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Abstract	(350	Words)	

Background	

The	 advent	 of	 single	 cell	 RNA	 sequencing	 (scRNA-seq)	 enabled	 researchers	 to	 study	 transcriptomic	

activity	 within	 individual	 cells	 and	 identify	 inherent	 cell	 types	 in	 the	 sample.	 Although	 numerous	

computational	tools	have	been	developed	to	analyze	single	cell	transcriptomes,	there	are	no	published	

studies	 and	analytical	packages	available	 to	 guide	experimental	design	and	 to	devise	 suitable	analysis	

procedure	for	cell	type	identification.	

	

Results	

We	have	developed	an	empirical	methodology	to	address	this	important	gap	in	single	cell	experimental	

design	and	analysis	into	an	easy-to-use	tool	called	SCEED	(Single	Cell	Empirical	Experimental	Design	and	

analysis).	 	 With	 SCEED,	 user	 can	 choose	 a	 variety	 of	 combinations	 of	 tools	 for	 analysis,	 conduct	

performance	analysis	of	analytical	procedures	and	choose	the	best	procedure,	and	estimate	sample	size	

(number	of	cells	 to	be	profiled)	 required	 for	a	given	analytical	procedure	at	varying	 levels	of	cell	 type	

rarity	and	other	experimental	parameters.	Using	SCEED,	we	examined	3	single	cell	algorithms	using	48	

simulated	 single	 cell	 datasets	 that	 were	 generated	 for	 varying	 number	 of	 cell	 types	 and	 their	

proportions,	number	of	genes	expressed	per	cell,	number	of	marker	genes	and	their	 fold	change,	and	

number	of	single	cells	successfully	profiled	in	the	experiment.		

	

Conclusions	

Based	on	our	study,	we	found	that	when	marker	genes	are	expressed	at	fold	change	of	4	or	more	than	

the	rest	of	the	genes,	either	Seurat	or	Simlr	algorithm	can	be	used	to	analyze	single	cell	dataset	for	any	
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number	of	single	cells	isolated	(minimum	1000	single	cells	were	tested).	However,	when	marker	genes	

are	expected	to	be	only	up	to	fC	2	upregulated,	choice	of	the	single	cell	algorithm	is	dependent	on	the	

number	of	single	cells	isolated	and	proportion	of	rare	cell	type	to	be	identified.	In	conclusion,	our	work	

allows	 the	 assessment	 of	 various	 single	 cell	 methods	 and	 also	 aids	 in	 examining	 the	 single	 cell	

experimental	design.	

	

Keywords	–	single	cell	RNA-seq,	cell-type	identification,	clustering	

	

Background	

The	 greater	 precision	 afforded	 by	 single	 cell	 sequencing	 has	 increased	 the	 scope	 of	 the	 average	

sequencing	 study.	Unlike	 conventional	methods	 that	 profile	 hundreds	 or	 thousands	 of	 cells	 (aka	 bulk	

sequencing	or	profiling),	the	advancement	in	next	generation	sequencing	and	microfluidic	technologies	

have	now	made	it	possible	to	isolate	a	single	cell	and	perform	different	types	of	omics	profiling	including	

genomics,	 transcriptomics,	 epigenomics	 and	 proteomics	 [1].	One	 prominent	 technique	 that	measures	

gene	 expression	 at	 single-cell	 level	 is	 single	 cell	 mRNA	 sequencing	 (scRNA-seq)	 [1,	 2].	 It,	 unlike	 bulk	

sequencing,	unmasks	 the	 fundamental,	widespread	heterogeneity	 in	gene	expression	among	cells	 in	a	

tissue	 or	 cells	 considered	 to	 be	 of	 same	 type	 based	 on	 canonical	markers	 [3,	 4].	 Hence,	 rather	 than	

simply	 examining	 differential	 expression	 between	 two	 samples,	 we	 can	 identify	 the	 cell	 types	 and	

expressed	genes	within	each	cell	 type	as	a	 first	 step	before	differential	expression	analysis	 [4,	5].	Not	

only	does	this	first	step	provide	valuable	insights	into	the	transcriptomic	profiles	of	individual	cell	types	

and	states,	but	it	also	provides	a	deeper	context	for	the	subsequent	differential	expression	analysis.		

However,	 the	 effectiveness	 of	 cell	 type	 identification	 is	 a	multi-step	 process	which	 led	 to	 the	

explosion	of	new	single	cell	software	applications,	referred	to	as	a	“cottage	industry”	[6].		According	to	

Awesome	 Single	 Cell	 (https://github.com/seandavi/awesome-single-cell),	 a	 site	 that	 compiles	 a	 list	 of	

new	 single	 cell	 analysis	 methods,	 89	 methods	 have	 recently	 been	 created	 for	 analyzing	 single	 cell	

sequencing	 data	 (normalization,	 dimensionality	 reduction,	 clustering	 and	 differential	 expression),	

including	plethora	of	methods	required	of	cell	type	identification.		

