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Abstract

Predicting infectious disease emergence or eradication depends on monitoring the distance to the
epidemic threshold. One approach to such monitoring, the early warning signals approach, is to quantify
the slowing down of dynamics that is characteristic of an approach to a threshold. However, in the
susceptible-infected-recovered (SIR) model, the vital dynamics of the host population may occur slowly
even when transmission is far from threshold levels. The extent to which fluctuations of an individual
variable can provide an estimate of the distance to the threshold, then, depends on the relative weighting
of transmission and vital dynamics in the fluctuations. Here we show analytically how this weighting
depends on the covariance of the perturbations to a system with two degrees of freedom. Although these
results are exact only in the limit of long-term observation of a large system, we find that they still
provide useful insight into the behavior of estimates from simulations with a range of population sizes,
environmental noise, and observation schemes. Having established some guidelines about when estimates
are accurate, we then illustrate how multiple distance estimates can be used to estimate the rate of
approach to the threshold.
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Introduction

Many infectious disease epidemics occur with sufficient regularity that their anticipation is straightforward.
For example, seasonal influenza has a pronounced winter seasonality in most of the world, with annual
outbreaks [1]. Some systems are more episodic but still well-understood, such as measles in sub-Saharan
Africa where regional inter-epidemic periods between 1–4 years have been observed in recent times [2]. In
contrast, emerging and re-emerging infectious diseases are rarely anticipated, even though the root causes are
often discerned soon after the event. Many childhood infectious diseases naturally spread effectively, including
measles, chickenpox and rubella. This means that in unvaccinated populations, one infectious individual
may infect many others, measured by the pathogen’s basic reproduction number, R0 [3]. Outbreaks are
prevented in these cases by maintaining a very high proportion of vaccinated individuals, generating herd
immunity in which the effective reproduction number is below 1, meaning small chains of transmission are
quickly broken [4]. Reduced vaccine uptake rates can move the infectious disease system from controlled
(sub-critical, with effective R0 < 1) to super-critical when outbreaks may occur [5]. Alternatively, other
features of the system may be slowly changing, similarly enhancing the transmission of the pathogen. Host
demographic changes, particularly rising birth rates, can increase the supply of susceptible individuals to the
population, and pathogens frequently evolve at high rates, whereby fitter strains (higher R0) may be favored
by selection [6]. Predicting a dynamical system’s movement from sub- to super-critical before it happens
has enormous potential to remove the element of surprise associated with emerging infectious diseases, to
prioritize mitigation strategies to reverse, stop, or slow the transition, and in worst cases to simply be
better prepared for the inevitable. Recent work has also illustrated that following a transition from sub- to
super-critical there is a characterizable bifurcation delay—a waiting time until the outbreak actually occurs
following suitable conditions being met [7]. Consequently, estimates of how far a system is from the epidemic
threshold could help public health officials make judgments about policy, infer on which side of the threshold
the population lies, and track the movement of a system towards a threshold (providing early warnings) and
even away from a threshold as a way of evaluating the effectiveness of any external changes to the system
aimed at controlling infectious disease outbreaks.
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A potentially robust basis for estimating the distance to a threshold is the general slowing down of a
system’s dynamics as a threshold is approached. To be more precise, the average decay rate of deviations from
a fixed point of the system becomes increasingly smaller as the parameters of the system approach the point
at which that fixed point becomes unstable. Wissel [8] pointed out that this phenomenon, known as critical
slowing down or sometimes simply as slowing down, could be used to determine whether the parameters of a
system were approaching a threshold that, when crossed, could result in the system changing in an abrupt and
drastic manner. Such changes have come to be called critical transitions [9]. Recently a great deal of interest
has developed in the possibility of devising model-independent methods to anticipate critical transitions in
complex systems using early-warning signals [10]. In general, early-warning signals are statistical properties
of observations of systems that can be expected to change in characteristic ways as a threshold is approached.
Perhaps the most common examples are increasing autocorrelation and variance of model variables. These
signals can often be derived from the increasingly slow decay of perturbations due to slowing down, and
many other early-warning signals are in one way or another quantifications of slowing down. The beauty
of early-warning signals is that their basis in generic properties of dynamical systems means they have
the potential to be reliable even when the system is complex and unidentifiable. Examples of complex and
poorly identified systems abound in ecology and epidemiology. With application to such systems in mind,
O’Regan and Drake and O’Regan and others [11, 12] demonstrated the application of early-warning signals
based on slowing down to forecasting infectious disease emergence and eradication. Further development and
integration of these methods into surveillance systems may provide a novel and broadly applicable method
of evaluating the control of infectious diseases from existing surviellance data streams.

