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Abstract

From August to November 2017, Madagascar has endured an outbreak of plague.

A total of 2119 cases of plague has been confirmed, causing until now a death toll

of 195. Public health interventions have been introduced, preventing new cases

and deaths. However, it is likely that the outbreak could reappear as plague

is endemic in the region and typically only last until April annually. We col-

lected real-time data from various official reports. We described the outbreak’s

characteristics and reported estimates of the key transmission parameters using

statistical and mathematical modelling approaches. Plague’s epidemic curve

depicts a propagated outbreak with multiple peaks, caused by continuing expo-

sure. Optimal climate conditions for rat flea to flourish were observed during the

epidemic. Estimate of the Plague’s reproduction number based on pneumonic

data was 6.9. The main mode of transmission is human-to-human with a much

higher transmission rate than that of flea-to-human mode. With a potential of

continuing exposure to infected rat fleas until April 2018, current public health

efforts should be maintained at the high level. While efforts in controlling vec-

tor to prevent the appearance of new index cases can be critical, maintaining

interventions targeting reduce human-to-human transmission is key to prevent

large-scale outbreaks.
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1. Introduction

One of the deadliest natural disasters in human history was reported as the

Black Death — attributed to the bacterium Yersinia pestis — killing about 50

to 200 million people in the 14th century [1]. Although plague was naturally

widespread in ancient times, plague outbreaks occurred following the deliberate5

use and propagation of this disease, serving as a bioweapon [2]. This lethal

bacterium can derive in several forms of plague maintaining its existence in a

cycle involving rodents and their fleas [3]. While sanitation and public health

surveillance have greatly reduced the likelihood of a plague pandemic, isolated

plague outbreaks are lethal threats to humankind.10

This gram negative can result in different clinical forms of plague: bubonic,

pneumonic and septicemic [1]. Human infection is primary driven by bubonic

plague, as a result of being bitten by infected fleas. Additionally, direct con-

tamination with infective material can be an alternative transmission route [1].

Patients with bubonic plague can develop sudden onset of fever, headache, chills,15

tender and painful lymph nodes [4]. While plague can be successfully treated

with antibiotics, if untreated, the bacteria can disseminate from the lymph

nodes into the bloodstream causing secondary septicemic plague. In addition to

the symptoms presented in the bubonic plague, patients with septicemic plague

undergo abdominal pain and possibly bleeding into the skin and other organs,20

at the same time skin and other tissues may turn black and die, especially on

fingers, toes, and the nose [3]. However, the most fulminant form of the disease

is driven by pneumonic plague that turns out to be the only form of plague that

can spread from person to person by infectious droplets. The incubation period

of pneumonic plague is shorter than in the other forms of the disease, usually25

1 to 2 days, leading to a high fatality rate despite immediate treatment with

antibiotics [4].

Plague epidemics of infectious diseases continue to pose a threat to humans,

reporting continuous annual occurrence of plague cases in five countries: Mada-
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gascar, Tanzania, Vietnam, China, and the USA [1, 5]. On 13 September 2017,30

the Madagascar Ministry of Public Health notified WHO of an outbreak of pneu-

monic plague [4]. Since then, a total of 2417 cases of plague has been confirmed,

causing until now a death toll of 209 [6]. Public health interventions have been

introduced in Madagascar, preventing new cases and deaths. However, it is

likely that the outbreak could reappear as plague is endemic in the region and35

could last until April 2018 [4]. Descriptive and numerical analyses of the plague

outbreak could facilitate studies in evaluating the spread of diseases as well as

targets for disease control and prevention.

2. Materials and Methods

Outbreak Data - Cumulative Cases. Data were manually inputted from separate40

reports of WHO [6], including the cumulative total numbers of clinical cases

(confirmed, probable, and suspected). The data can be found at the following

link  systemsmedicine/plague2017/Cumulative

Outbreak Data - by Disease Forms. Data were digitized from the figure re-

ported from WHO [6], including the incidences classified by the three forms45

of the plague disease: pneumonic, bubonic, and septicemic. The data can be

found at the following link  systemsmedicine/plague2017/Classification and

the digitized figure can also be found at the same repository.

