mass across age and treatment group. ��  383 

and  ��  are individual level random effects assumed to follow an 384 

~��� "#00$ , # 0.5 0.250.25 0.4 $& and !�� observation random effect (i.e., residual variance) 385 

assumed to follow an ~��0, 1�. An example of the simulated data along with parameters are 386 

shown in Figure 3. If we were only limited in the total amount of sampling, say 100 387 

observations, then we can design an experiment where 10 animals (5 / treatment) were each 388 

measured 10 times (Scenario 1) or we could use a PMDD whereby we increase the number 389 

of total individuals to n = 20 (10 / treatment), but instead measure each individual randomly 390 

only five times, instead of 10 (Scenario 2) (Figure 3). Under these two scenarios we 391 

simulated 1500 datasets and used ASReml–R to estimate the parameters and their standard 392 

errors in eqn. 2. Overall, scenario 2 had a substantial number of benefits both with respect to 393 

estimating fixed and random effects performing nearly as well a complete data (i.e., 20 394 

individuals measured 10 times – Scenario 3). For all fixed effect estimates, there was 395 

between ~10–28% reduction in the standard errors with standard errors for the slopes and 396 

treatment interactions receiving a substantial boost. Most interestingly, we also see a greater 397 

ability to estimate random slopes more precisely (Table 2). Overall, our simulations suggest 398 

that PMDDs can provide power benefits under realistic experimental situations that are 399 

common in ecology and evolution. 400 

  401 

(ii) Improved animal welfare: considering the three ‘R’s’ 402 

Central to research in ecology and evolutionary biology, particularly with respect to research 403 

on vertebrate animals, are issues surrounding animal welfare (Stamp Dawkins 2006; Barnard 404 

2007; Cuthill 2007; Stamp Dawkins 2008; McMahon et al. 2012). Biological research on 405 

vertebrates, and indeed any study species, should strive to alleviate pain, suffering and 406 

distress caused by experimentation (Cuthill 2007). Nonetheless, some pain and distress is 407 

acceptable should the research being undertaken be justified and sufficient to advance 408 
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knowledge. Critical to this point is the ability of research to ‘advance knowledge’, as this 409 

requires researchers to strike a balance between experimentation that involves large samples 410 

of independent animals (reducing type II errors and allowing one to detect an effect of 411 

interest) and the stress inflicted on experimental subjects (Cuthill 2007). The ladder two 412 

points are often in conflict with each other, particularly when the experimentation involves 413 

invasive procedures, and we look to the three R’s (Refinement, Replacement and Reduction) 414 

to strike a balance between these important points (Cuthill 2007). Research in ecology and 415 

evolutionary biology often requires animal subjects to address empirical questions, either in 416 

the lab or the field, and so, replacement in many cases is not a viable option. Therefore, 417 

empiricists primarily try to design experiments with Refinement and Reduction in mind. 418 

 Planned missing data design can be an important tool during the experimental 419 

planning stages that directly targets two of the three R’s (Refinement and Reduction) to 420 

improve animal welfare. Often, PMDD can concurrently target both Refinement and 421 

Reduction at the same time by utilizing less invasive procedures and allowing data to be 422 

collected on fewer experimental subjects (or less often on a given subject). For example, we 423 

could use a subset measurement design to randomly assign the measurement of different 424 

physiological traits (e.g., metabolism, hormones) to a subset of subjects, reducing the number 425 

of subjects quantified on a given physiological measure. Additionally, fewer repeated 426 

physiological measurements can be done on a given subject by randomly assigning a 427 

different temporal sequence of measurements to individuals, refining the experimental design 428 

to reduce stress inflicted by repeated handling. Refinement can further occur by adopting a 429 

two-method design where different physiological assays measuring the same construct, say 430 

