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Abstract 

Non-coding RNAs (ncRNA) are regulators of cell functions and circulating ncRNAs from the 

majority of RNA classes, such as miRNA, tRNA, piRNAs, lncRNA, snoRNA, snRNA and 

miscRNAs, are potential non-invasive biomarkers. Understanding how non-disease traits 

influence ncRNA expression is essential for assessing their biomarker potential.  

We studied associations of common traits (sex, age, smoking, body mass, physical 

activity, and technical factors such as sample storage and processing) with serum ncRNAs. We 

used RNAseq data from 526 donors from the Janus Serum Bank and traits from health 

examination surveys. We identified associations between all RNA classes and traits. Ageing 

showed the strongest association with ncRNA expression, both in terms of statistical significance 

and number of RNAs, regardless of RNA class. Serum processing modifications and storage 

times significantly altered expression levels of a number of ncRNAs. Interestingly, smoking 

cessation generally restored RNA expression to non-smoking levels, although for some isomiRs, 

mRNA fragments and tRNAs smoking-related expression levels persisted. 

Our results show that common traits influence circulating ncRNA expression. Therefore 

it is clear that ncRNA biomarker analyses should be adjusted for age and sex. In addition, for 

specific ncRNAs identified in our study, analyses should also be adjusted for body mass, 

smoking, physical activity and serum processing and storage.  

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2018. ; https://doi.org/10.1101/247155doi: bioRxiv preprint 

https://doi.org/10.1101/247155
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Introduction 

Approximately two thirds of the mammalian genome is transcribed to produce different RNA 

classes, the majority of which are non-coding RNAs (ncRNA)1,2. The major ncRNA classes are 

microRNA (miRNA), transfer RNA (tRNA), piRNAs, long non-coding RNA (lncRNA), small 

nucleolar (snoRNA), small nuclear RNA (snRNA) and miscellaneous RNA (miscRNAs). In 

addition, fragments and isoforms of RNAs may have important biological roles independent of 

the canonical, full-length RNAs from which they derive3–5. Circulating small non-coding RNAs 

(sncRNA) are secreted from cells, either bound to RNA binding proteins6, high-density 

lipoproteins7, within extracellular vesicles or released during cell death8. sncRNAs are protected 

from degradation, and miRNAs, the most studied sncRNA class, have been identified in all body 

fluids9–11. Aberrant expression of small and long regulatory non-coding RNAs are related to 

many diseases12,13.  

Circulating ncRNAs have considerable potential as minimally invasive cancer 

biomarkers14–19. However, few if any have reached their translational potential. To be reliably 

used as biomarkers, variation and traits that influence sncRNA expression levels need to be 

identified in non-diseased individuals. Common traits may include age, sex, smoking, body mass 

and physical activity. Technical factors, such as sample processing and storage, may also 

influence RNA levels20,21. Almost all studies to date have focused on miRNAs, and have 

inadequate sample sizes to assess normal variation and identify the effects of traits on 

expression.  

sncRNAs may be encoded on the sex chromosomes22 and sex-specific miRNA 

expression patterns have been shown in tissues23. Several steroid sex hormones, such as 

estradiol, progesterone and testosterone have been found to directly or indirectly regulate 
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miRNA expression24–26 or Argonaute, Drosha and Dicer, the major enzymes of miRNA 

biogenesis27. Some isomiRs have also been shown to be sex-specific28.  

Ageing is more strongly associated with circulating miRNA expression than sex. The 

miRNAs significantly influenced by age included hsa-miR-1284, hsa-miR-93–3p, hsa-miR-

1262, hsa-miR-34a-5p, and hsa-miR-145–5p29. This is in agreement with the first observations of 

altered circulating miRNA levels during ageing showing an increase in miR-34a in the plasma of 

old mice30. 127 of 150 miRNAs analysed were shown to be affected by age in a study on whole-

blood from 5221 individuals. A miRNA age prediction model was developed using this large 

dataset and the miRNA predicted age correlated with chronological age with an r=0.61 adjusted 

for cell type composition31. Transforming growth factor beta signalling has been suggested as 

one of the main pathways regulated by the differentially expressed circulating miRNAs32. 

