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Abstract

Mathematical models are nowadays important tools for analyzing dynamics of cellular processes. The un-

known model parameters are usually estimated from experimental data. These data often only provide

information about the relative changes between conditions, hence, the observables contain scaling parame-

ters. The unknown scaling parameters and corresponding noise parameters have to be inferred along with the

dynamic parameters. The nuisance parameters often increase the dimensionality of the estimation problem

substantially and cause convergence problems. In this manuscript, we propose a hierarchical optimization

approach for estimating the parameters for ordinary di↵erential equation (ODE) models from relative data.

Our approach restructures the optimization problem into an inner and outer subproblem. These subprob-

lems possess lower dimensions than the original optimization problem, and the inner problem can be solved

analytically. We evaluated accuracy, robustness, and computational e�ciency of the hierarchical approach

by studying three signaling pathways. The proposed approach achieved better convergence than the stan-

dard approach and required a lower computation time. As the hierarchical optimization approach is widely

applicable, it provides a powerful alternative to established approaches.

1 Introduction

Mechanistic mathematical models are used in systems biology to improve the understanding of biological

processes. The mathematical models most frequently used in systems biology are probably ordinary di↵er-

ential equations (ODEs). ODE models are, among others, used to describe the dynamics of biochemical

reaction networks (Kitano, 2002; Klipp et al., 2005; Schöberl et al., 2009) and proliferation/di↵erentiation

processes (De Boer et al., 2006). The dynamic parameters of the underlying processes, e.g., reaction rates

and initial conditions, are often unknown and need to be inferred from available experimental data. The in-

ference provides information about the plausibility of the model topology, and the inferred parameters might

for instance be used to predict latent variables or the response of the process to perturbations (Molinelli

et al., 2013).

The experimental data used for parameter estimation are produced by various experimental techniques.

Most of these techniques provide relative data, meaning that the observation is proportional to a variable
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of interest, e.g., the concentration of a chemical species. This is for instance the case for Western blotting

(Renart et al., 1979) and flow and mass cytometry (Herzenberg et al., 2006). If calibration curves are

generated, the measured intensities can be converted to concentrations, however, in most studies this is not

done due to increased resource demands.

In the literature, two methods are employed to link relative data to mathematical models: (i) evaluation

of relative changes (Degasperi et al., 2017) and (ii) introduction of scaling parameters (Raue et al., 2013).

In (i), relative changes between conditions are compared, and the di↵erences between observed and simulated

relative changes are minimized. While this approach is intuitive and does not alter the dimension of the

fitting problem, the noise distribution is non-trivial and the residuals are not uncorrelated (Thomaseth

and Radde, 2016). This is often disregarded (see, e.g., (Degasperi et al., 2017)), which yields incorrect

confidence intervals. In (ii), scaling parameters are introduced to replace the calibration curves. The

scaling parameters are unknown and have to be inferred along with the dynamic parameters. While this

increases the dimensionality of the optimization problem (see (Bachmann et al., 2011) for an example in

which the number of parameters is doubled), the noise distribution is simple and the confidence intervals

consistent. To address the dimensionality increase, Weber et al. (2011) proposed an approach for estimating

the conditionally optimal scaling parameters given the dynamic parameters. This approach eliminated the

scaling parameters, however, it is only applicable in the special case of additive Gaussian noise with known

standard deviation. Unknown noise parameters and outlier-corrupted data (Maier et al., 2017) – as found

in many applications – cannot be handled.

In this study, we propose a hierachical optimization approach which generalizes the idea of Weber

et al. (2011). The proposed hierarchical approach allows for arbitrary noise distributions, with known

and unknown noise parameters. For Gaussian and Laplace noise, we provide analytic solutions for the inner

optimization problem, which boosts the computational e�ciency. To illustrate the properties of the proposed

approach, we present results for two models of JAK-STAT signaling and a model of RAF/MEK/ERK

signaling.

2 Methods

In this section, we describe the considered class of parameter estimation problems and introduce a hierar-

chical optimization method for estimating the parameters of ODE models from relative data under di↵erent

measurement noise assumptions.

2.1 Mechanistic modeling of biological systems

We considered ODE models of biological processes,

ẋ = f(x(t,✓),✓), x(t0,✓) = x0(✓) , (1)

in which the time- and parameter-dependent state vector x(t,✓) 2 Rnx represents the concentrations of the

species involved in the process and the vector field f : Rnx ⇥Rn✓ ! Rnx determines how the concentrations

evolve over time. The vector ✓ 2 Rn✓ denotes the parameters of the system, e.g., reaction rates. The initial

conditions at time point t0 are given by the parameter-dependent function x0 : Rn✓ ! Rnx .

Experimental data provide information about observables y(t, ✓) 2 Rny . These are obtained by the
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output function h : Rnx ⇥ Rn✓ ! Rny , which maps the states and parameters to the observables via

y(t,✓) = h(x(t,✓),✓) . (2)

Due to experimental limitations the experimental data is noise corrupted,

ȳi,k = hi(x(tk,✓),✓) + "i,k , (3)

with hi denoting the ith component of the output function h, and indices k for the time point. In most

applications, Gaussian noise is assumed, "i,k ⇠ N (0,�i,k2). For outlier-corrupted data, it was shown that

the assumption of Laplace noise, "i,k ⇠ Laplace(0,�i,k), yields more robust results (see (Maier et al., 2017)

and references therein).

The measurements are collected in a dataset D = {ȳk, tk}k. The vector ȳk = (ȳ1,k, . . . , ȳny ,k)
T comprises

the measurements for the di↵erent observables. For the general case including di↵erent experiments and

conditions, we refer to the Supplementary Information, Section 1.

2.2 Relative experimental data

Many experimental techniques provide data which are proportional to the measured concentrations. The

scaling parameters are usually incorporated in h, defined in (2). Here, for simplicity and without loss of

generality, we unplugged the scaling parameters from the function h and write

ȳi,k = si,k · hi(x(tk,✓),✓) + "i,k .

The scaling parameters si,k and the noise parameters �i,k are in the following combined in the matrices s

and �, respectively. To distinguish the di↵erent parameter types, we refer to the parameters ✓ further as

dynamic parameters. In the following, we present results for the case that the scaling si and noise parameters

�i are the same for each time point, but di↵er between observables. The general case is presented in the

Supplementary Information, Section 1.

2.3 Formulation of parameter estimation problem from relative data

We used maximum likelihood methods, a commonly used approach to calibrate mathematical model, to

estimate the parameters from experimental data. The likelihood function is given by

L(✓, s,�) =
Y

i,k

p(ȳi,k|si · hi(x(tk,✓),✓),�i) (4)

with p denoting the conditional probability of ȳi,k given the observable yi,k = si · hi(x(tk,✓),✓). This

probability is for Gaussian noise

p(ȳi,k|yi,k,�i) =
1p
2⇡�i

exp

 
�
(ȳi,k � yi,k)

2

2�2
i

!

with standard deviation �i, and for Laplace noise

p(ȳi,k|yi,k,�i) =
1

2�i
exp

✓
�
|ȳi,k � yi,k|

�i

◆
.
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Figure 1: Visualization of standard and hierarchical optimization schemes. (A) Local optimization in the standard
approach with parameters q = (✓, s,�). A single iteration includes the numerical simulation of the ODE model for
✓, the evaluation of the objective function and its gradient, the evaluation of local optimality and stopping criteria,
and the termination of the local optimization or the updating of the parameters. (B) Outer local optimization in the
hierarchical approach with parameters ✓. A single iteration includes the numerical simulation of the ODE model ✓,
the evaluation of the objective function and its gradient with respect to ✓ using the results of the inner optimization
problem, The iteration also includes the evaluation of local optimality and stopping criteria, and the termination of the
local optimization or the updating of parameters. (C,D) Inner (local) optimization in the hierarchical approach to find
the optimal scaling and noise parameter ŝ and �̂ for given dynamic parameters ✓. (C) Iterative local optimization to
determine ŝ and �̂. This does not require the numerical simulation of the model. (D) Calculating optimal parameters
ŝ and �̂ using analytic expressions for common noise distributions.

with scale parameter �i.