‘innate immunity’, can be done in such a way that no one individual has both measurements, 431 

but rather is randomly assigned to the cheaper less invasive measure. In summary, PMDD 432 

can improve animal welfare without compromising our ability to effectively answer a given 433 

question by designing an experiment that has too little power.  434 

 435 

(iii) Reduced research costs  436 

One critical benefit of implementing PMDD is the ability to get a ‘bigger bang for your buck’ 437 

in terms of the research cost to outcome ratio. The cost savings when using a PMDD design 438 

can be substantial, particularly for experiments involving expensive biochemical, proteomic, 439 

metabolomic and genomic work. For example, take our example of measuring hormone 440 

profiles for individuals across a six-month activity period (Table 1b). Using this PMDD 441 

design we were able to reduce our sample size from n = 360 to n = 240 individual samples 442 
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(i.e., using a subset measurement PMDD). If we assume that the cost of individual reactions 443 

to run assays, in addition to labour costs, was $8 per sample, then we would save $900 for 444 

this experiment. These additional savings could be used to run an additional follow up 445 

experiment or even go towards assaying a sub-sample of individuals on a second hormone 446 

that is known to interact with the first. Alternatively, we may be interested in quantifying 447 

telomere length to understand cellular senescence using either flow cytometry (estimated cost 448 

/ sample = $68) or qPCR (estimated cost / sample = $13) methods (Nussey et al. 2014) to 449 

understand patterns of telomere attrition over the season in relation to hormones. In this 450 

example, using a PMDD would save $8160 for flow cytometry methods or $1560 using 451 

qPCR methods (assuming we really had money to do all animals). It also demonstrates how a 452 

two-method design can also save costs. Flow cytometry has been identified as a promising 453 

method for accurate, high throughput quantification of telomere length (Nussey et al. 2014). 454 

However, it is quite expensive compared to qPCR methods. A PMDD where a sample of 455 

animals are quantified both on qPCR and flow cytometry, and those missing flow cytometry 456 

data are then imputed would lead to a fairly substantial cost savings and allow one to verify 457 

the utility of both methods. We therefore view PMDD as a promising approach to improving 458 

cost efficiency.  459 

 460 

(iv) Stronger inferences and testing predictions from multiple working hypotheses 461 

Strong inference involves devising alternative hypotheses and then running an experiment or 462 

set of experiments to test alternative predictions generated from these hypotheses (Platt 1964; 463 

Chamberlain 1965). Identifying and testing among alternative hypotheses is the hallmark of 464 

rapid scientific progress, indeed Platt (1964) suggested that this was one of the primary 465 

reasons for the rapid advancement of molecular biology through the 1960s. Nonetheless, it is 466 

clear that ecological and evolutionary studies rarely test predictions from multiple working 467 

hypotheses (Betini, Avgar & Fryxell 2017). Betini et al. (2017) suggest a number of 468 

intellectual and practical barriers impeding the use of multiple working hypotheses, but 469 

particularly relevant for our argument are the barriers limiting one’s ability to “execute” 470 

investigations involving multiple working hypotheses. Designing fully factorial experiments 471 

to disentangle predictions from alternative hypotheses is a major hurdle, referred to as the 472 

“fallacy of the factorial design” (Betini, Avgar & Fryxell 2017), whereby the addition of 473 

every new working hypothesis requires a new treatment or set of measurement variables 474 

leading to a geometric increase in number of required replicates. Including variables or 475 

experimental manipulations that test predictions from alternative hypotheses into a PMDD, 476 
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can off-set the need for prohibitively large sample sizes and time-consuming and costly 477 

measurements. These approaches may maximize the information gained from an experiment 478 

to facilitate more rapid scientific progress compared to testing single working hypotheses. 479 

Additionally, predictions from hypotheses can be tested using the same sample of 480 

experimental subjects, reducing the spatial and temporal differences between experiments. 481 

 482 

(v) Greater integration between research fields and disciplines 483 

 Understanding ecological and evolutionary processes requires an integrative, 484 

multidisciplinary approach to tackling research questions (Wake 2009). Integrative research 485 

includes assimilating researchers with diverse expertise to identify problems and articulate 486 

their solutions. Often it requires holistic approaches to address fundamental questions, 487 

including the use of observational, experimental and theoretical modelling (Wake 2009). 488 

Questions involving integrative research cut across traditional boundaries, often making use 489 

of novel, and sometimes expensive techniques to help facilitate an understanding of a system 490 

or process. Despite its benefits, it can often be challenging to implement in practice given the 491 

different norms in various research fields, along with the costs and logistical constraints in 492 

doing integrative work. Nonetheless, PMDD may help facilitate more multidisciplinary 493 

research efforts as it alleviates these constraints.  494 

To demonstrate the potential of PMDD in facilitating integrative research, assume 495 

that we are interested in testing Pace-of-life syndrome (POLS) theory (Reale et al. 2010). 496 