However, cellular senescence, ageing and age-related diseases, have been associated with 

alterations in miRNA expression that could have multiple physiological effects. Whether the 

changes have an etiological origin or are a consequence of deleterious age-induced dysfunctions 

is still unknown33. 

A large study (N=226) showed that smoking alters circulating miRNA expression. There 

was no significant finding when comparing former to never smokers34. A study of small airway 

epithelium from 10 smokers identified differences in miRNA expression after smoking cessation 

which persisted in 8 out of the 34 (FDR<0.05) smoking-related miRNAs, with the Wnt/β-catenin 

signalling pathway being the most significant pathway35. A smaller study of 12 never-smokers 

and 28 smokers, all males, identified 35 differentially expressed miRNAs, and target enrichment 

analyses identified the immune system and hormone regulation as possible pathways differing 

between the groups36.  
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Studies of differential miRNA expression related to body mass have mostly focused on 

adipose tissue, and a small number of miRNAs were found to be differentially expressed in 

individuals with obesity and type 2 diabetes mellitus (T2DM)37. These miRNAs influence the 

expression and secretion of inflammatory proteins. Ameling et al. found 19 of 179 miRNAs to 

be associated with body mass in 372 population-based samples, 12 miRNAs were age-associated 

and 7 were sex-associated38.  

Physical activity-related miRNAs have mainly been found in intervention studies, 

identifying 4 to 23 differentially expressed miRNAs39–41. Oppose to changes in circulating 

miRNAs in acute exercise, the changes of circulating miRNAs in chronic exercise remain 

unclear42. A positive linear correlation between training-induced changes in circulating miR-20a 

levels and changes in VO2max has been shown, suggesting potential biomarkers of 

cardiorespiratory fitness trainability43.  

 With few exceptions, miRNAs are the only ncRNA class that have been studied in 

relationship to sex, age, body mass and physical activity. In addition, small sample sizes in most 

of these studies hampers discovery, and the widespread use of disease-related samples may 

introduce bias. tRNA, piRNAs, lncRNA, snoRNA, snRNA, miscRNAs and their isoforms may 

be potential biomarkers as long as they are stable, quantifiable, and population variation due to 

common traits is known.  

In this study, we explore the relationship between sex, age, smoking, body mass, physical 

activity, technical factors and circulating ncRNA expression levels. We use RNAseq to high 

depth (on average 18 mill. sequences) from a large serum sample set (N=526) of cancer-free 

donors from the Janus Serum Bank (JSB)44, . This data, combined with high-quality survey 
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information45, provides a unique opportunity to identify trait associations that might influence 

sncRNA biomarker potential. 

Results 

Significant trait associations 

We produced RNAseq expression profiles for sncRNAs 17 to 47 nucleotides long in serum 

samples from cancer-free JSB donors and analysed associations with age, sex, body mass, 

smoking, physical activity or technical factors (blood donor group, see Material and Method 

section). We analysed 27251 sncRNAs, including 15217 mRNA fragments. 2127 trait 

associations were significant using an adjusted p-value<0.05 cut-off (Table 1 and Supplementary 

Table S1). When applying a stricter cut-off (adjusted p-value<0.001), 651 of the sncRNAs 

showed trait associations. Age had the highest number of trait associations with 1340 sncRNAs 

(adjusted p-value<0.05). With a stricter cut-off (adjusted p-value<0.001), 554 sncRNAs were 

associated with age (Supplementary Information Table S2 and S3). Only three sncRNAs were 

significantly associated with blood donor group (adjusted p-value<0.001; Table 1). We adjusted 

for age in the analyses of sex, body mass, smoking and physical activity. Age-adjustment 

increased the significant associations from 33 to 439 for sex, 44 to 411 for body mass, 5 to 208 

for physical activity and 11 to 182 for smoking (adjusted p-value<0.001; Table 1 and 

Supplementary Table S4). In total, 1240 sncRNAs were associated with sex, body mass, physical 

activity or smoking after age adjustment (p-values < 0.001; Supplementary Table S5).  