To explain some of the current challenges in further developing approaches to estimating the distance to
the threshold, we will make reference to some elements of dynamical systems theory. Following Wiggins [13],
a general dynamical system may be written as a system of equations for a vector field ẋ = f(x, θ), where the
overdot indicates a derivative with respect to time, x is a vector of real numbers that determine the point of
the system in its phase space, and θ is a vector of real numbers that are parameters of the system. A solution
to the system is a function x of time that over some time interval satisfies ẋ = f(x(t), θ). A fixed point x∗ of
the system is a solution that does not change with time (i.e., it satisfies 0 = f(x∗, θ)). Such a point is also
referred to as a steady state or an equilibrium of the system. A fixed point is called asymptotically stable if
solutions that start at points near the fixed point move closer to it over time. Because the starting points
are nearby, deviations z = x− x∗ are small and can be accurately modeled by solutions to the linear system
ż = Fz, where F denotes the matrix of first derivatives of f with respect to x (i.e., the Jacobian matrix).
The general solution of such a system is z(t) = exp(Ft)z(0). If the real parts of all of the eigenvalues of F
are negative, this solution will shrink to zero and it follows that x∗ is asympotically stable. If the real parts
of any of the eigenvalues are positive, the solution will not shrink to zero and x∗ is not asymptotically stable.
Thus, as long as the real parts of the eigenvalues of F are not zero, their signs tell us whether or not any
fixed point is stable.

The relationship between the speed of a system’s dynamics and the distance to the threshold arises in
the common case that the eigenvalues of F are continuous functions of the parameters θ of the system and
none of the eigenvalues have zero real parts. In this case for a stable fixed point to become unstable, one of
the eigenvalues must cross zero. Thus as the parameters approach the threshold where stability is lost, one
of the eigenvalues must approach zero in its real part. We call such an eigenvalue an informative eigenvalue
since its value is informative of how far the system’s parameters are from a threshold. We call the magnitude
of such an eigenvalue a distance to the threshold. If an informative eigenvalue can be monitored over time,
one can determine whether the system is approaching a threshold or not and even make a forecast of when
the threshold will be crossed. An informative eigenvalue can be measured by monitoring the decay of small
perturbations away from the fixed point along the eigendirection of the informative eigenvalue. Identifying
trends in such a decay rate is the goal of early-warning signals based on slowing down.

Despite the simplicity of this goal, it is currently not clear exactly how it can be achieved when systems
have multi-dimensional phase space. When one of the eigenvalues of F gets closer to zero, only a small number
of the model’s observable variables may become less resilient to perturbations. The implication is that early-
warning signals such as increasing variance and autocorrelation will not be present in all of the model’s
variables. Several authors have provided examples of such a case. Kuehn [14] showed that in a susceptible–
infected–susceptible (SIS) model of an epidemic on an adaptive contact network, only one of the three model
variables had a clear increase in variance as the epidemic threshold was crossed. Boerlijst and others [15]
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even showed that, depending on the types of perturbations a system experiences, the autocorrelation of some
variables may either increase or decrease as a threshold is approached. Consequently, a recent review [16]
identified the selection of appropriate variables in multivariate systems for detection of slowing down as an
important problem in need of solution. Dakos [17] has recently used an eigendecomposition of F to derive a
simple rule about which state variables have a decay rate that is most affected by the dominant eigenvalue
of F . However, this approach only provides a partial answer to the question of variable selection because it
does not account for the covariance of the perturbations to the system, which can be as important as the
eigenvectors of F on the decay rate of a state variable. Furthermore, another consequence of a models having
multiple dimensions is that the informative eigenvalue may not necessarily be the dominant eigenvalue. When
its real part gets close enough to zero, the informative eigenvalue will of course become dominant but, as we
shall demonstrate, that may not happen until it is very small. So although slowing down is often explained to
be a consequence of the dominant eigenvalue approaching zero, methods to estimate the dominant eigenvalue
of F from a multivariate time series may not reliably estimate the distance to the threshold. There does not
seem to be any general approach for estimating the distance to the threshold in multidimensional systems.

In this work, we derive an explicit relationship between the eigenvalues of F and the autocorrelation
function of each of the variables in a multivariate system. The resulting equations lead us to a simple
condition for determining the types of perturbations under which estimation of a variable’s autocovariance
function can be translated into an estimate of the distance to the threshold. We demonstrate the application
of this method to the susceptible–infected–removed (SIR) model for directly transmitted infectious diseases.
We find that for parameters relevant to many vaccine-preventable diseases, the autocorrelation of the number
infected almost always is indicative of the distance to the epidemic threshold, while the autocorrelation of the
number susceptible is not. We examine the sensitivity of the accuracy of these estimates to environmental
noise, small population size, the frequency of observation, and observation of case reports instead of the
actual number infected. We also show a simple example of estimating the change in the distance to the
threshold over the length of a time series. These results demonstrate the general feasibility of developing
statistical systems for forecasting disease emergence and documenting the approach to elimination.

Methods

Model

The model that motivated the development of the following methods is the susceptible–infected–removed
(SIR) model with demography. We let X denote the number of susceptible individuals, Y the number of
infected (and infectious) individuals, Z the number of removed individuals (recovered or vaccinated), and
N = X + Y + Z the total population size. Typically, we assume that these numbers are the integer-valued
random variables of a Markov process having the parameters defined in table 1 and the transitions defined
in table 2. We also consider models where the death rate or the force of infection (i.e., the per capita rate at
which susceptibles become infected) is subject to variation over time due to fluctuations in the environment
over time. We follow Bretó and Ionides [18] in modeling such variation as multiplicative gamma white
(“temporally uncorrelated”) noise. Bretó and Ionides [18] show that the model remains Markovian with such
noise with the modified propensities for the death and transmission events given by the expressions in table 3.