POLS theory explicitly predicts covariation between physiological, behavioural and life-497 

history traits (Biro & Stamps 2008; Careau et al. 2010; Reale et al. 2010). Integration of 498 

suites of behavioural traits can lead to consistent individual differences in behaviour (i.e. 499 

personality - Reale et al. 2010; Stamps & Groothuis 2010) that can form behavioural 500 

syndromes (Sih & Bell 2008; Stamps & Groothuis 2010; Sih & Del Guidice 2012). 501 

Importantly, physiological mechanisms are thought to be the primary mechanisms (e.g. 502 

hormones, metabolism;  Biro & Stamps 2008; Biro & Stamps 2010; Careau et al. 2010; Reale 503 

et al. 2010) underpinning both behavioural and life-history variation in populations.  504 

Pace-of-life theory is therefore highly integrative, requiring concurrent measurements 505 

of physiological, behavioural and life-history traits to understand their covariance. It often 506 

requires laborious, time intensive, and sometimes costly measurements of the same 507 

individuals over time. Repeated measurements of the same animals over long periods of time 508 

pose major hurdles in obtaining the high quality longitudinal data required to rigorously test 509 

POL’s theory. Additionally, physiological measures (e.g. metabolism, hormones, ROS, 510 
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immunity) can be costly to obtain (as indicated above) thus limiting the number of samples 511 

that can be collected. Nonetheless, the importance of taking many physiological 512 

measurements has been emphasized in different disciplines (Adamo 2004). Differences in the 513 

approaches and typical sample sizes of collaborators on might also be quite different and in 514 

conflict for such integrative projects.  515 

 516 

Challenges in implementing planned missing data designs 517 

As with any new research philosophy, there will be challenges, particularly in establishing 518 

the relevant and most suitable approaches that work across a wide diversity of different 519 

research questions and experimental designs in ecology and evolution. Given that PMDD is 520 

still new, stimulating interest in them will be the first step to identifying, solving and 521 

implementing solutions to some of the challenges that crop up. Below we discuss some of the 522 

hurdles we see to implementing PMDD and suggests some tentative solutions.  523 

 524 

Unplanned missing data 525 

Of course, as with any experiment, unplanned missing data will creep into PMDD designs. 526 

Often these data may be random, such as when a piece of equipment malfunctions during a 527 

set of measurements or when recording errors are identified and so the data are considered to 528 

be missing. Random instances of missing data, even if unplanned, will not affect the 529 

imputation process or the utility of PMDD unless missing data levels begin to get quite high. 530 

However, our simulations show, as well as others’, that imputation procedures perform quite 531 

well even with large amounts of missing data (~50% – see Figure 1). Nonetheless, there are 532 

real situations where unplanned missing data can be MNAR and this will affect any 533 

experiment regardless of whether a PMDD is implemented or not. We have outlined above 534 

how data can be made MAR though the use of auxiliary variables, and these unplanned 535 

missing data, can then be imputed normally along with any planned missing data using the 536 

same statistical methods. We therefore advise colleagues to collect possible auxiliary 537 

variables where possible to counter unplanned missing data. 538 

 539 

Imputation with generalised linear mixed effect models 540 

Multiple imputation and DA both work well with normally distributed data, however, 541 

in reality variables often are non-normally distributed. While DA is limited to multivariate 542 

normality, MI procedures can also work with non-normal data fit using generalised linear 543 
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mixed effect models (e.g., Poisson GLMMs) (Schafer 1997). However, implementation in the 544 

context of GLMMs is still under active development, and in many cases, is restricted to 545 

simple random effect structures (van Buuren & Groothuis-Oudshoorn 2011; Enders, Mistler 546 

& Keller 2016; Quartagno & Carpenter 2016; Audigier & Resche-Rigon 2017). Nonetheless, 547 

two-level random regression models can be run in a number of existing packages (e.g., mice) 548 

and we believe that the capacity to run more sophisticated models will grow in the near 549 

future. 550 

To re-assure readers that imputation can and does work with non-normal 551 

distributions, we provide a simulated example along with a sample of R code to demonstrate 552 

MI procedures with GLMMs in Box 1 (all R code for simulations are provided as 553 

supplementary material). For our hypothetical example, assume we are interested in 554 

provisioning rates (the number of feeding visits by a parent) in a bird species, the fictitious 555 

Missing Capped Warbler (Sylvia absenscapilla). We would like to understand the costs of 556 

female provisioning by experimentally manipulating brood sizes (n = 6 chicks) in a random 557 

sample of birds compared to a control group, which has normal brood sizes (n = 3 chicks) 558 