Hierarchical clustering of adjusted p-values for all associations were visualized using 

heatmaps (Figure 2). The age-associations were more numerous and with higher –log p-values 

than other traits and are an outgroup in the vertical dendrogram. Associations with sex, body 

mass, smoking and physical activity with age as a covariate, showed more and stronger 
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associations. Notably, piRNAs were associated with sex, after adjusting for age (Supplementary 

Figure S1).   

Expression differences 

The majority of sncRNAs showed log2fold transformed differences between 1 and -1 (Figure 3). 

However, numerous associations with age, and to a lesser extent blood donor groups, showed 

differences greater than +/-1. Specifically, these larger differences were seen for: miRNAs and 

blood donor group and age; isomiRs and smoking, age and blood donor group; snRNAs and age; 

mRNA fragments and age. The majority of miRNAs were upregulated with age while the 

majority of mRNA fragments were downregulated with age. snRNAs and lncRNAs were also 

downregulated with age 

Adjusting for age in the association analyses with sex, body mass, smoking and physical 

activity showed larger log2fold differences compared to unadjusted analyses (Supplementary 

Figure S2). The changes were striking when compared to the unadjusted analyses (Figure 4), 

specifically for sncRNA associations with sex. miRNAs and piRNAs were upregulated and 

lncRNAs and mRNA fragments downregulated in men. Strong smoking differences between 

current and never smokers on sncRNA expression were also seen for tRNAs, isomiRs, tRNA 

fragments, snRNAs, lncRNAs and one piRNA. One sex and two body mass associations with 

mRNAs fragments have log2fold differences larger than two and -log10 adjusted p-values >40.  

Co-expression module analyses 

Module analyses showed that age and blood donor group are more strongly correlated 

with co-expression modules than any other trait, followed by physical activity (p-value < 0.01; 

Supplementary Figure S3). A set of lncRNAs are strongly correlated with sex (Pearson r=0.7). A 
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module of 16 tRNA fragments were associated with sex, body mass and physical activity. 

Smoking is associated with fewer modules than the other traits.  

KEGG Pathway analyses   

We performed KEGG pathway analyses for mRNA fragments and miRNA targets (see 

Materials and Methods). Pathways were enriched for age-, sex- (age adjusted) and smoking-

associated (age adjusted) mRNA fragments and miRNA targets (p-value < 0.05; Table 2). We 

did not detect any significant pathway enrichments for body mass and physical activity. Four out 

of the top five age-related pathways are involved in carcinogenesis, while all the top five 

smoking-related pathways have been associated with smoking.  

Smoking and sncRNA associations 

To identify sncRNAs associated with smoking cessation, we assessed differential expression in 

never vs current smokers relative to never vs former smokers. We identified smoking-related 

differential expression in isomiRs, piRNA, lncRNA, tRNA and mRNA fragments which persist 

after smoking cessation. A single piRNA and two tRNAs show persistent expression differences 

after smoking cessation, while two smoking-associated miRNAs revert to never-smoking levels 

(Figure 5).  

 The top three smoking-associated miRNAs show a slight increase in expression levels 

between never, former and current smokers (Figure 6A). This effect became more pronounced in 

heavy smokers, specifically for individuals smoking more than 20 cigarettes per day for miR-

3656 and miR-7704 (Figure 6B). 
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Discussion 

Expression levels of circulating sncRNAs vary between healthy individuals46,47. However, not 

much is known about which traits influence this variation. Relationships between miRNA 

expression and age, sex, body mass, smoking and physical activity have been 

reported29,34,35,38,41,42, although most studies have small sample sizes and therefore will be 

unlikely to detect subtle changes in expression. Furthermore, very little has been reported about 

these traits in relationship to expression levels of other sncRNA classes.   