There are several biological assumptions implicit in our model. We use the standard assumption of
frequency-dependent transmission, which has been shown to be a more appropriate model than the common
alternative assumption of density-dependent transmission for a number of infectious diseases [19]. Another
assumption is that the average death rate of individuals is constant throughout their lifetimes. This assump-
tion is also common and is reasonable for populations in some developing countries. A key feature of our
model is the inclusion of the η term in the force of infection (tables 2 and 3), which relaxes the assumption
that the population is closed to infection from other populations or environmental reservoirs. We include such
a term to allow our model to represent populations in which an infectious disease is repeatedly introduced
but unable to persist within the population.

Although the model is stochastic, the expected value of the model’s variables is deterministic. The rate
of change in the expected value when the system is in a given state can be approximated summing over all
possible updates in tables 2 and 3 and weighting each update by its propensity [20]. Calculating the rate
of change in the expected value of X, Y , and Z in this way leads to the following system of differential
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Table 1: Model parameters
Symbol Definition Default value

η importation rate 400N−1
0 year−1

β transmission rate varied
γ recovery rate 365/22 year−1

µ death rate 0.02 year−1

N0 initial population size 107 individuals
observation frequency 52 year−1

τf magnitude of environmental noise in force of infection 0
τd magnitude of environmental noise in death rate 0

Table 2: Transitions of the SIR model
Name (∆X,∆Y,∆Z) Propensity
birth ( 1, 0, 0) N0µ
death of X (−1, 0, 0) Xµ
death of Y ( 0,−1, 0) Y µ
death of Z ( 0, 0,−1) Zµ
transmission (−1, 1, 0) XY β/N0 +Xη
recovery ( 0,−1, 1) Y γ

equations

Ẋ = N0µ− λ̄X − µ̄X, (1)

Ẏ = λ̄X − γY − µ̄Y, (2)

Ż = γY − µ̄Z, (3)

where the overdot indicate a time derivative and where

λ̄ =

{
τ−1
f ln(1 + τf (βY/N0 + η)), τf > 0,

βY/N0 + η, τf = 0,
(4)

µ̄ =

{
τ−1
d ln(1 + τdµ), τd > 0,

µ, τd = 0.
(5)

The equations for λ̄ and µ̄ in the case of non-zero environmental noise are the infinitesimal means derived
in Bretó and Ionides [18]. By setting these equations equal to zero and solving for X and Y , we can find the
approximate fixed point of the system for a given set of model parameters.

The equations for the fixed point of the differential equations allow us to explain what we mean by
epidemic threshold. For the sake of clarity, we consider the equations only when τd and τf are zero. In that
case the exact equation for the Y -coordinate of the fixed point, which we denote Y ∗, is

Y ∗ =
N0

2

[
µ

β
(R0 − 1)− η

β

]
+
N0

2

√[
µ

β
(R0 − 1)− η

β

]2

+ 4
µη

(γ + µ)β
(6)

where R0 = β/(γ+µ). R0 is known as the basic reproduction number and we consider the epidemic threshold
to be the surface in parameter space where R0 = 1 and η = 0. To see why, note that when η = 0, equation

Table 3: Modified transitions of the SIR model allowing for environmental heterogeneity
Name (∆X,∆Y,∆Z) Propensity

death (−k1,−k2,−k3)
(
X
k1

)(
Y
k2

)(
Z
k3

)∑k1+k2+k3
j=0

(
k1+k2+k3

j

)
(−1)k1+k2+k3−j+1τ−1

d ln(1 + µτd(X + Y + Z − j))
transmission (−k, k, 0)

(
X
k

)∑k
j=0

(
k
j

)
(−1)k−j+1τ−1

f ln(1 + (βY/N0 + η)τf (X − j))

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2018. ; https://doi.org/10.1101/247734doi: bioRxiv preprint 

https://doi.org/10.1101/247734
http://creativecommons.org/licenses/by/4.0/


(6) has a non-zero value only when R0 > 1; only when R0 > 1 will the introduction of an infection into a
susceptible population lead to an epidemic according to the system of differential equations. Accordingly, one
can interpret R0 as the average number of new infections caused by an infected individual in a susceptible
population. From the point of view of fixed points, the epidemic threshold separates the region of parameter
space where a fixed point occurs with Y ∗ = 0, a disease-free equilibrium, from the region where a fixed point
occurs with some Y ∗ > 0, an endemic equilibrium.