(Liebl, Browning & Russell 2016). The Missing Capped Warbler is notoriously difficult to 559 

observe as it is found in thick scrub, and so, we placed cameras at random nests during the 560 

first two weeks of the breeding season to observe provisioning rates in the two treatments 561 

over a 5-hour period. Provisioning rates are known to change as the chicks develop (Khwaja 562 

et al. 2017), and so, the cameras were on each nest for a total of 20 days to understand how 563 

the demands of chicks change, and whether females can keep up with these demands. 564 

Unfortunately, it is a laborious process to observe all the resulting video for 40 birds 565 

measured over 20 days (a total of 4000 hours of video!). We therefore decided to implement 566 

a planned missing data design, where we randomly sampled a set of videos (n = 536 out of 567 

800 videos; ~ 33% missing data) where provisioning rates can be quantified (cutting the total 568 

hours of video watching to 2680 hours). After a long and laborious field season, we were able 569 

to collect data that shows a tendency for experimentally elevated clutch sizes to have higher 570 

rates of provisioning that increase over the care period (Figure 2). The planned missing data 571 

can be imputed, for example, using the mice package (see Box 1). We see that the imputed 572 

data matches well with the complete simulated dataset, with nearly identical results (see table 573 

in Box 1).  574 

 575 

Overcoming psychological barriers to missing data 576 
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One of the biggest challenges to implementing PMDDs probably involves the need for 577 

researchers to over-come the ‘psychological taboos’ around missing data, and the suspicion 578 

of techniques for handling these missing data (Enders 2010). We can re-assure readers that 579 

missing data practices are now very well established (Graham et al. 2006; Nakagawa 2017), 580 

and are rather painlessly implemented in many commonly used statistical software such as R, 581 

SAS, SPSS, and MPlus (See Table 3 for an overview). In fact, many techniques are 582 

implemented by default when missing data is included as response variables in models for a 583 

number of mixed modelling packages (e.g. data augmentation procedures in ‘MCMCglmm’ 584 

and ‘ASReml’). While statistical algorithms vary across these platforms, fairly sophisticated 585 

and versatile ones are now implemented in packages for some of the most widely used 586 

platforms (e.g. ‘mice’, ‘mi’, ‘multimput’ and ‘Amelia’ in the R environment – Table 3) that 587 

implement MI algorithms known to perform well under a wide variety of situations (Schafer 588 

& Graham 2002; van Buuren 2012; Enders, Mistler & Keller 2016; Quartagno & Carpenter 589 

2016; Resche-Rigon & White 2016; Audigier et al. 2017). These techniques are under active 590 

development (e.g., the mice package in R), and so we envisage the breadth of problems these 591 

tools can tackle to increase and be even easier to apply in the future.  Nonetheless, caution is 592 

still needed in their implementation as it is unclear whether imputation procedures perform 593 

well under all circumstances (Nakagawa 2017). Statistical procedures for missing data are 594 

still rarely taught in undergraduate and graduate level courses, so part of the solution will be 595 

to begin educating students and practitioners about how to perform imputation procedures, 596 

explicitly highlighting some of the challenges and caveats that need to be considered. 597 

Nonetheless, there are now excellent resources that provide an in depth look at imputation 598 

procedures (Gelman & Hill 2002; Schafer & Graham 2002; Graham 2009; Enders 2010; Su 599 

et al. 2011; van Buuren & Groothuis-Oudshoorn 2011; Nakagawa 2017). 600 

  601 

Uncertainties surrounding the best PMDD 602 

One challenge in implementing PMDD is the uncertainty around what the most appropriate 603 

missing data design is for a given experiment. This is particularly true in ecology and 604 

evolutionary biology because different questions, experimental systems, data structure and 605 

measurement variables may require creative combinations of different PMDD’s that we 606 

discuss in our paper, or possibly even new ones! While we argue that the benefits of PMDD 607 

can be substantial it will still likely be important to test the robustness of any given design – 608 

possibly through simulations to test the power of different types of missing data designs. 609 