In this paper, sncRNA association analyses show that ageing is strongly correlated with 

all sncRNA classes. The age-association was confirmed by analysing sncRNA co-expression 

modules. Our study is the largest to date showing a strong age effect for all sncRNA classes. The 

age effect has been consistently reported in previous studies for miRNAs. However, the reported 

age-associated miRNAs reported in these studies differ presumably due to differences in 

biological materials, sample processing and sample size. 

Age-associated miRNA expression has previously been shown in model organisms30, 

tissues48 and blood29. In agreement with our results, ageing was reported to be more strongly 

associated with miRNA expression than sex29. miRNA-320b was found to be age-related in both 

our study and in a large study on whole blood31. We found that the age-associated pathways are 

mostly signalling pathways such as Ras, PI3K-Akt, MAPK and AMPK. This may explain the 

role of aging in oncogenesis. Ageing is also known to affect dopamine receptors which can 

explain enrichment of dopaminergic synapse pathway for aging. 

The relationship between age and circulating sncRNA expression implies that all 

sncRNA biomarker studies should take age at sampling into consideration when analysing and 

interpreting results. Sample groups should be age-matched, stratified by age, or age-adjusted. 
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sncRNAs mediate a number of cellular functions, and age-associated expression changes may 

implicate these in ageing processes. Changes in blood cell counts with age49,50 may explain some 

of the differential sncRNA expression. The present study provides a valuable data set for 

studying mechanisms of ageing and age-related diseases such as cancer.  

Our data also showed significant associations between sex, body mass, smoking and 

physical activity and the expression levels of 1240 sncRNAs after adjusting for age. Age is an 

important effect modifier for these associations since the differences with and without age-

adjustment increase significant associations more than 10-fold.  

We observed sex-related expression for all sncRNA classes. miRNA expression 

correlated with sex has previously been shown23,29 and in some cases directly or indirectly linked 

to hormonal regulation24–26. piRNAs were initially thought to be specific to germ cells51,52,  

however circulating piRNAs have recently been identified at significant levels11,53. Our dataset 

identified a large number of RNAs mapping to piRNA databases. JSB serum samples were 

stored at -25°C for up to 40 years47, indicating that piRNAs are stable. The cellular origin of the 

piRNAs is unknown. We observe a difference in expression between males and females for a 

large fraction of piRNAs, indicating that some of the circulating piRNAs might originate from 

germ cells. Our data also showed sex-specific differences in lncRNAs and mRNA fragments. For 

example, one lncRNA co-expression module is highly correlated with sex and includes Y 

chromosome-derived lncRNA fragments. Based on our findings, matching or adjusting for sex in 

differential expression studies may be crucial.  

Our data show that smoking alters expression levels for all classes of sncRNAs, which 

had previously only been shown for miRNAs34,35. Wang et al.35 indicated that only a portion of 

the smoking-related miRNAs revert to a never smoker expression level after smoking cessation. 
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In contrast, our analyses indicate that miRNA expression in former smokers is similar to never 

smokers. Futhermore, the expression levels of isomiRs, lncRNAs and mRNA fragments, as well 

as two tRNA and one piRNA, are significantly different in former smokers compared to never 

smokers, indicating smoking-related expression persists after smoking cessation for these 

sncRNAs. Similar results have been shown for DNA methylation54,55. It is noteworthy that the 

top three smoking-related miRNAs (hsa-miR-7704, hsa-miR-3655 and hsa-miR-203-3p) showed 

a clear relationship between smoking-dose and expression levels, and the top five age-adjusted 

smoking related pathways are involved with smoking. For example, the cholinergic synapse pathway is 

associated with nicotine addiction56 and the relaxin signaling pathway is disrupted by smoking57. Our 

results show that smoking-related pathway RNAs (e.g. mRNAs and miRNA targets) can be identified in 

serum.   

 Body size was associated with 411 sncRNAs of which 63% are mRNA fragments. No 

miRNAs were statistically significant (P<0.001). 208 sncRNAs were associated with physical 

activity, of which 70% mapped to mRNA fragments. Notably, the overlap between body mass 

and physical activity related sncRNAs was observed for three tRNAs and 13 tRNA fragments. 