When there is a small rate at which individuals can be infected from other populations or an environmental
source (0 < η � 1), there is no longer a disease-free equilibrium but the concept of an epidemic threshold is
still relevant. One can see from equation (6) that Y ∗ is slightly increased by the addition of η to the force
of infection. When R0 is not too close to 1, Y ∗ can be well-approximated by making a linear approximation
to the square root function starting at the point where its argument is equal to its first term, which yields

Y ∗/N0 ≈ max

(
0,
µ

β
(R0 − 1)− η

β

)
+

η

|β − γ − µ− η(γ + µ)/µ|
(7)

≈ max

(
0,
µ

β
(R0 − 1)

)
+

η

|β − γ − µ|
. (8)

Using this approximation, one can see that when R0 � 1, Y ∗/N0 scales with η. When R0 � 1, Y ∗/N0 is
potentially much larger and effectively independent of η. Also, a large epidemic is only possible when R0 � 1.
Therefore, we can still consider R0 = 1 as an epidemic threshold for small η. To clarify that Y ∗/N0 is not
too large when R0 ≈ 1 we need a second approximation. In this case, Y ∗/N0 can be bounded by applying
the triangle inequality to obtain

Y ∗/N0 < max

(
0,
µ

β
(R0 − 1)− η

β

)
+
√
µη/[(γ + µ)β]. (9)

This bound on Y ∗/N0 scales with
√
η. Accordingly, Y ∗/N0 is intermediate in size to those cases when R0 is

far from 1. Thus, although when η > 0 the model never passes through an epidemic threshold, as R0 passes
through one Y ∗/N0 behaves similarly to the case where the model parameters do pass through a threshold
point (i.e., when η = 0). Thus it is still of interest to establish how close the parameters are to the point of
the epidemic threshold.

Relating eigenvalues to autocovariance

When the dynamics are characterized by small fluctuations around a fixed point, the degree of autocorrelation
of these fluctuations may be indicative of the distance to the threshold. A first step in demonstrating this
relationship is to derive a probability density function for the fluctuations. Let z(t) denote a vector of
deviations from the fixed point that is in units of the square root of the system’s size. Let p(z) be the
probability density function of these deviations. In the limit of a large system size, this function may be
approximated as the solution to the Fokker–Planck equation

∂p(z, t)

∂t
=
∑
ij

−fij
∂(zjp)

∂zi
+

1

2

∑
ij

dij
∂2p

∂zi∂zj
, (10)

where the matrix F (with elements fij) determines the expected trajectory of z toward zero and the matrix
D (with elements dij) describes the covariance of a Gaussian white noise process that acts on z. The matrices
F and D follow directly from the transition probabilities. For the SIR model in the previous subsection, we
take N0 as the system size, z = ((X −X∗)/

√
N0, (Y − Y ∗)/

√
N0) and obtain

F (X∗, Y ∗) =

(
−λ̄− µ̄ − dλ̄

dY X
∗

λ̄ dλ̄
dY X

∗ − γ − µ̄

)
, (11)

where λ̄ and dλ̄
dY are evaluated at Y = Y ∗. For the covariance matrix, we obtain

D(X∗, Y ∗) =

(
µ+mX,Y +mX,∅ −mX,Y +mXY,∅
−mX,Y +mXY,∅ γY ∗/N0 +mX,Y +mY,∅

)
, (12)
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where

mX,Y =

{
X∗λ̄/N0 +X∗(X∗ − 1)[2λ̄− τ−1

f ln(1 + 2τf (βY ∗/N0 + η))]/N0, τf > 0,

X∗λ̄/N0, τf = 0,
(13)

mX,∅ =

{
X∗µ̄/N0 +X∗(X∗ − 1)[2µ̄− τ−1

d ln(1 + 2τdµ)]/N0, τd > 0,

X∗µ̄/N0, τd = 0,
(14)

mY,∅ =

{
Y ∗µ̄/N0 + Y ∗(Y ∗ − 1)[2µ̄− τ−1

d ln(1 + 2τdµ)]/N0, τd > 0,

Y ∗µ̄/N0, τd = 0,
(15)

mXY,∅ =

{
X∗Y ∗[2µ̄− τ−1

d ln(1 + 2τdµ)]/N0, τd > 0,

0, τd = 0.
(16)

A solution to equation (10) is a Gaussian density function with a mean of zero and a covariance matrix Σ
(with elements σij) that depends on F and D. van Kampen [20] provides a detailed introduction to these
methods.

For these Gaussian solutions, the autocovariance function of the deviations may be written in terms of
the eigenvalues of F . The relationship is particularly simple when the eigenvectors of F are used as the basis
of the coordinates. Thus let z̃ = W−1z, where W is a matrix of the eigenvectors of F , and let Σ̃ denote the
covariance matrix of z̃. Then, using the decomposition of Kwon and others [21], it follows that

σ̃ij = −d̃ij/(λi + λj), (17)

where λi denotes an eigenvalue of F and we assume that all of these eigenvalues are distinct. The autoco-
variance matrix is defined as Στ = 〈z(t − τ)z(t)ᵀ〉, where the angular brackets denote expected value over
time or realizations of the system. It follows from the stationarity of the solution that Στ = exp(Fτ)Σ.
In the eigenvector basis, we have σ̃τ,ij = exp(λiτ)σ̃ij . Thus the behavior of the autocovariance along an
eigendirection as a function of the lag τ is a simple and identifiable function of the corresponding eigenvalue.
If λi is real, then σ̃τ,ii decays exponentially toward zero at the rate λi. If λi has an imaginary component,
then the real and imaginary parts of σ̃τ,ii oscillate around zero with a frequency given by the imaginary
component of λi and an amplitude that decays exponentially at the rate given by the real component of
λi. Since Στ = W Σ̃τW

ᵀ, στ,ii will be a linear combination of the elements of Σ̃τ . Therefore, the elements
of the autocovariance matrix Στ are linear combinations of functions from which the eigenvalues of F are
identifiable.