With some very simple simulated data based on effect sizes and experimental designs 610 
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relevant to the question at hand, the power of different PMDD’s can be thoroughly tested 611 

during the design stage of an experiment (Enders 2010). Enders (2010 p.g. 30) provide a nice 612 

introduction on how to conduct power analysis with PMDD’s using simulations, and we 613 

provide all our R code which we hope can act as a skeleton for readers to familiarize 614 

themselves with simulations to help them sort out the best PMDD for their particular 615 

situation. Additionally, new multi-level simulation packages, such as SQuID, allow for 616 

researchers to simulate hierarchical data easily (Allegue et al. 2017). Data can be downloaded 617 

and a missing data introduced to evaluate the power of different PMDD’s. While definitive 618 

guidelines will depend on the experimental design, question and covariance between traits, 619 

we believe that up to ~30% missing data overall across a wide variety of different designs 620 

will likely not compromise performance of imputation procedures.  621 

Conclusions and future directions 622 

Our goal was to put planned missing data design on the radar of ecologists and evolutionary 623 

biologists given the substantial number of ethical, logistical and cost saving benefits it 624 

affords. We have provided some guidance on possible PMDD that can be implemented in 625 

research programs and shown with simulations that even with hierarchical / multilevel data 626 

imputation procedures can perform quite well. While it is still unclear whether imputation 627 

procedures in a multilevel framework will work under all circumstances there is increasing 628 

awareness of the need to develop such techniques with hierarchical data and in many cases 629 

existing methods will likely perform well (Drechsler 2015; Quartagno & Carpenter 2016; 630 

Audigier & Resche-Rigon 2017; Audigier et al. 2017). We encourage colleagues to begin 631 

thinking about PMDD’s and their utility in their research both to improve research quality 632 

and to promote integrative, cost effective research projects in ecology and evolutionary 633 

biology. 634 
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 830 

Tables and Figures 831 

Table 1 – Two types of planned missing data designs relevant for ecological and 832 
evolutionary research. a) Subset measurement designs randomize a set of variables to be 833 

measured on a sample of individuals. Body mass (BM) is strongly correlated with all three 834 

other variables and so is measured on all individuals in the study (complete cases). In 835 

contrast, molecular determination of sex is needed with our species, and along with thyroxine 836 

(T4) can be costly to quantify so these traits are measured on a sample of individuals. 837 

Metabolism is also time consuming to measure and so is also only quantified on a sub-sample 838 

of animals. While we can estimate all main effects (i.e., single variables of interest) with this 839 

design, if interactions are of interest then one should have a PMDD that ensures there is 840 

enough data to effectively estimate the interaction parameters.  b) Wave missing design can 841 
be applied to longitudinal data. Each wave contains a set of 10 random individuals and their 842 

measurement occasions across six months are indicated with ‘1’. Forty individuals are 843 

measured each month, but a different sub-sample of the 60 total through the experiment. 844 
Abbreviations: BM = body mass, S = Sex, M = metabolism; TH = thyroxine (T4). 845 

 846 

a) Subset Measurement Design 847 

Variable Variables Interactions 

subset BM S M TH (T4) M*S M*BM 

S1 1 – 1 1 – 1 

S2 1 1 – 1 – – 

S3 1 1 1 – 1 1 

S4 1 – – 1 – – 

S5 1 1 1 1 1 1 

 848 

b) Wave Missing Design 849 

Measurement  Month 

Wave 1 2 3 4 5 6 

1 1 1 1 1 1 1 

2 – 1 1 – 1 1 

3 1 – – 1 1 1 

4 – 1 1 1 – – 

5 1 – – 1 1 – 

6 1 1 1 – – 1 

 850 
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 852 

Table 2 – Effect of two scenarios on the ability to estimate parameters of a mixed model. 853 

Average parameter estimates and their standard errors for both fixed and random effects over 854 
1500 simulated datasets. Example data is shown in figure 2 and a description of the two 855 

scenarios are provided in the text. Abbreviations and symbols as follows: ': correlation 856 

between intercept (�) and slope (�); (�� = variance estimate for random intercept; (�� = 857 

variance estimate for random slope; trt = treatment; age = change in mass across age. % SE 858 

Decrease = the percent decrease in standard error from Scenario 1 compared to Scenario 2. 859 
“True” are the true parameters that the simulation was based on. Scenario 3 is also provided 860 

for comparison. In scenario 3, this is the full data set (i.e., 20 animals, measured 10 times).  861 