2.3.1 Standard approach to parameter estimation

For the standard approach, the dynamic parameters ✓, the scaling parameters s, and the noise parameters

� are estimated simultaneously. For numerical reasons, this is mostly done by minimizing the negative

log-likelihood function,

min
✓,s,�

J(✓, s,�) with J(✓, s,�) = � logL(✓, s,�) . (5)

The parameters were combined as q = (✓, s,�) and the optimization problem has the dimension: number

of dynamic parameters n✓ + number of scaling parameters ns + number of noise parameters n�. We solved

it using multi-start local optimization, a method which has previously been shown to be computationally

e�cient. In each iteration the objective function and its gradient were computed. If the objective function

for this parameters fulfills certain criteria, e.g., the norm of the gradient was below a certain threshold,

the optimization was stopped, otherwise the parameter was updated and the procedure was continued

(Figure 1A).

2.3.2 Hierarchical approach to parameter estimation

Since the optimization problem (5) often possess a large number of optimization variables and can be di�cult

to solve, we exploited its structure. Instead of solving simultaneously for ✓, s, and �, we considered the
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hierarchical optimization problem (Figure 1B)

min
✓

J(✓, ŝ(✓), �̂(✓)) (6)

with (ŝ(✓), �̂(✓)) = argmin
s,�

J(✓, s,�) . (7)

The inner problem (7) provides the optimal values ŝ(✓) and �̂(✓) of s and � given ✓. These optimal values

were used in the outer subproblem to determine the optimal value for ✓ denoted by ✓̂. It is apparent that

a locally optimal point of the standard optimization problem (5) is also locally optimal for the hierarchical

optimization problem (6,7), if the point is within the box constraints for the optimization.

The formulation (6) might appear more involved, however, it possesses several properties which might

be advantageous:

(i) The individual dimensions of the inner and outer subproblems (6,7) are lower than the dimension of

the original problem (5).

(ii) The optimization of the inner subproblem does not require the repeated numerical simulation of the

ODE model.

(iii) For several noise models, e.g., Gaussian and Laplace noise, the inner subproblem can be solved ana-

lytically.

If (iii) holds, the scaling parameters s and also the noise parameters � can be calculated directly and the

amount of parameters that need to be optimized iteratively reduces to n✓ (Figure 1C,D). In the following two

sections, the analytic expressions for the Gaussian and Laplace noise are derived. For this, let observable

index i be arbitrary but fixed.

Analytic expressions for the optimal scaling and noise parameters for Gaussian noise

In this study, we evaluated the scaling and noise parameters for Gaussian noise analytically. To derive the

analytic expression for the optimal parameters, we exploited that the objective function for Gaussian noise,

J(✓, s,�) =
1

2

X

i,k

log(2⇡�2
i ) +

✓
ȳi,k � si · hi(x(tk,✓),✓)

�i

◆2

.

is continuously di↵erentiable, and that the gradient of J at a local minimum is zero. For the inner subproblem

this implies

rsJ(✓, s,�)|ŝ,�̂ = 0 and r�J(✓, s,�)|ŝ,�̂ = 0.

These equations can be solved analytically (see Supplementary Information, Section 1), which yields

ŝi(✓) =

P
k
ȳi,k · hi(x(tk,✓),✓)
P
k
hi(x(tk,✓),✓)2

�̂2
i (✓) =

1

nk

X

k

(ȳi,k � ŝi(✓) · hi(x(tk,✓),✓))2

with number of time points nk. Consistent with the structure of the hierarchical problem (6), both formulas

depend only on the dynamic parameters ✓.
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Figure 2: Illustration of the computation of an optimal scaling parameter ŝi for Laplace noise. (A) Objective
function J for di↵erent values of �i, showing that the kinks indicated by the dashed lines are independent of that
value. (B) Derivative of the objective function with respect to the scaling parameter which is not defined at the kinks.
The light red and dark red lines indicate the computed scaling parameter and the true optimal scaling parameter,
respectively.

In many studies (e.g., (Bachmann et al., 2011)), observation functions of the form log(ȳi,k) = log(sihi(x(tk,✓),✓))+

✏i are used. In the Supplementary Information, Section 2, we provide a derivation of the corresponding op-

timal parameters.

Analytic expressions for the optimal scaling and noise parameters for Laplace noise

For Laplace noise the negative log-likelihood function is

J(✓, s,�) =
X

i,k

log(2�i) +
|ȳi,k � si · hi(x(tk,✓),✓)|

�i
. (8)

This objective function is continuous but not continuously di↵erentiable. In this case, a su�cient condition

for a local minimum is that the right limit value of the derivative is negative and the left limit value is

positive. The derivative of (8) with respect to si can be written as

@J

@si
=

1

�i
·
X

k

 
|hi(x(tk,✓),✓)| · sgn

✓
ȳi,k

hi(x(tk,✓),✓)
� si

◆!
,

As �i is positive, the locations of kinks in the objective function and the corresponding jumps in the derivative

are independent of �i (Figure 2). Accordingly, the problem of finding ŝi reduced to checking the signs of the

derivative before and after the jump points si,k = ȳi,k/hi(x(tk,✓),✓). We sorted si,k in increasing order and

evaluated the derivatives at the midpoints between adjacent jumps, a procedure which is highly e�cient as

the ODE model does not have to be simulated. Given ŝi, the noise parameter �̂i follows from the work of
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Norton (1984) as

�̂i(✓) =
1

nk

X

k

 
|hi(x(tk,✓),✓)| ·

����
ȳi,k

hi(x(tk,✓),✓)
� ŝi(✓)

����

!
.

Both derived formulas depend only on the dynamic parameters ✓, in consistence with the structure of

the hierarchical problem (6). In summary, we reformulated the original optimization problem (5) as a

hierarchical optimization problem (6,7), and provided an analytic solution to the inner subproblem (7) for

several relevant cases. Using the analytic solutions, the kinetic parameters can be inferred by solving a

lower-dimensional problem.

3 Results

To study and compare the performance of parameter estimation from relative data using the standard

approach and our hierarchical approach, we applied both to three published estimation problems.

3.1 Models and experimental data

The considered models describe biological signaling pathways, namely, the JAK-STAT (Swameye et al.,

2003; Bachmann et al., 2011) and the RAF/MEK/ERK signaling pathway (Fiedler et al., 2016).

3.1.1 JAK-STAT signaling I

The first application example we considered is the model of Epo-induced JAK-STAT signaling introduced

by Swameye et al. (2003) (Figure 3A). Epo yields the phosphorylation of signal transducer and activator

of transcription 5 (STAT5), which dimerizes, enters the nucleus to trigger the transcription of target genes,

gets dephosphorylated, and is transported to the cytoplasm. We implemented the model which describes the

phosphorylated Epo receptor concentration as a time-dependent spline (Schelker et al., 2012). For further

details on the model, we refer to Supplementary Information, Section 4.1.