Solving for the space of suitable noise parameters

The relationship between the eigenvalues and the autocovariance established in the previous subsection
clarifies the question of when the autocovariance of a variable contains sufficient information to estimate the
distance to a threshold. Any threshold corresponds to an eigenvalue crossing zero. Recall that we call such an
eigenvalue an informative eigenvalue and that the magnitude of its real part can be considered the distance
to the threshold. If it is known that the imaginary part of the eigenvalue will also be zero at the threshold,
then the magnitude of the imaginary part can be considered a second component of the distance. Note that
in the case that an informative eigenvalue is complex it will be a part of a conjugate pair. Estimation of
the decay rate and frequency of oscillation of a variable’s autocovariance function can provide an estimate
of the distance to the threshold when they are close to the real and imaginary parts of an informative
eigenvalue. This condition on the autocovariance function for an estimate to be accurate, together with
equations Στ = W Σ̃τW

ᵀ and equation (17), can be translated into conditions on the eigenvectors W of F
and the covariance matrix D of the perturbations. Thus, we now have a general link between the parameters
of models and the potential for a model variable to provide an estimate of the distance to the threshold. In
the electronic supplementary material, we provide an explicit calculation of the values of D that permit a
distance estimate for each variable.
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Obtaining distance estimates from time series

We estimate the distance to the threshold from a time series as follows. The main idea is to suppose that the
autocorrelation will exponentially decay with increasing lags at a rate equal to the real part of the informative
eigenvalue and that any oscillations in the autocorrelation function have a frequency equal in magnitude to
the imaginary part of the informative eigenvalue. The first step is then to estimate the autocorrelation of
the time series for a series of lags, which we demonstrate using the acf function in R. Because sometimes the
autocorrelation can have cycles with a period of several years, we used lags from 0 to 30 observations less
than the length of the time series. Next we use a nonlinear least-squares optimizer to fit two models for the
estimated autocorrelation σ̂ii,τ/σ̂ii:

σ̂ii,τ/σ̂ii = egτ + eτ (18)

σ̂ii,τ/σ̂ii =
√

1 + a2egτ sin(ωτ + atan2(1, a)) + eτ , (19)

where eτ is an error term, g is the decay rate parameter, ω is the frequency parameter, and a is a phase angle
parameter, and atan2 is the inverse tangent function with arguments in the order y, x. We use the nlsLM
function to fit these models. This function is available in the minpack.lm package [22], and it provides an R
interface to the Levenberg–Marquardt optimizer in the MINPACK library. We used nlsLM instead of the nls
function that comes with R because it was less sensitive to the choice of initial values of the parameters for
the optimization of the model fit. For initial values, we set a to zero, g to the least-squares slope of the log of
the absolute value of the estimated autocorrelation versus the lag, and ω to the frequency that maximized the
spectral density of the estimated autocorrelation. We fit the data with and without an oscillation component
in the model and use the following AIC-like score to evaluate the models: twice the number of parameters
plus the residual sum of squared errors. We take the estimates from the model with the lower score. We use
these estimates to calculate the distance to the threshold as

√
ω2 + g2.

Simulation experiments

In the following, we apply our theory and estimation methods to the SIR model. To generate data for
estimation, we simulated time series of the number of individuals in each state according to our Markov
process model using the Euler scheme of He and others [23]. The pomp [24, 25] R package was used to
implement the model. Our typical procedure was to simulate data with most of the parameters fixed at the
default values in table 1 and for several choice of transmission rate. Simple sensitivity analyses of the distance
estimates were carried out by allowing one or two of the parameters to vary from the default values. The
full set of parameters used for each set of distance estimates is reported in the results. The initial values of
the states were set to the equilibrium values and the model was run for 10 simulation years before sampling
to allow the initially sampled states to vary according to the stationary distribution of the process. The
sampling scheme was 1040 observations at a frequency of 1 observation per week. This corresponds to about
20 years of weekly observations, which is a realistic size for an epidemiological data set. Sampled time series
of both the number infected and the number susceptible were used to generate an estimate of the distance to
the threshold by the method described above. The true value for each estimate was calculated by plugging
the simulation parameters into equation (11), solving for the fixed points, and calculating the eigenvalues of
F . If there were two real eigenvalues, the informative eigenvalue was identified as the eigenvalue that would
cross zero if the parameters were moved through the bifurcation point where R0 = 1 and η = 0.

We also conducted simulations with a linearly increasing transmission rate to evaluate the performance
of estimates of changes in distance. To ease comparison with estimates from our other simulations, we used
a similar amount of data for the individual distance estimates used to calculate the change in distance.
The simulations were sampled for twice as long, the time series were split into two windows of 1040 weekly
observations, and an estimate was obtained for each window.