 862 
 863 

 864 

 865 

 866 

 867 

 868 

 869 

  870 

                       Scenario 1 Scenario 2 
 

Scenario 3 
% SE 

Decrease True 

Fixed Effects    

Est. SE Est. SE Est. SE   
intercept 1.21 0.45 1.22 0.40 1.19 0.31 9.83 1.20 
trt 2.01 0.63 1.98 0.57 2.00 0.44 9.82 2 
age 1.79 0.28 1.80 0.21 1.79 0.20 27.06 1.8 
trt*age 1.61 0.40 1.60 0.29 1.60 0.28 27.06 1.6 

   

Random Effects    

Est. SE Est. SE Est. SE   (�� 0.57 0.55 0.62 0.59 0.51 0.34 -6.96 0.50 '��, �� 0.24 0.25 0.23 0.21 0.24 0.16 16 0.25 (�� 0.41 0.21 0.41 0.15 0.40 0.14 31.26 0.40 
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 871 

Table 3 – Examples of common packages and statistical programs that can be used to deal 872 
with missing data. Abbreviations are as follows: SA = stand-alone program; MI = multiple 873 

imputation; DA = data augmentation; B = both, R = response, P = predictors. Y = yes. 874 

 875 
Package Prog. Algorithms Response/

Predictor 
Multi-
level 

Reference / link 

mi R MI B Y Su et al. (2011) 

mice R MI B Y Van Buuren & Groothuis-Oudshoorn 
(2011) 

micemd R MI B Y Audigier & Resche-Rigon (2017) 

jomo R MI B Y Quartagno & Carpenter (2016) 

Amelia R MI B Y Honaker et al. (2011) 

multimp R MI B Y https://github.com/inbo/multimput 

MCMCglmm R DA R Y Hadfield (2010) 

ASReml R/SA DA B Y Butler (2009) 

SAS SA DA/MI B Y https://stats.idre.ucla.edu/sas/seminars/multi
ple-imputation-in-sas/mi_new_1/ 

SPSS SA DA/MI B ? https://www.ibm.com/ms-
en/marketplace/spss-missing-values 

MPlus SA DA B Y https://www.statmodel.com/index.shtml 

 876 
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Figure 1 – Two major types of imputation procedures A) data augmentation (e.g., full information maximum likelihood, expectation 
maximization) and B) multiple imputation. Each large square represents a dataset containing four variables (Y, X1, X2, X3) and n = 10 
observations. Small red squares represent missing data and black squares complete data. Data augmentation procedures (A) take both observed 
and missing data in the analysis under a pre-specified model [E(Y) = XB)], augment missing data, estimate parameter estimates (B1, B2, B3) 
and then re-iterate this process with updated parameters [different coloured B1, B2, B3 and E(Y) = XB] until the model converges on a set of 
unbiased parameter estimates. Multiple imputation (B) uses complete data and often (but not always) uses other variables within the data as 
predictors of a specific variable. It then imputes using regression equations plausible values of missing data for m complete datasets. To prevent 
biased estimates residual error is added to each of the imputed data points (checkered small squares in step 2). These m datasets are then 
analysed with a given model, which can be different from the ones used to impute and, using Rubin’s rules (Rubin 1987), pool the parameter 
estimates across datasets (in this case B1). Abbreviations are as follows: E = expectation of variable, or mean estimate of variable; X = design 
matrix; B = vector of parameter estimates (e.g., B1, B2, B3); � = residual effect or random error.  
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Figure 2 – Simulation results of the estimation of a between–individual correlation for two 
traits [ (X1, X2) = 0.40] under varying levels of missing data (5–50%) and sample sizes (n = 
100–1000). Plots show average point estimates (a & b) and their corresponding standard 
errors (c & d) from 1500 randomly generated datasets when imputing missing data (a & c) or 
running a complete case analysis (excluding missing data – b & d). Note that convergence 
problems are more prevalent with small samples and high levels of missing data. Parameter 
estimates and their precisions are therefore summarised on simulations in which models did 
converge.  
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Figure 3 – Example of experimental data on growth rates across age for two simulated 
scenarios. A) Mass of n = 10 lizards for a control group incubated at 23ºC and experimental 
group incubated at 26ºC. In this scenario, each animal was measured 10 times across the first 
10 months of age. B) Mass of n = 20 lizards for a control group 23ºC and experimental group 
incubated at 26ºC was measured five times with 50% of the mass data on each of the 20 
animals considered missing (‘red’ points). In both scenarios, there were main effects of 
treatment and an interaction between growth across ages and treatment. Individual lizards 
varied in both their intercept and slope (see text for more details). Data was simulated 
according to eqn. 2 with the following parameters:  ��= 1.2; ��= 2; ��= 1.8; �� = 1.6. In 
scenario B, missing data was imputed using likelihood based approaches in ASReml-R. 
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Figure 4– Example data showing the provisioning rates (number of feeding visits within a 5-hour period) for control (3 eggs) and 
experimentally elevated (6 eggs) brood sizes in the fictitious Missing Capped Warbler across the first 20 days of chick age. Provisions were 
simulated assuming a Poisson error distribution using the following model: ��� �  ��� �  ��� �  ��	�� �  ��� � 
����� �  ��� where Provisions = 