To our knowledge, no comparable study is available showing physical activity and body mass 

associations with circulating non-miRNA sncRNAs. Our results indicate that differential 

expression studies in obesity and exercise should consider studying other sncRNAs in addition to 

miRNAs. 

 The serum samples were stored long-term at -25°C. Under these conditions all unstable 

RNAs have been degraded. We have shown that the total amount of miRNA was affected by the 

processing of the serum and to a lesser extent by storage time21. Also, the number of other 

sncRNAs decrease with storage47. The differential expression analyses between the blood donor 
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groups shown here shed further light on which sncRNAs are affected by storage and processing 

and further sncRNA studies using JSB will take blood donor group into consideration.   

The primary functions of most RNA classes are known. For example, snRNAs are 

involved in mRNA splicing, tRNAs decode mRNAs into peptides, snoRNAs carry chemical 

modifications to mRNA fragments, miRNA regulate post-transcriptional gene expression, 

piRNAs target and repress the expression of transposable elements and lncRNAs provide 

epigenetic control of gene expression and promoter-specific gene regulation58–61. However, 

secondary functions are largely unknown and therefore pathways and network approaches for 

functional analyses are not yet feasible. Another challenge in the interpretation of the results are 

insufficient accuracy and completeness of the annotation databases. Recognized databases such 

as miRBase62, ENCODE1 and piRbase63 may include degradation products, misclassifications 

and mapping errors. Curated databases such as miRgenedb64 may improve the interpretability. 

However, the discovery of sncRNA biomarkers are less affected by poor annotation. piRNAs are 

particularly difficult and there is a highly probable that the available piRNA databases contain 

RNAs unrelated to the piRNAs produced by germ cells.  

 Circulating sncRNAs originate from multiple cell types, and cell type compositional 

differences might introduce variation or confounding. However, it is not known if all cell types 

display age-related miRNA expression65, and only small expression differences of cell type 

composition were seen in one of the largest studies to date31. In addition, traits such as obesity, 

low activity and smoking will likely affect RNA expression less than diseases like cancer. 

Therefore large samples sizes are needed to discover signal over noise.  

The main strength of our study is the large sample size. 526 donors included in the study 

provided sufficient statistical power to detect small differences in expression. Linkage to a 
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complete cancer registry ensures that all donors were free from cancer at least 10 years after 

sample donation, removing the effects of potential cancer progression on sncRNA expression. 

Harmonized and quality-assured smoking, body mass and physical activity data improves the 

accuracy of the measured traits45. High sequence read-depth (on average 18 mill reads per 

sample) serum RNAseq data targeting RNAs between 17 and 47 nucleotides in length enables 

comprehensive assessment of all main RNA classes.  

 The primary limitation of the study is the long-term storage of the samples and the effect 

it might have on RNA quality. Although the advantage of long-term storage is long follow-up 

time for the disease outcome. The expression differences from storage and sample handling may 

affect the associations, however, the effects found in previous studies were minor21,47. Common 

with all sncRNA studies, problems with annotation and the lack of functional information makes 

interpreting the findings challenging. Although the data has unprecedented sample size, the 

moderate-high activity group and individuals less than 40 years old are represented by fewer than 

100 individuals. Associations were calculated from variable samples sizes, due to missing data. 

This might to some extent reduce comparability between trait associations. 

 

 In conclusion, our study showed that sncRNA expression levels in serum are strongly 

age-dependent, and therefore age should be taken into account in studies of circulating sncRNA 

expression. sncRNA expression also differed between sexes, and this difference may reflect key 

biological differences, such as germ cell specificity of piRNAs. Some of the expression 

signatures are also influenced by body mass, smoking, physical activity and sample processing. 

The relationships between traits and sncRNA expression levels are of key importance in all 
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sncRNA biomarker research and should be accounted for in the study design and analyses of 

data. 