The model parameters were estimated using immunoblotting data for the phosphorylated Epo receptor

(pEpoR), phosphorylated STAT5 (pSTAT5), and the total amount of STAT5 in the cytoplasm (tSTAT5)

(Figure 3B). Experimental data are available for 16 di↵erent time points. Since immunoblotting only provides

relative data, the scaling parameters for the observables need to be estimated from the data. As proposed by

Schelker et al. (2012), the scaling parameter for pEpoR has been fixed to avoid structural non-identifiabilities

(Raue et al., 2009). This yields n✓ = 11 dynamic parameters (see Supplementary Information, Section 4.1),

ns = 2 scaling parameters, and n� = 3 noise parameters.
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Figure 3: Models and experimental data. (A,B) JAK-STAT I. (A) Illustration of the model according to Swameye
et al. (2003). Arrows represent biochemical reactions, and the observables of the model used are highlighted by boxes.
(B) Experimental data and fitted trajectories for the best parameter found with multi-start local optimization with 100
starts. The results are shown for the standard (dotted lines) and hierarchical (solid lines) approach for optimization
for Gaussian and Laplace noise. (C,D) JAK-STAT II. (C) Illustration of the model according to Bachmann et al.
(2011). (D) Experimental data and fitted trajectories for the best parameter found with multi-start local optimization
for 200 starts. 33 out of 541 data points are shown. (E-G) RAF/MEK/ERK. (E) Illustration of the model according
to Fiedler et al. (2016). (F,G) Experimental data and fitted trajectories for the best parameter found with multi-
start local optimization for 500 starts. Di↵erent markers indicate the di↵erent blots. The data is scaled according
to the estimated scaling parameters, yielding di↵erent visualizations for di↵erent parameters, as obtained with the
Gaussian and the Laplace noise assumption. (F) Fitted trajectories for Gaussian noise for the standard (dotted line)
and hierarchical (solid line) approach for optimization. (G) Fitted trajectories for Laplace noise.
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3.1.2 JAK-STAT signaling II

The second application example is the model of JAK-STAT signaling introduced by Bachmann et al. (2011).

This model provides more details compared to the previous one. It includes, for instance, gene expression

of cytokine-inducible SH2-containing protein (CIS) and suppressor of cytokine signaling 3 (SOCS3), and

possesses more state variables and parameters (Figure 3C).

The model parameters were estimated using immunoblotting, qRT-PCR, and quantitative mass spec-

trometry data (Figure 3D and Supplementary Information, Figure S4). To model the observables Bachmann

et al. (2011) used ns = 43 scaling parameters, and n� = 11 noise parameters, yielding n✓ = 58 remaining pa-

rameters. Some scaling and noise parameters are shared between experiments and some are shared between

observables. For this model, most of the observables were compared at the log10 scale (see Supplementary

Information, Section 4.2).

3.1.3 RAF/MEK/ERK signaling

The third application example we considered is the model of RAF/MEK/ERK signaling introduced by

Fiedler et al. (2016). The model describes the phosphorylation cascade and a negative feedback of phospho-

rylated ERK on RAF phosphorylation (Figure 3E).

Fiedler et al. (2016) collected Western blot data for HeLa cells for two observables, phosphorylated

MEK, and phosphorylated ERK, with four replicates at seven time points (Figure 3F,G). Each observable

and replicate was assumed to have di↵erent scaling and noise parameters, yielding 16 additional parameters

(Figure 4A).

3.2 Evaluation of the approaches

We performed parameter estimation for the application examples using the standard and the hierarchical

approach. For each example, the case of Gaussian and Laplace noise was considered. The resulting optimiza-

tion problems were solved with the MATLAB toolbox PESTO (Stapor et al., 2017), using multi-start local

optimization, an approach which was previously found to be computationally e�cient and reliable (Raue

et al., 2013). Initial points were sampled uniformly within their parameter boundaries and local optimization

was performed using the interior point method implemented in the MATLAB function fmincon.m. Numer-

ical simulation and forward sensitivity analysis for gradient evaluation was performed using the MATLAB

toolbox AMICI (Fröhlich et al., 2017), which provides an interface to CVODES (Serban and Hindmarsh,

2005). To improve convergence and computational e�ciency, log10-transformed parameters were used for

the optimization.

3.2.1 Qualitative comparison of optimization approaches for di↵erent noise distributions

As the standard and hierarchical approach should in principle be able to achieve the same fit, we first

studied the agreement of trajectories for the optimal parameters. We found that they coincide for the

JAK-STAT model I and the RAF/MEK/ERK model, indicating that the hierarchical approach is able to

find the same optimal value as the standard approach (Figure 3B,F,G). Also the best likelihood values

which were found for these two models by the two approaches coincide (Figure 4B and Supplementary

Information, Figure S5). Only for the JAK-STATmodel II for the case of Laplace noise, the fitted trajectories

deviate (Figure 3D). Insertion of the optimum found by the hierarchical approach in the objective function

of the standard approach revealed that the standard approach missed the optimal point (Supplementary
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Information, Figure S3). As expected, there are di↵erences between the results obtained with Gaussian and

Laplace noise, which is visible in the trajectories and the corresponding likelihood values. Interestingly,

for each model the likelihood values achieved using Laplace noise were better than for Gaussian noise

(Supplementary Information, Figure S1C). This indicates that the Laplace distribution with its heavier tail

is more appropriate than the Gaussian distribution for the considered estimation problems.

3.2.2 Convergence of optimizers

As the performance of multi-start local methods depends directly on the convergence of the local optimizers,

we assessed for how many starting points the local optimizer reached the best objective function value found

across all runs. This was done by studying the likelihood waterfall plots (Figure 4B). We found that the

proposed hierarchical approach achieved consistently a higher fraction of converged starts than the standard

approach (Figure 4C). Local optimization using the hierarchical approach converged on average in 25.38%

of the runs while the standard approach converged on average in 12.13% of the runs.

The application examples vary with respect to the total number of parameters and in the number

of parameters which correspond to scaling or noise parameters (Figure 4A). While for the JAK-STAT

model I only five parameters could be optimized analytically, for the JAK-STAT model II almost half of

the parameters correspond to scaling or noise parameters. Interestingly, even when the dimension of the

optimization problem was only reduced by few parameters, we observed a substantial improvement of the

convergence (Figure 4C).

3.2.3 Computational e�ciency

As computation resources are often limiting, we finally analyzed the computation time per converged start.

We found that on average, the computation time per start was lower for the hierarchical approach than

for the standard approach (Figure 4D). In combination with the improved convergence rate, this resulted

in a substantially reduced computation time per converged start, aka a start which reach the minimal

value observed across all starts (Figure 4E). Given a fixed computational budget, the hierarchical approach

achieved on average 5.52 times more optimization runs which reached the best objective function values

than the standard approach.

In summary, the application of our hierarchical approach to parameter estimation from relative data to

the models shows consistently that our approach yields parameter values of the same quality as the standard

method, while achieving better convergence and reducing the computation time substantially.

4 Conclusion

The statistically rigorous estimation of model parameters from relative data requires non-standard statistical

models (Degasperi et al., 2017) or scaling parameters (Raue et al., 2013). Unfortunately, the former is not

supported by established toolboxes and the latter increases the dimensionality of the estimation problem.

In this manuscript, we introduced a hierarchical approach which avoids the increase of dimensionality and

is applicable to a broad range of noise distributions. For Gaussian and Laplace noise we provided analytic

expressions. The approach can be used for combinations of relative and absolute data, and for di↵erent

optimization methods, including least-squares methods or global optimization methods such as particle

swarm optimization (Vaz and Vicente, 2009) (see Supplementary Information, Figure S2).
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Figure 4: Evaluation of the standard and hierarchical approach for three application examples. (A) Number of
parameters which need to be optimized numerically. (B) Likelihood waterfall plot for the JAK-STAT model I.
The ascendingly sorted negative log-likelihood values are shown for both approaches (standard and hierarchical) and
noise distributions (Gaussian and Laplace). (C-E) Comparison of the two optimization approaches and two noise
distribution for the three models. The noise model with the better likelihood function is highlighted in the label.
(C) Percentage of converged starts over all performed local optimizations. (D) Boxplot for the CPU time needed per
start. (E) CPU time needed per converged start.

We evaluated the performance of our hierarchical approach and compared it to the standard approach for

three models, which vary in their complexity. For all applications, we found that our hierarchical approach

yielded fits of the same or better quality. In addition, convergence was improved and the computation

time was shortened substantially. We demonstrated that our approach can also be used when relative and

absolute data are modeled together in an experiment, and when several observables or experiments share

scaling and/or noise parameters. This renders our approach applicable to a wide range of mathematical

models studied in systems and computational biology. We provided a generic implementation of the objective

function for the hierarchical approach for Gaussian and Laplace noise. The objective function is provided

in the Supplementary Information (along with the rest of the code) and included in the MATLAB toolbox

PESTO (Stapor et al., 2017).