Software and reproducibility

Code to reproduce our results is available in an online repository [26].
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Figure 1: Example of simulated time series that could provide a distance estimate. Deviations are plotted
instead of the simulated counts to align the time series vertically and because the deviations are what is
used to calculate the estimate. The main idea is to estimate the rate at which deviations decay and oscillate.
As these examples suggest, these rates tend to increase as the parameters of the system move away from
R0 = 1. Parameters for the simulations are in table 1, with β set to R0(γ + µ).

Results

Main determinants of the accuracy of distance estimates

We first present some general considerations regarding when the distance to the epidemic threshold can be
estimated from the fluctuation dynamics of the SIR model. Figure 1 shows representative examples of the
kinds of time series that we suppose could become available for statistical analysis. For two of the parameter
values, cycles are visible in both the number of susceptibles, X, and the number of infecteds, Y ; which is
a consequence of the eigenvalues of the Jacobian, F , being complex. This behavior is typical of parameters
for which R0 > 1. We have explained in Methods that in this case, any white-noise perturbation may allow
for the distance estimate to be obtained from either variable. When R0 < 1, typically there are two real
eigenvalues. Without any knowledge about the model, we would expect that the ability to obtain an estimate
depends on the covariance of the perturbations. With the knowledge that the observations come from an
SIR model, we could expect that the dynamics of the X and Y variables will be largely independent of each
other. The number infected will generally be too small to affect the fluctuations in the number susceptible.
Thus the rate at which susceptible perturbations decay will depend mostly on the per-capita death rate
µ, whereas the rate at which infected perturbations decay will depend on the sum of the per-capita rates
at which Y grows and shrinks, βX∗/N0 − γ − µ. Thus the variable Y is generally the one that should be
observed to estimate the distance to the threshold when the disease is not widespread. In the electronic
supplementary material, we derive explicit equations for the autocorrelations that supports this conclusion.

Having provided some general insights into why distance estimates may be obtained from Y and not
X when R0 < 1, we next consider a more specific answer for a specific set of parameters. We use the
approach described in Methods to find the set of noise parameters that allow the distance to the threshold
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to be estimated with a given accuracy from each variable. These sets appear as regions in space in figure 2.
Consistently with the conclusions of the previous paragraph, the regions are much larger for the number
infected, Y , than for the number susceptible, X. The regions for Y include the perturbations that result
from the intrinsic noise present in simulations of the model with finite population sizes. In contrast, a large
part of the lower-error region identified for X is in fact not feasible because the covariance matrix constraint
of d2

12 ≤ d11d22 is not satisfied.
Having shown that, in principle, distance estimates are often possible to obtain from the SIR model from

at least one of the variables, we next turn to the question of whether estimates may be obtained in practice
from a simulated time series of realistic length using our estimation method. Figure 3 shows that for time
series of about 1000 observations our estimation method was generally successful when the perturbations are
predicted to be suitable. The perturbations were simply intrinsic noise, so the low accuracy of estimates based
on X when R0 = (0.1, 0.5, 0.9) is consistent with figure 2. As expected, when R0 > 1 estimates from both
X and Y were similarly accurate. Therefore Y permits a distance estimate for all R0 considered. Although
there is perhaps more overlap in the estimates from different R0 than is desirable from 20 years of data, the
estimates are sufficiently accurate to be useful.

Sensitivity analyses

Although we found that observation of the number infected could provide accurate distance estimates when
the system is subject to intrinsic noise only, figure 2 indicates that deviations from intrinsic noise can change
the situation. Thus we next examined the distance estimates with increasing amounts of environmental noise
in the death rate. As expected, the R0 = 0.1 panel of figure 4 shows that for sufficiently large amounts
environmental noise, the estimates of distance based on Y become inaccurate. However, the amount of noise
required to seriously compromise accuracy is large. Figure 5 shows that environmental noise is slow to change
the decay of the autocorrelation at short lags, and thus the robustness of the accuracy is a consequence of
our distance estimates being sensitive to the rapid decay at short lags. Note that a typical approach when
calculating early warning indicators is to look for trends in the autocorrelation at a single lag, and for
large enough lags trends in such indicators could mistakenly identify increasing noise in the death rate for an
approach to an epidemic threshold. However, we have also noticed that for 20 year time series the increases in
the autocorrelation due to environmental noise are typically below their long-term expected value (figure 6),
which serves to reduce the effect relative to that expected from figure 5 and also contributes to the robustness
of our distance estimates. If the estimated autocorrelations from the 20 year time series looked like those
in figure 5, the estimates based on Y would be much more similar to those based on X when the standard
deviation in the death rate was 1 and the population size was 109.

From the definition of the m terms in equation (12), it can be seen that environmental variation in
the death rate increases the covariance of perturbations of X and Y . In contrast, environmental variation
in the force of infection makes that covariance more negative. To more thoroughly examine the effects of
deviations from pure intrinsic noise we also evaluated distance estimates from simulations with environmental
noise in the force of infection. Estimates in He and others [23] for the standard deviation of such noise from
measles case reports range from 0.038 to 0.096. Estimates from the analysis of polio case reports in Martinez-
Bakker and others [27] for the standard deviation of noise in the force of infection range from 1.6·10−3 to 0.68
(personal communication with P. Rohani). Figure 7 plots distance to threshold estimates from simulations
having noise levels that bracket these noise parameter estimates. In contrast to the case of noise in the death
rate, distance estimates are not affected by high levels of noise when R0 = 0.1, but they are affected when R0

is equal to 2 or 16. We inspected the time series in these cases and noticed that the variation in the force of
infection leads to frequent interruption of the regular cycles that characterize the dynamics in the presence
of intrinsic noise. Bretó and others [28] have noted that environmental variation in the transmission rate can
cause such irregularities. Although one could certainly attempt to adapt the distance estimation procedure
to such dynamics, our goal was simply to describe a basic procedure and identify some of its limitations.