Hence,	it	is	necessary	to	comparatively	assess	the	different	tool	combinations	(aka	pipelines)	to	

determine	 which	 is	 best	 at	 cell	 type	 identification.	 Comparative	 analyses	 have	 been	 published	 on	

sequencing	 [7,	 8],	 normalization	 [9]	 and	 clustering	 [10,	11].	 Yet,	 there	has	not	been	a	 comprehensive	
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study,	 assessing	 whole	 pipelines	 and	 addressing	 broader	 issues	 of	 experimental	 design	 in	 cell	 type	

identification.		

We	developed	a	computational	method	to	address	this	important	gap.	We	developed	an	easy	to	

use	 tool	 in	 an	 R-package	 SCEED	 (Single	 Cell	 Experimental	 Design	 and	 Analysis).	 The	 package	 has	

functionality	 to	simulate	scRNA-seq	data	with	user	provided	statistical	characteristics:	 total	number	of	

cells,	 genes,	 groups	 proportions,	marker	 genes	 and	 fold	 change	 (fC)	 of	marker	 genes.	 The	 simulated	

dataset	with	known	cell	types	can	be	analyzed	using	published	cell-type	identification	algorithms	using	

SCEED.	 Systematic	 comparison	 of	 the	 results	 of	 the	 analysis	 pipeline	 to	 the	 known	 true	 labels	 using	

accuracy,	 sensitivity,	 specificity,	 F1score	 and	 Rand	 Index	 (for	 details	 see	 methods)	 that	 provide	 the	

ability	to	identify	the	optimal	single	cell	algorithms	for	dataset	and	will	also	help	to	identify	the	number	

of	cells	required	for	adequate	power	for	the	detection	of	the	cell-types.	

	

Methods		

The	schematic	of	SCEED	is	shown	in	Figure	1.	Each	step	in	SCEED	is	described	below.	

																		 									
Figure	 1.	 Schematic	 representation	 of	 SCEED	 pipeline.	 (Left	 to	 right)	 First	 a	 simulated	 dataset	 is	

generated	 using	 SCEED	 “generateDataset”	 function	 with	 input	 parameters	 mentioned	 under	 “Data	

simulation”.	Next,	 the	 simulated	dataset	 is	 analyzed	using	different	 single	 cell	 algorithms.	 To	 test	 the	

performance	of	each	single-cell	algorithm,	F1-score	which	is	a	measure	of	test’s	accuracy	is	computed.	

Finally,	 based	 on	 the	 F1	 score	 cutoff	 chosen	 by	 user,	 best	 algorithm	and	number	 of	 cells	 required	 to	

perform	the	single	cell	experiment	are	selected.	
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Data	simulation	

Our	procedure	 to	simulate	 the	single	cell	data	 is	 shown	 in	Figure	2.	 In	 step	1,	gene	by	cell	expression	

matrix	is	simulated	using	Splatter	package	[12],	which	simulates	m	cell	types	of	given	rarity/prevalence	

with	n	 cells.	 In	step	2,	each	cell	 type	will	express	specific	number	of	marker	genes	g	with	specific	 fold	

change	levels	fc.	The	mean	expression	level	of	each	marker	gene	gi	 in	group	k	was	simulated	by	taking	

the	product	of	 a	 group-specific	 fold	 change	 level	 (sampled	 from	a	negative	binomial	distribution	with	

shape=	fci	and	rate=	1)	and	the	mean	expression	level	of	gi	in	all	cells	that	are	not	part	of	k.	For	each	cell	

in	 k,	 the	 final	 expression	 level	 of	marker	 gene	gi	was	 the	 product	 of	 the	 simulated	mean	 of	gi	 and	 a	

library	size	that	was	simulated	using	Splatter	[12].	The	remaining	steps	are	stated	in	Figure	2.	

	

	
Figure	2:	Generation	of	simulated	dataset	

	

Analyses	

1. Single	cell	Analysis	Steps	

A	 standard	 single	 cell	 analysis	 procedure	 includes	 data	 normalization,	 dimensionality	 reduction	 and	

clustering	 [13].	 Normalization	 is	 a	 crucial	 step	 for	 any	 single	 cell	 analysis	 that	 adjusts	 for	 unwanted	

technical	or	biological	variations	that	may	affect	the	gene	expression	analysis.	With	larger	datasets	like	

single	 cell,	 dimensionality	 reduction	 is	 also	 an	 important	 step	 that	 transforms	 data	 into	 lower	

dimensional	 sub-space,	 allowing	 significant	 reduction	 in	 data	 complexity	 and	 also	 makes	 data	
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visualization	 easier.	 Finally,	 single	 cells	 with	 similar	 transcriptome	 profiles	 are	 clustered	 together	 to	

deduce	putative	(sub)populations,	aka	cell	types.		