In addition to the scaling and noise parameters, also other parameters which only contribute to the

mapping from the states to the observables, could be optimized analytically. This includes o↵set parameters,

which are used to model background intensities or unspecific binding. Extending our approach to also

calculate these parameters analytically would decrease the parameters in the outer optimization even more.

We employed forward sensitivities for the calculation of the objective function gradient. However, it has

been shown that for large-scale models with a high number of parameters, adjoint sensitivities can reduce

the computation time needed for simulation (Fröhlich et al., 2017). Thus, a further promising approach
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would be the combination of both complementary approaches for the handling of large-scale models.

To summarize, employing our hierarchical approach for optimization yielded more robust results and

speed up the computation time. This renders the approach valuable for estimating parameters from relative

data. The proposed approach might facilitate the handling of large-scale models, which possess many

measurement parameters.
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1 General formula for analytic scaling and noise parameters

In the main manuscript, we covered experimental data sets which have di↵erent time points. Here, we provide

the derivation of the expressions for the general case, in which the experimental data also comprise di↵erent

replicates, experiments, and conditions, e.g., varying drug doses. We considered that the ODE system also

depends on an input u 2 Rnu ,

ẋ = f(x(t,✓),✓,u), x(t0,✓,u) = x0(✓,u) , (1)

thus, f : Rnx ⇥ Rn✓ ⇥ Rnu ! Rnx , which also a↵ects the mapping to the observables

y(t,✓,u) = h(x(t,✓),✓,u) . (2)

The experimental data is then given by

D =
n��

{ȳk,r,ce , tk,ce ,uce}k
 
r

 
ce2Ie

o

e
, (3)

including all indices for time point k, replicate r, experiment-specific condition ce, and experiment e. The

indices Ie indicate which conditions correspond to a certain experiment. The measurements are mapped to

the states by

ȳi,k,r,ce = si,r,ce · hei (x(tk,ce ,✓),✓,uce) + "i,k,r,ce ,

with "i,k,r,ce ⇠ N (0,�2
i,r,ce) or "i,k,r,ce ⇠ Laplace(0,�i,r,ce), and si,r,ce = 1 for absolute measurements. Also, the

structure of the mapping from states to observables might be experiment-specific. The negative log-likelihood

is given by

J(✓, s,�) =
X

e,i,k,r

X

ce2Ie

log p(ȳi,k,r,ce |si,r,ce · hei (x(tk,ce ,✓),✓,uce),�i,r,ce) . (4)

In the main manuscript, we presented the analytic formulas for the case that each observable and correspond-

ing replicate has di↵erent scaling and noise parameters, but that these parameters do not change between

conditions and time points. A more general formula is provided in the following, covering, e.g., the case that

replicates share the same scaling parameters, but observables do not. This can be easily generalized to also

include variability between time points.

1.1 Gaussian noise

The general objective function under Gaussian noise is given by

J(✓, s,�) =
1

2

X

i,r,k,e

X

ce2Ie

log(2⇡�i,r,ce
2) +

✓
ȳi,k,r,ce � si,r,ce · hei (x(tk,ce ,✓),✓,uce)

�i,r,ce

◆2

.

To define which replicates, observables, and experiments share a scaling or noise parameter, we define

Iiss , Ii�� ⇢ Nny
+ ⇥ Nnr

+ ⇥ Nne
+ ,
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for is = 1, . . . , ns and i� = 1, . . . , n�. The number of replicates is denoted by nr and the number of experiments

by ne. This means, all scaling parameters si⇤,r⇤,c⇤e for which the indices (i⇤, r⇤, e⇤) are part of the same group

Is share the same scaling parameters. This yields ns di↵erent scaling parameters that are estimated from the

data. For this we denote Iiss (i⇤, r⇤, c⇤e) the group which includes the indices (i⇤, r⇤, c⇤e). This is analogously for

the noise parameters. The derivative of the objective function with respect to a scaling parameter thus reads

@J

@si⇤,r⇤,c⇤e
=

1

2

X

k,e

X

(i, r, ce) 2
Iiss (i⇤, r⇤, c⇤e)

2

�2
i,r,ce

(ȳi,k,r,ce � si⇤,r⇤,c⇤e · h
e
i (x(tk,ce ,✓),✓,uce)) · (�hei (x(tk,ce ,✓),✓,uce))

!
= 0 ,

(5)

and was set to zero to obtain the analytic expression for the optimal scaling parameter. The solution does not

depend on the noise parameters if Iiss ⇢ Ii�� 8is, and we solve the equation with respect to si⇤,r⇤,c⇤e to obtain

the optimal value

ŝi⇤,r⇤,c⇤e =

P
k,e

P
(i, r, ce) 2

Iiss (i⇤, r⇤, c⇤e)

ȳi,k,r,ce · hei (x(tk,ce ,✓),✓,uce)

P
k,e

P
(i, r, ce) 2

Iiss (i⇤, r⇤, c⇤e)

hei (x(tk,ce ,✓),✓,uce)2
.

For the noise parameters, we need

@J

@�2
i⇤,r⇤,c⇤e

=
1

�2
i⇤,r⇤,c⇤e

·
X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

1�
✓
ȳi,k,r,ce � si,r,ce · hei (x(tk,ce ,✓),✓,uce)

�i⇤,r⇤,c⇤e

◆2
!
= 0 . (6)

We write

1

�2
i⇤,r⇤,c⇤e

·
X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

1�
✓
ȳi,k,r,ce � si,r,ceh

e
i (x(tk,ce ,✓),✓,uce)

�i⇤,r⇤,c⇤e

◆2

= 0

, �2
i⇤,r⇤,c⇤e

·
X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

1 =
X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

(ȳi,k,r,ce � si,r,ce · hei (x(tk,ce ,✓),✓,uce))
2

) �̂2
i⇤,r⇤c⇤e

=
1X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

1

| {z }
(†)

X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

(ȳi,k,r,ce � si,r,ce · hei (x(tk,ce ,✓),✓,uce))
2 ,

in which (†), the nominator, is simply the number of observations in which �i⇤,r⇤,c⇤e appears. In some cases,

for instance if all experiments share the same scaling parameter, we neglected the superscript e.

The gradient used for optimization is given by

@J

@✓
=
X

i,r,k,e

X

ce2Ie

ȳi,k,r,ce � ŝi,r,ce · hei (x(tk,ce ,✓),✓,uce)

�̂2
i,r,ce

· ŝi,r,ce ·
@hei (x(tk,ce ,✓),✓,uce)

@✓
,
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for which
@he

i (x(tk,ce ,✓),✓,uce )
@✓ is obtained by forward sensitivity equations employed in AMICI, and,

@J

@s
= 0,

@J

@�
= 0 ,

which holds due to (5) and (6). The Hessian with respect to the dynamic parameters is

@2J

@✓j@✓l
=
X

i,r,k,e

X

ce2Ie

✓
ŝi,r,ce
�̂i,r,ce

◆2

·
@hei (x(tk,ce ,✓),✓,uce)

@✓j
·
@hei (x(tk,ce ,✓),✓,uce)

@✓l
+

ȳi,k,r,ce � ŝi,r,ce · hei (x(tk,ce ,✓),✓,uce)

�̂2
i,r,ce

· ŝi,r,ce ·
@2hei (x(tk,ce ,✓),✓,uce)

@✓j@✓l
| {z }

(⇤)

.

For the remaining parameter, the Hessian is zero. We implemented an approximation of the Hessian neglecting

the terms (⇤) that include higher-order sensitivities.

1.2 Laplace noise

For Laplace noise, the expression for the optimal scaling and noise parameters can be generalized analogously.

The objective function for the general case is

J(✓, s,�) =
X

i,k,r,e

X

ce2Ie

log(2�i,r,ce) +
|ȳi,k,r,ce � si,r,ce · hei (x(tk,ce ,✓),✓,uce)|

�i,r,ce
.