Temperature and Precipitation Data. Data were requested from the National

Centers for Environmental Information (Order #1133340 Custom GHCN-Daily50

CSV). The data can be found at  systemsmedicine/plague2017/Climate.

Descriptive analyses. With the aim of facilitating modelling works, we described

dynamics and patterns of variables that have previously shown to be relevant

to plague outbreaks, including temperature and precipitation [7].

Statistical estimate of the reproduction number. We estimated the reproduction55

number (R0) of Yersina pestitis using data of pneumonic cases during the second
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(large) wave of the epidemic, i.e., visually defined from 22/09/17 onwards. The

serial interval of plague was assumed gamma distributed with shape and scale

parameters are 5.4 and 0.9, respectively [8]. We reported the R0 estimates using

the following methods: exponential growth (EG) [9], maximum likelihood (ML)60

[10], and the sequential bayesian estimation (SB) [11].

Plague transmission model (PTM). We conducted an epidemic simulation us-

ing a modified SEIR (Susceptible-Exposed-Infectious-Removed) model with two

incorporated components reflecting the infection from infected rat fleas and the

effects of public health interventions. A schematic illustration of the PTM is

shown in Figure 1. Assuming only a small proportion (p) of the population

Sp

Sb

Ep Eb

IbIp

firf

Figure 1: Schematic of plague transmission model (PTM). Assuming only a proportion

(p) of the population is exposed to the risk of being bitten with infected rat fleas. The flea

density (firf) is approximated with a sinusoidal function fitted on Madagascar temperature

(see more details in the text of Materials and Methods section). Dashed lines indicate where

public health interventions would presumably take place, i.e., animals control and reducing

contact with infected cases.

will be exposed to the risk of being bitten by infected rat fleas. The flea den-

sity is approximated by a sinusoidal function fitted to Madagascar temperature.

Dashed lines indicate where public health intervention would have the strongest

effect, i.e., animals control and reducing contact with infected cases. The model
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equations are as follows:

dSb/dt = −(Sbαfirf + βSbIp/N)fitv (1)

dSp/dt = −βSpIp/Nfitv (2)

dEb/dt = Sbαfirffitv − γbEb (3)

dEp/dt = βIp/Nfitv(Sb + Sp)− γpEp (4)

dIb/dt = γbEb − ϵIb − δbIb (5)

dIp/dt = γpEp − δpIp + ϵIb (6)

where S, E, I describe Susceptible, Exposed, and Infectious and the subscripts

b and p denote bubonic and pneumonic form, respectively. The model assumes

that in a population of size S0, only a small part Sb = (1 − p)S0 is exposed

to infected rat fleas. The flea-to-human and human-to-human transmission65

rates are denoted by α and β, respectively. The infected bubonic cases become

infectious with a proportion ε progressing to pneumonic stage. We followed the

approach of Aron and May [12], approximating the density of infected rat fleas as

a sinusoidal function firf = A+B sin(2π/12t)+C cos(2π/12t) which was fitted

to the average temperature of Madagascar in the period 1960–2008 [7]. Public70

health interventions are assumed reducing both human-to-human and flea-to-

human transmission that has a logistic form fitv = 1−1/[1+exp(−(t−τ))], where

τ denotes the time at which the intervention effect reaches half its potential. The

infected cases are assumed to recover and die with the total rate of removal from

the infected pool being δb and δb for bubonic and pneumonic cases, respectively.75

We fitted the PTM to the daily data of pneumonic and bubonic cases

during the large wave of the epidemic curve which was visually defined from

22/09/17 onwards. Model parameters were estimated using the global optimi-

sation algorithm Differential Evolution [13]. Simulations and estimations were

done in R using packages base [14], deSolve [15], and R0 [16] and in Python.80

Stochastic simulations were performed using a tau-leaping algorithm with a

fixed time-step of ca. 15 minutes; code and data are publicly available at  sys-

temsmedicine/plague2017/Stochastic.
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3. Results