log(����. ��= 2; ��= 1; ��= 0.01 with a random intercept and slope variance and covariance matrix as: ~��� ��0
0� , �0.01 0

0 0.0025��.  
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BOX 1 
Multiple imputation (MI) for a few different generalised family types can be 
implemented in the mice package (van Buuren & Groothuis-Oudshoorn 2011). 
Given that our data (number of visits in 5 hours) is Poisson distributed (or 
nearly so), and hierarchical in nature, we will need to impute using a new add-
on developed in the countimp package (Kleinke & Reinecke 2013), which 
imputes Poisson random regressions. It can be installed, along with other 
needed packages in R as follows: 
 
> link <- "http://www.uni-bielefeld.de/soz/kds/software/countimp_1.0.tar.gz" 
> install.packages(link, repos=NULL, type="source")  
> library(countimp) 
> library(mice) 
> library(glmmADMB) 
 
Our data, including the missing data is set up as follows: 
 
> head(data) 
  ind age trt     trt_name provision 
1   1   1   1 Experimental        NA 
2   1   2   1 Experimental        22 
3   1   3   1 Experimental        29 
4   1   4   1 Experimental        38 
5   1   5   1 Experimental        33 
6   1   6   1 Experimental        37 
 
In total, we have approximately 33% missing data at the individual level. To 
impute these missing data, we need to first set up the predictor matrix to define 
what variables are class (random effect groups) and what are to be used as 
random and fixed effects:  
 
> data$ind <- as.integer(data$ind) # Need to keep class variable as integer 
> imp <- mice(data, maxint = 0, printFlag = FALSE) # Do quick run of mice to set up pred 
matrix 
> pred <- imp$pred # Extract the pred matrix 

 Now that we have the predictor matrix, to run a multi-level imputation we 
need to change the predictor matrix row for provision to define the class 
variable (i.e., random effect group – set as ‘–2’ – only one level can be 
included currently), the variable included as both a fixed and random 
effect (i.e., age – set as ‘2’ because we have a random regression model) 
and we will set our ‘trt’ as a fixed effect only (i.e., set as ‘1’) as follows: 
 
> pred["provision", ] <- c(-2,2,1,0,0) 
 
The ‘0’ is used to tell mice not to include these variables as predictors in 
the imputation. Now that this is set up we can run multiple imputation 
telling mice that the ‘provision’ variable is a 2-level Poisson variable: 
 
> imp <- mice(data, m = 20, meth = c("","", "","","2l.poisson"), pred = pred)   
 
This will impute missing information in the ‘provision’ variable creating 
m = 20 ‘filled in’ datasets for which estimates and standard errors can be 
pooled as follows: 
 
> fit <- do.mira(imp = imp, DV = "provision", fixedeff = "trt+age", randeff = "1 + age", 
grp = "ind", id = "ind", fam = "poisson") 
> summary(fit) 
 
We can compare the overall pooled estimates with estimates from our 
‘real complete dataset’ (assuming we watched all videos): 

Full Dataset Imputed Dataset
Fixed Effects Pooled Fixed Effects

Estimate SE Estimate SE
Intercept 1.93 0.05 1.93 0.06
trt 1.13 0.06 1.13 0.07
age 0.01 0.01 0.01 0.01
Random Effects Pooled Random Effects

Estimate Estimate
Intercept 0.011 0.015
Age 0.0025 0.0023  

.
C

C
-B

Y
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted January 11, 2018. 
; 

https://doi.org/10.1101/247064
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/247064
http://creativecommons.org/licenses/by-nd/4.0/


 32

 

.
C

C
-B

Y
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted January 11, 2018. 
; 

https://doi.org/10.1101/247064
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/247064
http://creativecommons.org/licenses/by-nd/4.0/