The derivative with respect to a scaling parameter is

@J

@si⇤,r⇤,c⇤e
=
X

k,e

X

(i, r, ce) 2
Iiss (i⇤, r⇤, c⇤e)

1

�i,r,ce
·
✓
|hei (x(tk,ce ,✓),✓,uce)| · sgn

✓
ȳi,k,r,ce

hei (x(tk,ce ,✓),✓,uce)
� si⇤,r⇤,c⇤e

◆◆

with jump points

8
<

:

⇢
si,k,r,ce =

ȳi,k,r,ce
hei (x(tk,ce ,✓),✓,uce)

�

(i,r,ce)2Iiss |
(i⇤,r⇤,c⇤e)2Iiss

9
=

;
k,e

. (7)

These jump points are the candidates for the optimal scaling parameter and the candidate for which the sign

of the derivative changes is chosen. For the optimal noise parameter we have

@J

@�i⇤,r⇤,c⇤e
=

1

�i⇤,r⇤,c⇤e
·
X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

✓
1�

|ȳi,k,r,ce � ŝi,r,ce · hei (x(tk,ce ,✓),✓,uce)|
�i⇤,r⇤,c⇤e

◆
!
= 0 (8)
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�̂i⇤,r⇤,c⇤e =
1P

k,e

P
(i, r, ce) 2

Ii�� (i⇤, r⇤, c⇤e)

1
·

X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

 
|hei (x(tk,ce ,✓),✓,uce)| ·

����
ȳi,k,r,ce

hei (x(tk,ce ,✓),✓,uce)
� ŝi⇤,r⇤,c⇤e

����

!
.

The gradient used for optimization is given by

@J

@✓
= �

X

i,r,k,e

X

ce2Ie

sgn (ȳi,k,r,ce � ŝi,r,ce · hei (x(tk,ce ,✓),✓,uce))

�̂i,r,ce
·

✓
ŝi,r,ce ·

@hei (x(tk,ce ,✓),✓,uce)

@✓
+ hei (x(tk,ce ,✓),✓,uce) ·

@ŝi,r,ce
@✓

◆
,

for which
@he

i (x(tk,ce ,✓),✓,uce )
@✓ is obtained by forward sensitivity equations employed in AMICI, and @J

@� = 0,

which holds due to (8).

2 Comparison of data and simulation at a logarithmic scale

In the main manuscript and Supplementary Information, Section 1, we provided the formulas for the compar-

ison of data and simulation on a linear scale. However, sometimes it might be more appropriate to compare

experimental data and simulation on a logarithmic scale.

2.1 Gaussian noise

For Gaussian noise, the objective function for the comparison on the logarithmic scale is given by

J(✓, s,�) =
1

2

X

i,k,r,e

X

ce2Ie

log(2⇡�i,r,ce
2) +

✓
log(ȳi,k,r,ce)� log (si,r,ce · hei (x (tk,ce ,✓) ,✓,uce))

�i,r,ce

◆2

Thus, the derivative with respect to the scaling parameters is

@J

@si⇤,r⇤,c⇤e
=

1

2

X

k,e

X

(i, r, ce) 2
Iiss (i⇤, r⇤, c⇤e)

2
�
log(ȳi,k,r,ce)� log(si⇤,r⇤,c⇤e )� log(hei (x (tk,ce ,✓) ,✓,uce))

�
1

si⇤,r⇤,c⇤e

�e
i,r

2 .

This yields the formula for the optimal scaling parameters

ŝi⇤,r⇤,c⇤e = exp

0

BBBB@

P
k,e

P
(i, r, ce) 2

Iiss (i⇤, r⇤, c⇤e)

log(ȳi,k,r,ce)� log(hei (x (tk,ce ,✓) ,✓,uce))

P
k,e

P
(i, r, ce) 2

Iiss (i⇤, r⇤, c⇤e)

1

1

CCCCA
(9)
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and

�̂2
i⇤,r⇤,c⇤e

=
1P

k,e

P
(i, r, ce) 2

Ii�� (i⇤, r⇤, c⇤e)

1
·
X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

�
log(ȳi,k,r,ce)� log(ŝi⇤,r⇤,c⇤e · h

e
i (x (tk,ce ,✓) ,✓,uce)

�2
. (10)

The gradient used for optimization is given by

@J

@✓
=
X

i,r,k,e

X

ce2Ie

2 ·
log(ȳi,k,r,ce)� log(ŝi,r,ce · hei (x(tk,ce ,✓),✓,uce))

�̂2
i,r,ce

·

1

hei (x(tk,ce ,✓),✓,uce)
·
@hei (x(tk,ce ,✓),✓,uce)

@✓
.

If the data is compared at log10 scale, as, e.g., for the JAK-STAT signaling model proposed by Bachmann

et al. (2011), the negative log-likelihood function reads

J(✓, s,�) =
1

2

X

i,k,r,e

X

ce2Ie

log(2⇡�i,r,ce
2) +

✓
log10(ȳi,k,r,ce)� log10 (si,r,ce · hei (x (tk,ce ,✓) ,✓,uce))

�i,r,ce

◆2

.

The optimal scaling parameters here are the same as when using the natural logarithm (9). For the optimal

noise parameters the log is replaced by log10 in (10).

2.2 Laplace noise

For the Laplace distribution including the logarithmic comparison

J(✓, s,�) =
X

i,k,r,e

X

ce2Ie

log(2�i,r,ce) +
|log(ȳi,k,r,ce)� log (si,r,ce · hei (x (tk,ce ,✓) ,✓,uce))|

�e
i,r

the same procedure can be applied for the logarithmic scale as for the linear scale, with the same set of

candidate scaling parameters (7) as for the linear scale. However, one has to pay attention to adapt the

derivative properly, for which the change of signs is checked. The optimal noise parameters then is given by

�̂i⇤,r⇤,c⇤e =
1P

k,e

P
(i, r, ce) 2

Ii�� (i⇤, r⇤, c⇤e)

1
·

X

k,e

X

(i, r, ce) 2
Ii�� (i⇤, r⇤, c⇤e)

 
|log (hei (x (tk,ce ,✓) ,✓,uce))| ·

����
log(ȳi,k,r,ce)

log(hei (x(tk,ce ,✓),✓,uce))
� ŝi⇤,r⇤,c⇤e

����

!
.

The gradient used for optimization is given by

@J

@✓
= �

X

i,r,k,e

X

ce2Ie

sgn (log(ȳi,k,r,ce)� log(ŝi,r,ce · hei (x(tk,ce ,✓),✓,uce)))

�̂i,r,ce
·

✓
1

hei (x(tk,ce ,✓),✓,uce)
·
@hei (x(tk,ce ,✓),✓,uce)

@✓
+

1

ŝi,r,ce
· @ŝi,r,ce

@✓

◆
.
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3 Implementation

We implemented the log-likelihood function and the analytic calculation of the scaling and noise parameters in

easy-to-use MATLAB functions. The log-likelihood function is provided in loglikelihoodHierarchical.m,

which provides the log-likelihood value, the gradient of the log-likelihood function with respect to the dynamic

parameters, and in the case of Gaussian noise also an approximation to the Hessian by neglecting second-order

derivatives. The functions and examples are incorporated in the toolbox PESTO (Stapor et al., 2017)and can

be found on GitHub: http://github.com/ICB-DCM/PESTO. The simulated observables, their sensitivities,

the experimental data, and the specification of measurement noise, scale of comparison between simulation

and data, and shared parameters needs to be supplied by the user.

For our analysis, we employed the toolbox AMICI (Fröhlich et al., 2017) for the simulation of the system

and the simulation of the sensitivities, and the toolbox PESTO (Stapor et al., 2017) for the estimation of the

parameters.

4 Models and experimental data

In the following, we provide the details of the mathematical models. The considered models vary in their

number of parameters (Figure 6A), number of data points that are used to calibrate the models (Figure S1A),

and number of states of the underlying ODE system (Figure S1B).