To that end, we examined with simulation how the accuracy of distance estimates declined with population
size. Figure 8 shows that we did not find the accuracy to be generally sensitive to population size. This
robustness is remarkable because for small populations the marginal distribution of the time series becomes
highly non-Gaussian. However, its seems the Gaussian solution based on large population sizes can still
provide a good approximation to the autocorrelation when the population size is fairly small. In short, it
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Figure 2: In our SIR model for most R0 < 1, the set of noise parameters under which the distance to the
epidemic threshold may be estimated is much larger for the number infected than for the number susceptible.
Each panel plots as a prism, for a range of variances in white-noise perturbations to the number susceptible
and infected (subscripts 1 and 2, respectively) the region containing the covariances for the perturbations
that result in the autocorrelation of the model variable being within 0.1 of the reference that would result in
a perfect distance estimate. The axis labels denote elements of the matrix D in equation (10). The points in
each panel correspond to the intrinsic perturbations calculated by the linear noise approximation equation
(12). The red line segments are drawn vertically from these points to the nearest boundary of the low-error
region. The points in the panels for the infecteds fall within the low-error region. Parameters were as in
table 1, with β set to 1.66, 8.31 and 14.9.
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Figure 3: Distance estimates can be obtained from both X and Y in stochastic simulations of our SIR model.
However, the distance estimates based on X are not always reliable. The X and Y variables were sampled
weekly for 20 years. Parameters for the simulations are in table 1, with β set to R0(γ + µ). The distance to
the threshold is defined here as the modulus of the informative eigenvalue. The true value is marked with
an ‘x’. There are 100 estimates for each variable for each R0. The x-values of the points have been jittered
to make the density of points at each y-value clearer.
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Figure 4: The accuracy of distance estimates is not affected by stochastic variation in the death rate parameter
until the variation becomes extreme. The true distance is marked with an ‘×’. Parameter η was fixed to
4 · 10−5. Other parameters were in table 1. Parameter β was set to R0(γ + µ).
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Figure 5: The sensitivity of the autocorrelation of the number infected to environmental noise in the death rate
depends on the lag. Points are estimate of the autocorrelation from a long (1000 year) time series simulated
according to our Markov process model. Lines represent the analytic calculations based on equation (10).
Parameter η was fixed to 4 · 10−5. Other parameters were as in table 1, with β set to 0.1(γ + µ).
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Figure 6: The increase in the autocorrelation with noise in the death rate can be less for 20 year observation
periods than the long term average. Points are estimates of the autocorrelation from a 20 year time series
simulated according to our Markov process model. Lines represent the analytic calculations based on equation
(10). The points are much lower than the lines than is the case in figure 5, where the simulations were much
longer. Parameter η was fixed to 4 · 10−5. Other parameters are in table 1, with β set to 0.1(γ + µ).
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Figure 7: The accuracy of distance estimates is affected by stochastic variation in the force of infection when
it is large (here, a standard deviation above 0.01) and there are cycles that it can interrupt (here, R0 of 2
or 16). The true distance is marked with an ‘x’. Parameter η was fixed to 4 · 10−5. Other parameters are in
table 1. β was set to R0(γ + µ).
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Figure 8: The accuracy of distance estimates is not sensitive to the population size. The true value is marked
with an ‘x’. As in figure 3, Y generally provides an accurate estimate and X is also generally accurate when
the eigenvalues are complex. There are 100 estimates for each variable for each population size. Parameters
besides the population size are in table 1, with β set to R0(γ + µ).

seems that in some cases our methods may be reliable with data from population sizes as small as 100.
As an additional sensitivity test of the distance estimates, we next looked at the effect of the frequency

of observations in the time series. To avoid confounding the effects of frequency with the effects of the length
of the time series, its length was kept the same for all sampling frequencies by adjusting the stop time of the
simulations. In the R0 = 2 panel of figure 9, we see that when such a trade-off exists between the duration of
observation and the observation frequency, a high observation frequency can be detrimental due to the short
observation period. For daily observation frequency, the total duration of observation was limited to 1000
days, whereas the period length of the oscillations in the autocorrelation was about 11 years. With weekly
observation frequency, the duration of observation is about 20 years and the estimates are much better. A
rough guideline for accurate estimation seems to be that the duration of observation be at least as long
as the period of any oscillation in the autocorrelation function. Another guideline is that the time between
observations be much less than the period of oscillation of the autocorrelation. In the R0 = 16 panel of
figure 9, we see that the distance estimates become noticeably biased when the observation frequency goes
from 0.25 per week to 1 per year. For these parameters, the autocorrelation had a period of about 3 years, so 3
observations per cycle seems much worse than 40 observations per cycle. A similar guideline on the sampling
frequency holds when the autocorrelation function is not periodic. In the R0 = 0.1 panel, the estimates based
on Y become worse as the sampling frequency dips below 1 per week. Here, the autocorrelation shrinks by
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Figure 9: The accuracy of distance estimates is sensitive to the frequency of observations and whether the
state of the time series consists of case reports. The true distance is marked with an ‘x’. The case reports
variable is the accumulated number of recovery events since the last observation. Parameters besides the
observation frequency are in table 1, with β set to R0(γ + µ).