2. Incorporation	of	single	cell	methods	into	SCEED	package	

SCEED	 package	 allow	 users	 to	 add	 any	 single	 cell	 analysis	 package	 of	 interest	 into	 its	 pipeline	 using	

function	 “sceed_AlgorithmName”	 for	 example	 sceed_seurat.	 For	 example,	 in	 the	 current	

implementation	of	SCEED,	kmeans,	Simlr	and	Seurat	 (details	 in	 results	section)	are	available.	Although	

we	have	added	only	three	single	cell	algorithms,	SCEED	package	is	completely	flexible	and	any	number	

of	single-cell	algorithms	can	be	added	for	testing	as	per	user’s	requirements.		

	

Performance	assessment	

The	performance	of	an	analysis	procedure	 is	assessed	by	computing	F1	score	of	a	cluster.	F1score	 is	a	

balancing	measures	of	recall	(sensitivity)	and	precision	of	cell	classification.	Higher	F1	score	shows	better	

performance	 of	 the	 algorithm	 tested.	 User	 can	 choose	 F1-score	 threshold	 suitable	 to	 annotate	 the	

clusters	for	cell	types	and	hence	best	single	cell	analysis	algorithm	as	well	as	sample	size.		

	 	 	 F1score	=	2	((Precision	x	Recall)/	(Precision	+	Recall))	

Results	

We	used	 SCEED	 to	 test	 3	 popularly	 known	 single	 cell	 algorithms	 for	 cell	 type	 identification:	 k-means,	

SEURAT	and	SIMLR.	For	k-means	clustering	approach,	k	was	set	equal	to	number	of	cell	types	simulated.	

For	 Seurat	 and	 Simlr	 algorithms,	 default	 parameters	mentioned	by	 the	 authors	were	 used.	 In	 Seurat,	

while	 using	 “FindClsuters”	 function,	 k.param	 was	 set	 to	 the	 number	 of	 cell	 types	 simulated.	 	 We	

generated	27	datasets	of	varying	choices	of	parameters.		

	

Generating	simulated	single-cell	datasets	

In	 a	 single	 cell	 experiment,	 discovering	 rare	 cell	 population	 is	 of	 utmost	 importance.	 Stressing	on	 the	

rarity	of	cell	populations,	we	simulated	single	cell	datasets	where	 five	cell	 types	were	partitioned	 into	

unequal	proportions	such	that	one	of	them	has	low	proportion	or	representing	rare	population,	ranging	

from	2%-10%.	For	 instance,	we	defined	a	single-cell	category	having	5	cell	 types	 in	proportions	of	0.1,	

0.2,	0.2,	0.2	and	0.3.	In	each	cell	type,	50	genes	were	simulated	as	marker	genes	that	were	either	2-,	4-	

or	8-fold	upregulated	when	compared	to	rest	of	 the	cell	 types.	For	the	same	proportions	of	cell	 types	

while	keeping	the	other	parameters	same,	we	simulated	single	cell	data	sets	of	2000	or	3000	cells.	More	



details	of	each	dataset	are	shown	in	Table	1.		In	summary,	we	created	27	simulated	single-cell	datasets.	

Notably,	in	SCEED	package,	all	these	parameters	(such	as	number	of	cell	types,	single	cells	per	cell	type,	

genes	 per	 cell,	 marker	 genes	 per	 cell	 type	 and	 fold	 change	 cutoffs)	 can	 be	 adjusted	 as	 per	 user’s	

requirements.	

	

Table	1:	Properties	of	different	of	simulated	single	cell	datasets	generated.	

Cell	type	proportions		 No.	 of	 cell	

types	(m)	

No.	of	Genes	 No.	 of	 Marker	

genes	

No.	 of	 cells	

simulated	(n)	

Fold	 change	 (fC)	

of	marker	genes	

0.1,	0.2,	0.2,	0.2,	0.3		 5	 10000	 50		 1000,	 2000	 and	

3000		

2,	4	and	8	

0.05,	0.2,	0.2,	0.2,	0.35	 5	 10000	 50	 1000,	 2000	 and	

3000		

2,	4	and	8	

0.02,	0.2,	0.2,	0.2,	0.38		 5	 10000	 50	 1000,	 2000	 and	

3000		

2,	4	and	8	

	

Testing	the	performance	of	single-cell	algorithms	and	estimation	of	sample	size	required	

All	these	datasets	were	analyzed	using	three	single	cell	algorithms,	kmeans,	Seurat	and	Simlr	and	tested	

for	their	performance	using	F1	score.	At	 lowest	 fold	change	(fC)	of	2	 for	marker	genes,	 irrespective	of	

number	 of	 single	 cells	 collected,	 Seurat	 provided	 the	 best	 performance	 in	 F1-score	 for	 rarity	 of	 0.1.	