4.1 JAK-STAT signaling I

For the first model, we used the model introduced by Schelker et al. (2012), which is defined by the ODE

system

@[STAT]

@t
=

1

⌦cyt
(⌦nuc [nSTAT5] p4 � ⌦cyt [STAT] p1 g)

@[pSTAT]

@t
= � 2 p2 [pSTAT]

2 � [STAT] p1 g

@[pSTAT pSTAT]

@t
= p2 [pSTAT]

2 � p3 [pSTAT pSTAT]

@[nSTAT1]

@t
= � p4

⌦nuc
(⌦cyt [STAT]� ⌦cyt [STAT]0 + 2 ⌦nuc [nSTAT1]

+ ⌦nuc [nSTAT2] + ⌦nuc [nSTAT3] + ⌦nuc [nSTAT4]

+ ⌦nuc [nSTAT5] + ⌦cyt [pSTAT] + 2 ⌦cyt [pSTAT pSTAT])

@[nSTAT2]

@t
= p4 ([nSTAT1]� [nSTAT2])

@[nSTAT3]

@t
= p4 ([nSTAT2]� [nSTAT3])

@[nSTAT4]

@t
= p4 ([nSTAT3]� [nSTAT4])

@[nSTAT5]

@t
= p4 ([nSTAT4]� [nSTAT5]),
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Supplementary Figure S1: Comparison of the three models. (A) Number of experimental data points used to
calibrate the models. (B) Number of states nx. (C) Comparison of Gaussian and Laplace noise for the three
models based on the Bayesian Information Criterion (BIC) (Raftery, 1999), which rewards high likelihood
values and penalizes high number of parameters.

with kinetic parameters p1, ..., p4. The brackets indicate the concentrations of the corresponding species. The

initial conditions are given by

x(t0) = (1, [pSTAT]0, [pSTAT pSTAT]0, [nSTAT1]0, [nSTAT2]0, [nSTAT3]0, [nSTAT4]0, [nSTAT5]0)
T ,

for which the initial condition for STAT is set to 1 in order to remove structural non-identifiabilities (Schelker

et al., 2012). The states nSTAT1, . . . , nSTAT5 are intermediate steps, resulting from a linear chain approxi-

mation to model the delay of STAT binding to the DNA in the nucleus. The volumes of the cytoplasm and

nucleus are denoted by ⌦cyt = 1.4 pl and ⌦nuc = 0.45 pl, respectively (Raue et al., 2009).

The observables are defined by y1 for total concentration of phosphorylated STAT in the cytoplasm (pSTAT),

y2 for the total concentration of STAT in the cytoplasm (tSTAT), and y3 for the phosphorylated Epo receptors

(pEpoR) (see Figure 3A in the main manuscript). They are linked to the states of the system via

y1 = s1 (o1 + [pSTAT] + 2[pSTAT pSTAT])

y2 = s2 (o2 + [STAT] + [pSTAT] + 2[pSTAT pSTAT])

y3 = g .

The concentration of Epo receptors is modeled as time-dependent cubic spline function g with parameters

sp1, . . . , sp5, which are also estimated from the data. The parameters o1 and o2 define the o↵sets needed to

model the background noise. The model comprises the parameters q = (p1, p2, p3, p4, sp1, sp2, sp3, sp4, sp5,

o1, o2, s1, s2,�1,�2,�3)T , for which ✓ = (p1, p2, p3, p4, sp1, sp2, sp3, sp4, sp5, o1, o2) was optimized in the outer

optimization problem of the hierarchical approach. The scaling parameters s = (s1, s2) and noise parameters

� = (�1,�2,�3) for observables y1, y2, and y3, respectively, were optimized in the inner optimization problem.

The subscript for these parameters indicates the observable. We neglected indices r, e, and ce, since only one

experiment, replicate, and condition is considered. The parameter boundaries for the optimization are given
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Supplementary Figure S2: Likelihood waterfall plot for JAK-STAT signaling I using particle swarm optimiza-
tion.

by

log10(q)lb = (�5,�3,�5,�3,�5,�5,�5,�5,�6,�5,�5,�5,�5,�5,�5,�5)T

for the lower bound and

log10(q)ub = (3, 6, 3, 6, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)T .

for the upper bound (Maier et al., 2017). We performed 100 optimizations, starting from randomly drawn

parameter values. The starting points for the dynamic parameters were the same for both optimization

approaches.

The comparison between the two noise assumptions revealed that the Laplace noise is more appropriate.

However, the di↵erence in BIC values was below 10, which indicates that the improvement was not substantial

(Figure S1C) (Kass and Raftery, 1995).

To evaluate the possibility of using the hierarchical optimization also within global optimization, we repeated

the analysis using an particle swarm algorithm (Vaz and Vicente, 2009). This method does not need gradient

information and has been shown to outperform other global optimization methods (Vaz and Vicente, 2009).

The waterfall plots are shown in Figure S2. Interestingly, only the hierarchical optimization for the Gaussian

noise was able to find the same optimum as the deterministic optimization. For the other settings the

convergence su↵ered. However, as for the optimization with fmincon, the hierarchical approach was superior

to the standard approach and the Laplace noise fitted the data better than the Gaussian noise.
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4.2 JAK-STAT signaling II

The ODE system for JAK-STAT signaling model II is given by (Bachmann et al., 2011)

@[EpoRJAK2]

@t
= [EpoRpJAK2]

JAK2EpoRDeaSHP1

initSHP1
[SHP1Act]

+
JAK2EpoRDeaSHP1

initSHP1
[SHP1Act] ([p12EpoRpJAK2] + [p1EpoRpJAK2] + [p2EpoRpJAK2])

� [Epo] · [EpoRJAK2] · JAK2ActEpo

[SOCS3] · SOCS3Inh
SOCS3Eqc + 1

@[EpoRpJAK2]

@t
=

[Epo] [EpoRJAK2] JAK2ActEpo

[SOCS3] SOCS3Inh
SOCS3Eqc + 1

� [EpoRpJAK2]EpoRActJAK2

[SOCS3] SOCS3Inh
SOCS3Eqc + 1

� 3 · [EpoRpJAK2] · EpoRActJAK2

(EpoRCISInh · [EpoRJAK2CIS] + 1) · ([SOCS3] SOCS3Inh
SOCS3Eqc + 1)

� [EpoRpJAK2]
JAK2EpoRDeaSHP1

initSHP1
[SHP1Act]

@[p1EpoRpJAK2]

@t
=

[EpoRpJAK2] · EpoRActJAK2

[SOCS3] SOCS3Inh
SOCS3Eqc + 1

� JAK2EpoRDeaSHP1

initSHP1
[SHP1Act][p1EpoRpJAK2]

� 3 · EpoRActJAK2 · [p1EpoRpJAK2]

(EpoRCISInh · [EpoRJAK2CIS] + 1) · ([SOCS3] SOCS3Inh
SOCS3Eqc + 1)

@[p2EpoRpJAK2]

@t
=

3 · [EpoRpJAK2] · EpoRActJAK2

(EpoRCISInh · [EpoRJAK2CIS] + 1) · ([SOCS3] SOCS3Inh
SOCS3Eqc + 1)

� EpoRActJAK2 · [p2EpoRpJAK2]

[SOCS3] SOCS3Inh
SOCS3Eqc + 1

� JAK2EpoRDeaSHP1

initSHP1
[SHP1Act][p2EpoRpJAK2]

@[p12EpoRpJAK2]

@t
=

EpoRActJAK2 · [p2EpoRpJAK2]

[SOCS3] SOCS3Inh
SOCS3Eqc + 1

� JAK2EpoRDeaSHP1

initSHP1
· [SHP1Act] · [p12EpoRpJAK2]

+
3 · EpoRActJAK2 · [p1EpoRpJAK2]

(EpoRCISInh · [EpoRJAK2CIS] + 1)([SOCS3] SOCS3Inh
SOCS3Eqc + 1)

@[EpoRJAK2CIS]

@t
= � [EpoRJAK2CIS] ·

EpoRCISRemove

initEpoRJAK2
([p12EpoRpJAK2] + [p1EpoRpJAK2])