a factor of e ( 2.7) about every 3.5 weeks. This time can be used to characterize the timescale of a decaying
function and is sometimes called the return time. A third guideline, then, is that the time between samples
should be less than the return time. In summary, for accurate estimates the duration of observation should
be much greater than the time scale of the autocorrelation function but the time between observations should
be much smaller than the time scale of the autocorrelation function.

In addition to sampling frequency, another key characteristic of observations is whether they represent
direct observation of the state of the system or cumulative flows between states. In particular, it is relatively
rare for the number of infections in a population at a given point in time to be observed. A more typical
type of observation is the count of the number of infected individuals that moved into the removed class,
for example because these individuals visited a doctor and then avoided contact with others. We refer to
such counts as case reports. Although our methods were not developed for this type of observation, we were
interested in seeing whether they still might be applicable. Figure 9 shows that when the autocorrelation
function was periodic (i.e., when R0 was equal to 2 or 16), the estimates based on case reports were similar
to those based on direct observation of X or Y . However, for the short time series, the estimates based on
case reports tended to overestimate the distance and be more variable. In our simulations with R0 = 0.1, in
which the autocorrelation function did not oscillate, the estimates based on case reports tended to be higher
than those based on the direct observation of Y but were less variable. Thus when the sampling frequency
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was suitable for accurate estimates based on Y , using case reports led to overestimates of the distance.
However, as the sampling frequency declines the estimates based on Y became low, and when there were 13
observations per year estimates based on case reports were actually slightly more accurate. With a sampling
frequency of 1 per year, no meaningful difference existed between the two types of estimates. In summary,
using case reports in place of the number infected did not spoil distance estimates when the autocorrelation
is periodic, but tended to increase distance estimates when the autocorrelation was not periodic.

The electronic supplementary material contains the results of our estimation of the rate of change of the
distance to the threshold.

Discussion

This work has presented a general solution to the problem of the selection of appropriate variables in
multivariate systems for detection of slowing down as a threshold is approached. The solution is a method
of calculating what type of white-noise perturbations, if any, allow slowing down to be detected based on
observation of a given variable. To provide a specific example, this general solution has been applied to the
SIR model and been shown to be consistent both with a model-specific analysis and with simulations. This
application has also served to demonstrate and stress-test a method of estimating a distance to a threshold
that is defined as one of the eigenvalues of the linearized model’s matrix F . It is worth mentioning that
this informative eigenvalue is not always the dominant eigenvalue. When the informative eigenvalue is not
dominant it is a consequence of the vital dynamics of the host occurring on a timescale that is much longer
than the dynamics of small outbreaks that occur when the infection does not spread very well in the host
population. Such a difference in time scales seems likely to occur in other multivariate models of population
dynamics.

Looking beyond the SIR model, the question also arises of whether our method of identifying appropriate
variables will be practical for models with many more than two degrees of freedom. In the SIR model, the
autocorrelation function of one of the state variables is often very similar to that of one of the eigendirections.
This allowed us to select variables based on the criteria of how well the autocorrelation function matched
up with that of the eigendirection corresponding to the informative eigenvalue. In general, as the number of
variables grows we might expect that the autocorrelation function of each variable to become more strongly
influenced by multiple eigenvalues. For this more challenging case, we wonder whether harmonic inversion
methods [29] might be capable of estimating the values of each of the eigenvalues that strongly influence each
variable from its autocorrelation function. Variables that allow the informative eigenvalue to be estimated
in this manner could then be considered appropriate for tracking the distance to the threshold.

The distance to thresholds in systems will generally change over time, and our results concluded with a
simple demonstration of how these changes might be tracked. In the context of infectious disease surveillance,
an exciting prospect of this approach is the possibility that surveillance programs might be able determine
that some change in the system is moving it closer to the epidemic threshold long before the threshold is
crossed. Besides increasing awareness, such measurement may allow for management of the distance to the
threshold in some systems, for example by guiding the allocation of resources to vaccination programs. In this
way, infectious disease control goals could move beyond early detection of and rapid response to epidemics
toward targeted prevention of epidemics. Further, tracking has the potential to measure the relenting and
reversing of system dynamics in response to control goals. Finally, establishing the conditions under which
statistical analysis of fluctuations in the number of infected individuals is more informative than similar
analysis of susceptible individuals does not make a case against susceptible reconstruction methods [30] in
distance-to-threshold studies because such methods estimate major trends in the susceptible population size
rather than fluctuations around them. Rather, our result makes a case for analysis of the fluctuations in
the number infected, whether estimated from readily available time series incidence data or from pathogen
sequence data [31].
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