Descriptive analyses85

During August, bubonic cases appeared sporadically with almost no records

of pneumonic form (fig. 2). An increase in number of pneumonic cases was not

necessarily led by an increase in the number of bubonic cases (fig. 2). It seemed

to be the epidemic curves include several waves of incidence overlapping each

others.90
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Figure 2: Plague dynamics August-October 2017. Reported incidences of the three forms

of plague diseases during the 2017 outbreak. The data were digitized from WHO report’s figure

[4]. Data can be accessed and updated by sending merge requests at  smidgroup/plague2017.

Figure 3 shows that plague incidences emerged everyday in the weeks al-

though in some weeks a smaller number of cases were reported in the weekends.

No distinctive time lag was observed between the appearances of bubonic and

pneumonic cases (fig. 3). The incidences were negligible during the period when

Famadihana tradition was presumably practised. Precipitation measure exhib-95

ited no pattern before or during the outbreak but generally showed a dry climatic

condition. Average temperature appeared increasing and reached a higher level

(above 23 degree Celsius) around the same time as the outbreak.
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Figure 3: Incidences and climate variables. Reported incidences and average temperature

and precipitation classifying by week and day of the weeks. The “+” signs indicate a supposed

time period when the Famadihana tradition is practised.

Figure 4 shows that the temperature would typically remain at the level

favoring the rat fleas (20–25°C [17]) in the upcoming months and until May in100

the next year.
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Figure 4: Fitted sinusoidal of Madagascar temperature.. Fitted sinusoidal of Mada-

gascar temperature (see Materials and Methods) with A = 1.15, B = 0.08, C = 0.1. The

temperature is normalised by the lowest value of July.
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Estimates of the reproduction number using pneumonic cases

Figure 5 shows that three estimation methods gave the same estimate for

plague’s basic reproduction number during the epidemic growing phase, approx-

imating 7. The effective reproduction number, however, could be seen quickly
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Figure 5: Estimates of the 2017 plague outbreak reproduction number. Lines are

means; shaded regions of the same colour are the corresponding 95% Confidence Interval.

Noting that the Exponential Growth and Maximum Likelihood method used only data from

22.09-02.10 when the number of cases increased quickly to the peak of the epidemic curve;

their corresponding estimates are 6.9[5.2, 9.3], 6.9[5.7, 8.3].
105

plunge toward unity.

Mathematical model of plague epidemics

Figure 6 shows that the model and the estimated parameters (table 1) cap-

ture well the dynamics of both pneumonic and bubonic data. Stochastic tran-

sitions could lead to larger or smaller waves of the dynamics. The parameters110

suggest that only a small fraction (1 per 10000) exposed to infected rat fleas is

enough to generate the observed epidemic. The human-to-human transmission
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rate was much higher than the flea-to-human transmission rate. The average

time spent in the exposed state before infectious was 5.614 and 1.537 days for

bubonic and pneumonic cases, respectively.

Table 1: Parameter estimates from the PTM model. Differential Evolution algorithm

was run minimizing the least absolute differences of both the bubonic and pneumonic data

weighted by their range. The total population used for simulations is N = 25570895 [18]. Note

that the upper and lower bounds indicate boundary constrains used for parameter estimation.

p τ α β γb γp δb δp ε

Estimate 0.0001 7.7926 0.0012 1.1363 0.1235 0.4509 0.0059 0.0779 0.0470
Upper 1 20 30 10 6 (day) [3, 19] 3 (day) [3] 15 (day) 15 (day) 1
Lower 1E-05 1E-08 1E-08 1E-08 2 (day) [3, 19] 1 (day) [3] 1 (day) [3] 1 (day) [3] 1E-08
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Figure 6: Deterministic and stochastic simulations of plague epidemics. The parame-

ters were estimated with the global optimisation algorithm Differential Evolution. Stochastic

simulations were done with tau-leaping algorithm. Python code are publicly available at

 systemsmedicine/plague2017/Fitting.