 Materials and Methods 

Study design 

The Janus Serum Bank (JSB) is a population-based cancer research biobank containing 

prediagnostic biospecimens from 318 628 Norwegians44. We identified 550 JSB donors that 

were cancer free at least 10 years after sample donation using data from the Cancer Registry of 

Norway. Information on age at donation, processing of samples according to blood donor groups 

(BDg), sex, body mass, smoking and physical activity were available for the donors (Figure 1A).  

Inclusion criteria for each trait were a high-quality sncRNA profile (see filtering criteria 

in the bioinformatics section) and available trait information. JSB has prospectively collected 

serum samples between 1972 and 2004. The collection procedure and serum processing have 

varied throughout the collection period. 156 samples included were red cross blood donors 

(RCBD) and 370 were donors participating in health examinations (HEBD), in total 526. The 

samples were grouped according to sample collection period and processing (Grp1:HEBD from 

1972-1978, iodoactetate added, Grp2: HEBD from 1979-1986, Grp3: HEBD from 1987-2004 

collected in separating gel tubes, Grp4A: RCBD from 1973-1979, Grp4B: RCBD from 1973-

1979, lyophilized, Grp5: RCBD from 1980-1990 and Grp6: RCBD from 1997-2004)21 (Figure 

1B). The number of samples in each blood donor (BD) group from 1 to 6 were 33, 143, 194, 62, 

66 and 28, respectively. 171 women and 288 men (Figure 1B) with a mean age of 50 at donation 

were included. Age at donation was categorized into less than 40, between 40 and 60 and above 

60 (Figure 1B). Data from the health examination studies were available for the HEBD donors, 

including information on smoking habits, body mass index (BMI) and physical activity (Figure 
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1B)45.  The donors with smoking information were categorized into current (N=107), former 

(N=85) and never (N=111) smokers. The number of cigarettes per day in current smokers were 

categorized into 1-9 (N=36), 10-14 (N=33), 15-19 (N=22), 20-24 (N=19) or >=25 (N=5). There 

were 152 normal weight, 4 underweight, 156 overweight and 39 obese donors using WHO 

standards. Analyses were done contrasting normal weight vs overweight and obese combined. 

The donors characterized their physical activity to be inactive (N=37), low (N=177), moderate 

(N=70) or hard (N=9). The inactive and low were compared to moderate and hard. (Figure 1B). 

 This study was approved by the regional committees for medical and health research 

ethics, Oslo, Norway (2016/1290). 

 

RNA isolation and sequencing protocols 

RNA was extracted from 2 x 200 µl serum using phenol-chloroform separation and the 

miRNeasy Serum/Plasma kit (Cat. no 1071073, Qiagen) on a QIAcube (Qiagen). Glycogen (Cat. 

no AM9510, Invitrogen) was used as carrier during the RNA extraction step. The eluate was 

concentrated using Ampure beads XP (Agencourt). Small RNAseq was performed using 

NEBNext® Small RNA Library Prep Set for Illumina (Cat. No E7300, New England Biolabs 

Inc.) with a cut size on the pippin prep (Cat. No CSD3010, Sage Science) covering RNA 

molecules from 17 to 47 nucleotides. Sequencing libraries were indexed and 12 samples were 

sequenced per lane on a HiSeq 2500 (Illumina) to an average depth of 18 million reads per 

sample. 

Bioinformatics analyses 

The RNAseq reads were initially trimmed for adapters using AdapterRemoval (v2.1.7)66. We 

then mapped the collapsed reads (generated by FASTX v0.14) to the human genome (hg38) 
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using Bowtie2 (10 alignments per read were allowed). We compiled a comprehensive annotation 

set from miRBase (v21)62 for miRNAs, pirBAse (v1.0) for piRNAs63, GENCODE (v26)1 for 

other RNAs and tRNAs. We used SeqBuster (v3.1)67 to get isomiR and miRNA profiles. To 

count the mapped reads, HTSeq (v0.7.2)68 was used. The candidate tRNA fragments (tRFs) were 

selected from the reads mapped to tRNA annotations. For biomarker purposes, we excluded 

RNAs with fewer than 10 reads in more than 20% of the samples (Figure 1C medium stringent 

filtering). To show how filtering influenced the number of RNAs we produced tables with 

stringent and less stringent filtering cut-offs. Stringent filtering excluded RNAs with less than 10 

reads in more than 50% of the samples. Less stringent filtering excluded RNAs with less than 1 

read in more than 20% of samples (Figure 1C).   