However,	 for	 fc	of	2,	we	may	need	at	 least	1000	cells	 for	F1	 score	of	>0.9.	As	 fC	 increases,	 the	other	

algorithms	 also	 offered	 increased	 performance,	 Supp	 figures	 1	 and	 2.	 Next,	 we	 compared	 these	

algorithms	to	detect	even	rarer	cell	type,	with	a	proportion	of	0.05	(the	cell	type	proportions	are	0.05,	

0.35,	0.2,	0.2	and	0.2),	fig	3.	At	fC	2,	Seurat	reached	the	F1	score	of	0.93	but	only	when	number	of	single	

cells	 >=	 2000,	 Fig	 3.	 In	 line	 with	 previous	 observation,	 the	 other	 algorithms	 also	 showed	 increased	

performance	with	increase	in	fC	at	0.05	proportion,	Supp	fig	1,2.	However,	when	we	reduced	the	rarer	

cell	 type	proportion	 further	 down	 to	 0.02,	 Simlr	 outperformed	 the	 remaining	 two	 algorithms	with	 F1	

score	of	0.69	for	number	of	single	cells	>=	1000.	Separately,	we	also	estimated	the	minimum	sample	size	

required	at	a	given	F1	score.	For	 instance,	Simlr	could	reach	to	F1	score	of	>0.7	for	proportions	of	0.1	

and	0.05	for	sample	size	(number	of	single	cells)	of	1000	while	Seurat	required	sample	sizes	of	1000	and	

2000	for	cell	proportions	of	0.1	and	0.05	respectively,	Supp	fig	3.		

	



																	

	
Figure	3:	Performance	of	different	single	cell	algorithms	at	different	cell	proportions.	

	

Discussion	and	Conclusion	

We	proposed	SCEED	method	as	an	easy-to-use	package	to	help	the	researchers	in	designing	a	single	cell	

experiment	 (estimate	 the	 number	 of	 cells	 required	 to	 identify	 novel	 cell	 types)	 and	 optimal	 analysis	

procedure.	 The	 package	 takes	 into	 account	 all	 technical	 and	 biological	 parameter	 that	 characterize	

typical	single	cell	RNA-seq	data.	Using	SCEED	package,	we	simulated	27	single	cell	datasets	that	account	

for	 varying	 sample	 sizes,	 rarity	 of	 cell	 types	 and	 fold	 change	 of	 expression	 of	 marker	 genes.	 Such	 a	

simulation	is	significant.	For	example,	when	researchers	are	planning	to	analyze	cell	types	similar	to	beta	

cells	from	islets	of	Langerhans	in	the	pancreas	where	marker	genes	such	as	insulin	are	expressed	in	far	

greater	concentrations	than	rest	of	the	genes.	In	contrast,	they	are	interested	in	identifying	sub	classes	

of	established	cell	 types	 like	dendritic	cells.	Using	SCEED	package,	 researchers	can	generate	simulated	



datasets	that	bear	statistical	properties	similar	to	that	of	the	expected	data	and	test	various	single	cell	

algorithms.	Our	package	not	only	suggest	the	best	method	among	the	tested	algorithms	but	also	suggest	

the	number	of	cells	required	to	achieve	the	required	results.	As	single	cell	transcriptome	analysis	field	is	

rapidly	growing	field,	SCEED	package	facilitates	easily	adding	more	single	cell	algorithms	for	testing.	

In	our	study,	we	have	compared	the	performance	of	three	popularly	used	single	cell	algorithms.	

Though	our	simulations	are	limited,	our	study	clearly	shown	that	even	popularly	used	algorithms	do	not	

perform	best	over	ranges	of	cell	population	rarity	and	fold	change	in	expression	of	marker	genes.	Based	

on	these	results,	we	demonstrated	that	SCEED	package	fills	an	important	gap	in	the	single	cell	analysis	

field.	However,	we	need	to	conduct	extensive	study	to	identify	optimal	analysis	procedures	for	a	variety	

of	experimental	settings	and	statistical	properties	of	data.	Such	a	study	needs	 to	account	not	only	 for	

the	 3	 parameters	 we	 tested	 up	 on,	 it	 needs	 to	 account	 for	 the	 variation	 in	 the	 other	 statistical	

parameters	(can	be	selected	in	SCEED	package)	and	addressing	the	experimental	designs	of	scRNA-seq	

experiments.			
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