4. Discussion

Mathematical models of infectious diseases have played a central role in un-

derstanding epidemics, providing an effective way of assessing disease transmis-
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sion as well as evaluating disease control and prevention strategies [20]. Mathe-

matical modeling has proposed new vaccination strategies against influenza in-120

fection [21]; supported public health strategies for containing emerging influenza

pandemics [22, 23] and for the use of antiretroviral treatment for HIV-infected

patients as a preventive measure [24]; reported real-time estimates of Ebola’s

R0 to inform the outbreak situation [25], among others.

However, while it has been noted for the last Ebola outbreak [25], data125

sharing are still poor and WHO practices of reporting (separate PDF files) are

putting constraints on modelling works. In the 2014 Ebola outbreak, most of the

modelling studies were also done rather late in the process [26]. The solution can

be as simple as putting a unique Excel file and update it, or better establishing

a central website for all WHO outbreak reports, or alternatively, a data hub to130

encourage user contributed reports.

From modelling aspects, plague outbreak can be more challenging because:

(1) there is a continuous input of flea-to-human transmission (fig. 2); this implies

the observed epidemic curve can be a mixed of multiple waves of infected cases

generated from different index cases. Thus, epidemic evaluations could risk to135

over- or under-estimate the consequences, e.g. the reproduction number or the

end time of epidemics; (2) there are a known seasonal pattern of the plague

epidemic [7] in which a direct measure of the rat flea population does not exist;

(3) The flea-to-human transmission as well as the transition from bubonic cases

to pneumonic cases appeared stochastically driven (fig. 2) and could be highly140

affected by interventions.

Here, the epidemic curves showed plague incidences appear sporadically dur-

ing August (fig. 2). The pneumonic epidemic curve suggests that superspearders

were likely to exist in order to generate the larger number of cases observed in

the later periods. This can be observed from fig. 2 where the large increase in145

pneumonic cases was preceded by only a few bubonic cases. Estimates of the

effective reproduction number also showed that a high estimate is needed to cap-

ture the early growing phase of the epidemic (fig. 5); which is almost double the

previous estimates [8]. However, considering the potential mixed of epidemic

10
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waves and outbreak locations in the used data, the reproduction number could150

be overestimated. Approaches adjusting for the propagated outbreak data are

needed to gain further insights in epidemic processes.

In addition, the bubonic cases appeared regularly making a continuous input

of index cases to the human-to-human transmission network (fig. 2); as a result,

the pneumonic epidemic curve seemed exhibiting multiple peaks. This suggests155

that vector control interventions are key to avoid potential next waves of the

epidemic. Experiments have shown that an optimal climate for rat fleas to

flourish is a dry climate with temperatures of 20–25°C [17]. These conditions

were observed during the current outbreak: a generally dry weather with the

optimal temperature coincided with the period of high epidemic activity. As160

further shown in fig. 4, these conditions would typically remain the same until

next May, see further in Kreppel et al. [7]. This again stresses the role of vector

control in preventing the next waves.

Nevertheless, the estimate of the human-to-human transmission rate is much

higher than that of the flea-to-human transmission. This prompts that inter-165

ventions aim at human-to-human transmission route need to remain at high

level. Figure 7 shows extreme scenarios of the model trajectories assuming

these speculations. The result shows that efforts, in cases of exhaustive of re-

sources, should prioritise stopping human-to-human transmission route. In this

case, while the bubonic cases would continue to appear they would not able to170

generate large size outbreaks. This is practical as with the usual public health

intervention of early detection of the incidences would not only stop the human-

to-human transmission but also provide a better chance for new bubonic cases

to be treated early.

In this paper, we collected and described relevant data of the 2017 plague175

epidemic in Madagascar. We proposed a working mathematical model for evalu-

ating and predicting epidemic consequences and what-if scenarios. We discussed

potential drawbacks in modelling propagated epidemic data. We hope that the

results would contribute informative insights for public health officers and pro-

vide a framework for further understanding the dynamics of plague outbreaks.180
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