Statistics 

Differential gene expression analyses based on the negative binomial distribution and Wald 

significance tests were performed for each trait using the R package DESeq2 version 1.14.169. 

All traits were categorical. The analyses were performed with and without adjustment for age at 

donation. P-values after adjusting for multiple testing, using DESeq2 default adjustments, were 

reported69. Heatmaps of trait-associated RNAs were created using the heatmap.2 function in the 

gplots package. sncRNAs where any of the traits had adjusted p-value < 0.001 for analyses not 

adjusted for age at donation and p-values < 0.01 for analyses adjusted for age at donation are 

shown. We performed variance stabilizing transformation (VST) from the fitted dispersion-mean 

relations and then transformed the normalized count data using the function 

varianceStabilizingTransformation. Variance stabilized normalized counts were extracted and in-

depth analyses of the top 3 strongest associations for smoking, body mass and physical activity 

were performed. For this, current, former, never smokers and number of cigarettes per day were 
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investigated. Body size was categorized according to WHO standardized cutoffs and physical 

activity were analysed according to the levels inactive, low, moderate and high. 

We performed KEGG pathway70 analysis on differentially expressed mRNA fragments and 

miRNA targets. The analysis was performed using R function kegga from the limma package. 

The miRNA targets were extracted from miRDB (v5.0) predictions71 (score cut off > 60). 

Co-expression module analysis 

We used the weighted correlation network analysis (WGCNA) R package (v1.61)72 to determine 

co-expression modules among serum RNAs. The samples that have any missing values among 

their traits were filtered out and the remaining samples were utilized for co-expression module 

identification. The identified modules (min. module size is 10) were mapped to the sample traits 

to find significantly (p-values < 0.01) correlated associations between the modules and traits. 

The effect sizes were measured using Pearson correlation coefficients. 

Data availability 

Sequence data have been deposited at the European Genome-phenome Archive (EGA), which 

is hosted by the EBI, under accession number EGASxxxxxxx, with restricted access. Custom 

scripts are available from the corresponding author upon request. 
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Tables 

Table 1: Number of differentially expressed small non-coding RNAs (adjusted p-value  

<0.001) 

RNA age sex Sex 

+ age 

body 

mass 

body mass 

+ age 

physical 

activity 

physical 

activity + 

age 

smoking smoking+a

ge 

miRNAs 11 0 11 0 0 0 0 1 2 

isomiRs 26 4 21 7 26 0 17 2 18 

tRNAs 3 2 6 0 27 1 5 0 3 

tRNA 

fragments 

1 0 27 0 28 0 10 0 0 
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piRNAs 6 1 59 3 24 0 7 0 3 

lncRNAs 30 3 53 5 43 0 24 0 31 

snoRNAs 1 1 4 1 1 0 0 0 5 

snRNAs 48 0 1 5 5 0 1 8 12 

mRNAs 428 22 257 23 257 4 144 0 108 

Total 554 33 439 44 411 5 208 11 182 

Table 1: The number of significantly (p-value adjusted for multiple testing <0.001) differential 

expressed sncRNAs associated with age, body mass, blood donor group, sex, physical activity 

and smoking. Age significantly influenced expression, thus the number of RNA molecules 

associated with body mass, physical activity and smoking were also presented with age 

adjustment.  