@[SHP1]

@t
= SHP1Dea[SHP1Act]� [SHP1] · SHP1ActEpoR

initEpoRJAK2

·
�
[EpoRpJAK2] + [p12EpoRpJAK2] + [p1EpoRpJAK2] + [p2EpoRpJAK2]

�

@[SHP1Act]

@t
= [SHP1] · SHP1ActEpoR

initEpoRJAK2
·
�
[EpoRpJAK2]

+ [p12EpoRpJAK2] + [p1EpoRpJAK2] + [p2EpoRpJAK2]
�
� SHP1Dea · [SHP1Act]

@[STAT5]

@t
=

STAT5Exp · [npSTAT5] · 0.275
0.4

�
[STAT5] · STAT5ActJAK2

initEpoRJAK2

[SOCS3] SOCS3Inh
SOCS3Eqc + 1

· ([EpoRpJAK2 + [p12EpoRpJAK2] + [p1EpoRpJAK2] + [p2EpoRpJAK2])

� [STAT5]
STAT5ActEpoR

init2EpoRJAK2

([p12EpoRpJAK2] + [p1EpoRpJAK2])2

([CIS] CISInh
CISEqc + 1)([SOCS3] SOCS3Inh

SOCS3Eqc + 1)
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@[pSTAT5]

@t
=

[STAT5]STAT5ActJAK2
initEpoRJAK2

· ([EpoRpJAK2] + [p12EpoRpJAK2] + [p1EpoRpJAK2] + [p2EpoRpJAK2])

[SOCS3] SOCS3Inh
SOCS3Eqc + 1

� STAT5Imp · [pSTAT5] + [STAT5]
STAT5ActEpoR

init2iEpoRJAK2

· ([p12EpoRpJAK2] + [p1EpoRpJAK2])2

([CIS] CISInh
CISEqc + 1) · ([SOCS3] SOCS3Inh

SOCS3Eqc + 1)

@[npSTAT5]

@t
=

STAT5Imp · 0.4 · [pSTAT5]
0.275

� STAT5Exp · [npSTAT5]

@[CISnRNA1]

@t
= � [CISnRNA1] · CISRNADelay � 1

initSTAT5
· CISRNATurn · [npSTAT5] · (ActD� 1)

@[CISnRNA2]

@t
= [CISnRNA1] · CISRNADelay � [CISnRNA2] · CISRNADelay

@[CISnRNA3]

@t
= [CISnRNA2] · CISRNADelay � [CISnRNA3] · CISRNADelay

@[CISnRNA4]

@t
= [CISnRNA3] · CISRNADelay � [CISnRNA4] · CISRNADelay

@[CISnRNA5]

@t
= [CISnRNA4] · CISRNADelay � [CISnRNA5] · CISRNADelay

@[CISRNA]

@t
=

[CISnRNA5] · CISRNADelay · 0.275
0.4

� [CISRNA] · CISRNATurn

@[CIS]

@t
= [CISRNA] · CISEqc · CISTurn� [CIS] · CISTurn + CISoe · CISTurn · CISEqcOE · CISEqc

@[SOCS3nRNA1]

@t
= � [SOCS3nRNA1] · SOCS3RNADelay � 1

initSTAT5
· SOCS3RNATurn · [npSTAT5] · (ActD� 1)

@[SOCS3nRNA2]

@t
= [SOCS3nRNA1] · SOCS3RNADelay � [SOCS3nRNA2] · SOCS3RNADelay

@[SOCS3nRNA3]

@t
= [SOCS3nRNA2] · SOCS3RNADelay � [SOCS3nRNA3] · SOCS3RNADelay

@[SOCS3nRNA4]

@t
= [SOCS3nRNA3] · SOCS3RNADelay � [SOCS3nRNA4] · SOCS3RNADelay

@[SOCS3nRNA5]

@t
= [SOCS3nRNA4] · SOCS3RNADelay � [SOCS3nRNA5] · SOCS3RNADelay

@[SOCS3RNA]

@t
=

[SOCSnRNA5] · SOCSRNADelay · 0.275
0.4

� [SOCSRNA] · SOCSRNATurn

@[SOCS3]

@t
= [SOCS3RNA] · SOCS3Eqc · SOCS3Turn� [SOCS3] · SOCS3Turn

+ SOCS3oe · SOCS3Turn · SOCS3EqcOE · SOCS3Eqc ,

with condition-specific initial conditions (see Table S1) denoted by xi,ce(0) for observable index i under condition indexed

by ce:

x1,ce(0) = initEpoRJAK2, x9,ce(0) = initSTAT5, xi,ce(0) = 0, i = {2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24}, 8ce
xi,ce(0) = 0, i = {6, 18, 25}, ce = {1, 2, 3, 4, 5, 6, 15, . . . , 36}

x6,ce(0) = uce,2, x18,ce(0) = uce,2 · (CISEqc · CISEqcOE), ce = {7, 8, 9, 10}

x7,ce(0) = initSHP1, ce = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, . . . , 36}

x7,ce(0) = (1 + uce,4 · SHP1ProOE) · initSHP1, ce = {13, 14}

x6,ce(0) = 0, x18,ce(0) = 0, x25,ce(0) = uce,3 · (SOCS3Eqc · SOCS3EqcOE), ce = {11, 12}
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The observables are given by

y1 = pJAK2au = s1,ce ·
⇣
o1,ce +

2

initEpoRJAK2
· ([EpoRpJAK2] + [p1EpoRpJAK2]+

[p2EpoRpJAK2] + [p12EpoRpJAK2])
⌘

y2 = pEpoRau = s2,ce ·
✓
o2,ce +

16

initEpoRJAK2
· ([p1EpoRpJAK2] + [p2EpoRpJAK2] + [p12EpoRpJAK2])

◆

y3 = CISau = s3,ce ·
✓
o3,ce +

[CIS]

CISEqc

◆

y4 = SOCS3au = s4,ce ·
✓
o4,ce +

[SOCS3]

SOCS3Eqc

◆

y5 = tSTAT5au = s5,ce ·
✓

1

initSTAT5
([STAT5] + [pSTAT5])

◆

y6 = pSTAT5au = s6,ce ·
✓
o6,ce +

1

initSTAT5
[pSTAT5]

◆

y7 = STAT5abs = [STAT5]

y8 = SHP1abs = [SHP1] + [SHP1Act]

y9 = CISabs = [CIS]

y10 = SOCS3abs = [SOCS3]

y11 = pSTAT5Brel = o11 + 100
[pSTAT5]

[pSTAT5] + [STAT5]

y12 = SOCS3RNAfoldA = 1 + s12 · [SOCS3RNA]

y13 = SOCS3RNAfoldB = 1 + s13 · [SOCS3RNA]

y14 = SOCS3RNAfoldC = 1 + s14 · [SOCS3RNA]

y15 = CISRNAfoldA = 1 + s15 · [CISRNA]

y16 = CISRNAfoldB = 1 + s16 · [CISRNA]

y17 = CISRNAfoldC = 1 + s17 · [CISRNA]

y18 = tSHP1au = s18 ·
✓

1

initSHP1
([SHP1] + [SHP1Act])(1 + (SHP1oe · SHP1ProOE))

◆

y19 = CISau1 = s19 ·
[CIS]

CISEqc

y20 = CISau2 = s20 ·
[CIS]

CISEqc
.