 

 

Table 2: Pathway enrichment analyses for miRNA targets and mRNA fragments 

                

 

Age -log10(FDR) Sex, age adjusted -log10(FDR) Smoking, age adjusted -log10(FDR) 

1 Ras signaling 

pathway  

1.89 Axon guidance 2.45 Cholinergic synapse 2.20 

2 PI3K-Akt 

signaling 

pathway 

1.89 Focal adhesion 2.45 Thyroid hormone 

signaling pathway 

2.20 

3 Dopaminergic 

synapse 

1.75 Endocytosis 2.16 Relaxin signaling 

pathway 

2.02 
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4 MAPK signaling 

pathway 

1.69 MAPK signaling 

pathway 

1.75 Phosphatidylinositol 

signaling system 

1.51 

5 AMPK signaling 

pathway 

1.69 Phospholipase D 

signaling 

pathway 

1.75 VEGF signaling pathway 1.51 

 

Table 2: The top 5 significant enriched pathways for miRNA targets and mRNA fragments for 

the associations with age, sex adjusted for age and smoking adjusted for age.   
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Figures 

Figure 1: Associations between traits and small non-coding RNAs (sncRNA) were investigated 

in samples from in total 526 Janus Serum Bank donors, including 156 Red Cross Blood Donors 

and 370 Health Examination Blood Donors. A) The total number of samples included in each 

trait analyses after excluding samples with missing data and low sncRNA yielding samples. B) 

Number of samples in each category for age, blood donor group (BDg), body mass, physical 

activity (phys act), sex and smoking. C) Number of sncRNA counts on log scale after less 

stringent, medium and high stringent filtering.  
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Figure 2: Heatmaps of the hierarchical clustering of -log10 p-values adjusted for multiple testing 

from the associations between sncRNAs from the classes miRNAs, isomiRs, tRNAs, tRNA 

fragments, piRNAs, lncRNAs, miscRNAs, snRNAs and mRNA fragments and the attributes 

blood donor group (BDg), sex, body mass, smoking (current vs never smokers) and physical 

activity (low vs high activity). sncRNAs are visualized if any of the associations produced p-

values <0.01. Colors are yellow to orange for -log10 p-value 0 to 5 and red for -log10 p-values > 

6.  
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Figure 3: Volcano plots showing differential expression in log2fold change on the x-axis and 

adjusted p-values from the associations in -log10 on the y-axis for miRNAs, isomiRs, tRNAs, 

tRNA fragments, piRNAs, lncRNAs, miscRNAs, snRNAs and fragments mapping mRNA and 

the traits; blood donor group (BDg), sex, body mass smoking (current vs never smokers) and 

physical activity (low vs high activity).  
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Figure 4: Volcano plots showing differential expression in log2fold change on the x-axis and 

adjusted p-values from the associations in -log10 on the y-axis for all sncRNAs associated to sex, 

smoking, body mass and physical activity. Associations without age as co-variable are shown in 

red and associations adjusted for age are shown in blue. 

 

Figure 5: Differential sncRNA expression in never vs current smokers relative to never vs former 

smokers suggesting smoking related sncRNA expression that persist after smoking cessation 
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(upper right corner) and sncRNA expression that revert to never smoking levels (lower right 

corner). The -log10 p-value are shown for smoking associations on in current smokers vs never 

smokers (x-axis) and the former smoker vs never smokers (y-axis). -log10 p-values >2 in both 

analyses are marked in red, signifying associations both in current and former smokers. -log10 p-

values >2 in current, but not in former smokers are marked in blue, signifying associations in 

current smokers and not in former smokers. Associations with expression differences more than 

+/-0.5 in both analyses are marked with a cross, all other relationships are marked with a dot. 

The analyses were done for miRNAs, isomiRs, tRNAs, tRNA fragments, piRNAs, lncRNAs, 

miscRNAs, snRNAs and mRNA fragments.  
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Figure 6: The top 3 smoking associated miRNAs relative to smoking status and dose. 

A) Boxplot of variance stabilized RNA counts in never former and current smokers of the top 

three miRNA with lowest p-values. B) Boxplots of variance stabilized RNA counts relative to 

the number of cigarettes smoked per day. 
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