The parameters ✓ are

✓ = (CISEqc,CISEqcOE,CISInh,CISRNADelay,CISRNATurn,CISTurn,EpoRActJAK2,EpoRCISInh,

EpoRCISRemove, JAK2ActEpo, JAK2EpoRDeaSHP1, SHP1ActEpoR, SHP1Dea, SHP1ProOE,

SOCS3Eqc, SOCS3EqcOE, SOCS3Inh, SOCS3RNADelay, SOCS3RNATurn, SOCS3Turn,

STAT5ActEpoR, STAT5ActJAK2, STAT5Exp, STAT5Imp, initEpoRJAK2, initSHP1, initSTAT5

o1,1, o1,4, o1,6, o1,7, o1,11, o1,13, o1,15, o1,20, o2,1, o2,4, o2,6, o2,7, o2,9, o2,11, o2,13, o2,15, o2,20, o3,1, o3,4, o3,7, o3,11, o3,13,

o4,1, o4,7, o4,11, o6,1, o6,2, o6,4, o6,7, o6,11, o6,13)
T

with n✓ = 58. For experiment SHP1oe (e = 9), the parameter initSHP1 was replaced by initSHP1 · (1 + (SHP1oe ·
SHP1ProOE)) in the model equations. For the notation of the o↵set, scaling, and noise parameters, we neglected the

index r, since these parameters are shared for the replicates. The first subscript indicates the observable, and the second
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Supplementary Figure S3: Likelihood waterfall for the JAK-STAT signaling model II.

the condition. However, all conditions belonging to the same experiment share the scaling and o↵set parameters and

thus the parameters are only listed for the first condition of each experiment. The experiments and corresponding

condition indices are summarizes in Table S1. For simplicity, we note the scaling parameters as vector s which contains

only the unique parameters si,ce which need to be estimated from the data. Thus, it is

s = (s1,1, s1,4, s1,6, s1,7, s1,11, s1,15, s1,20, s2,1, s2,4, s2,5, s2,7, s2,9, s2,11, s2,13, s2,15, s2,20, s3,1, s3,4, s3,7, s3,11, s3,13,

s4,1, s4,7, s4,11, s5,1, s5,4, s5,13, s6,1, s6,4, s6,7, s6,11, s6,13, s6,26, s12, s13, s14, s15, s16, s17, s18, s19, s20)
T

with ns = 42. The noise parameters do not di↵er between experiments or replicates, thus, neglecting the subscripts

for the experiment-specific condition index ce and for the replicate index r, the noise parameters, which need to be

estimated from the data are given by

� = (�1,�3,�4,�5,�7,�8,�9,�10,�11,�12,�18)
T

with n� = 11. Some observables have the same noise parameters:

�1 = �2

�3 = �19 = �20 ,

�5 = �6 ,

�12 = �13 = �14 = �15 = �16 = �17 .

A minor modification from the model proposed by Bachmann et al. (2011) is that the parameterization for the noise of

pSTAT5Bau did not include an additional parameter for the SOCS3oe experiment, and that the observables for RNA

were fitted in linear space. The observable pSTAT5Brel was also fitted on a linear scale, while the other observables were

compared at a log10 scale (as done by Bachmann et al. (2011)). In our setting, the o↵set parameters were also multiplied

with the scaling parameters, which yielded di↵erent optimal values for the o↵set parameters compared to those found

by Bachmann et al. (2011). We performed 100 multi-starts for each optimization approach and noise assumption. The
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Supplementary Table S1: Overview for the experimental data of JAK-STAT signaling model II.

name experiment index e condition index
condition u

ActD CISoe SOCS3oe SHP1oe [Epo]/10�6

Long 1 1 0 0 0 0 0.125

Concentration 2 2 0 0 0 0 0.125

RNA 3 3 0 0 0 0 0.125

ActD 4 4 0 0 0 0 0.125

5 1 0 0 0 0.125

Fine 5 6 0 0 0 0 1.25

CISoe 6 7 0 0 0 0 0.125

8 0 1 0 0 0.125

CISoe pEpoR 7 9 0 0 0 0 0.125

10 0 1 0 0 0.125

SOCS3oe 8 11 0 0 0 0 0.125

12 0 0 1 0 0.125

SHP1oe 9 13 0 0 0 0 0.125

14 0 0 0 1 0.125

dose response 7 min 10 15 0 0 0 0 0.0025

16 0 0 0 0 0.025

17 0 0 0 0 0.25

18 0 0 0 0 2.5

19 0 0 0 0 25

dose response 30 min 11 20 0 0 0 0 0.0025

21 0 0 0 0 0.025

22 0 0 0 0 0.125

23 0 0 0 0 0.25

24 0 0 0 0 1.25

25 0 0 0 0 2.5

dose response 10 min 12 26 0 0 0 0 0.0025

27 0 0 0 0 0.0125

28 0 0 0 0 0.025

29 0 0 0 0 0.125

30 0 0 0 0 0.25

31 0 0 0 0 2.5

dose response 90 min 13 32 0 0 0 0 0.0025

33 0 0 0 0 0.1025

34 0 0 0 0 0.125

35 0 0 0 0 0.25

36 0 0 0 0 2.5
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parameter boundaries are log10(✓)lb = �3 and log10(✓)ub = 3, except for

log10(CISEqc,CISInh,EpoRActJAK2,EpoRCISInh, JAK2ActEpo, JAK2EpoRDeaSHP1, SOCS3Turn)ub =

(4, 12, 5, 6, 9, 4, 4)T

log10(oi,ce)lb = �5 8i, ce
log10(oi,ce)ub = 3 8i, ce
log10(s)lb = (�3, . . . ,�3)T

log10(s)ub = (3, . . . , 3)T

log10(�)lb = (�3, . . . ,�3)T

log10(�)ub = (3, . . . , 3)T .

The fitted experimental data for the whole data set are shown in Figure S4. The comparison of Gaussian and Laplace

noise showed that Laplace noise yielded a substantially improved fit of the data (Figure S1C).
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Supplementary Figure S4: Experimental data for JAK-STAT signaling model II. Boxes indicate di↵erent ex-
periments. The lines highlight the di↵erent models (Gaussian and Laplace noise) and optimization approaches
(standard and hierarchical).
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4.3 RAF/MEK/ERK signaling

The ODE system for the RAF/MEK/ERK signaling model is given by

dx1

@t
= k1,max(t)

K1

K1 + [pERK]
(1� x1)� k2x1

dx2

@t
=

k3[Raf]0K2x1

K2 + [sora]
(1� x2)� k4x2

dx3

@t
=

k5[MEK]0K3x2

K3 + [UO126]
(1� x3)� k6x3

with states x1 = [pRaf]/[Raf]0, x2 = [pMEK]/[MEK]0, and x3 = [pERK]/[ERK]0, and

k1,max(t) = k1,0 + k1,1

✓
1� exp

✓
� t

⌧1

◆◆
exp

✓
� t

⌧2

◆

(see (Fiedler et al., 2016) for more details). The initial conditions were assumed to be the steady states reached without

stimulation and for k1,max = k1,0. Defining K̃1 = K1/[ERK]0, k̃3 = k3[Raf]0 and k̃5 = k5[MEK]0, we obtain

x1(0) =
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The observables are given by

y1,r = s1,r[pMEK]

y2,r = s2,r[pERK] ,

for replicates r = 1, . . . , 4. The indices for conditions and experiments are neglected, since the scaling and noise

parameters do not di↵er for these. The input u describes the concentrations [sora] and [UO126] and the three di↵erent

conditions are u1 = (0, 0)T , u2 = (0, 30)T , and u3 = (5, 0)T . The parameters, which are estimated from the data, are

q =

 
k1,0
k1,1

, k1,1, ⌧1, ⌧2,
K1

[ERK]0
, k2,K2, k3[Raf]0,K3, k4, k5[MEK]0, k6,

s1,2, s1,3, s1,4, s2,1, s2,2, s2,3, s2,4,�1,2,�1,3,�1,4,�2,1,�2,2,�2,3,�2,4

!T

.

with specific scaling and noise parameters for replicates and observables. The parameters boundaries for the optimization

are

log10(q)lb = (�7, . . . ,�7)T

log10(q)ub = (5, . . . , 5)T .

We performed 500 multi-starts to obtain the optimal parameters for both distributions. The comparison between

the two noise assumptions for the measurement noise showed that the Laplace noise yielded a substantially better fit

(Figure S1C).
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Supplementary Figure S5: Likelihood waterfall plot for RAF/MEK/ERK signaling.
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