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Abstract8

We study the establishment probabilities of locally adapted mutations using a multi-9

type branching process framework. We find a surprisingly simple and intuitive analytical10

approximation for the establishment probabilities in a symmetric two-deme model under11

the assumption of weak (positive) selection. This is the first analytical closed-form ap-12

proximation for arbitrary migration rate to appear in the literature. We find that the13

establishment probability lies between the weak and the strong migration limits if we14

condition the origin of the mutation to the deme where it is advantageous. This is not15

the case when we condition the mutation to first occur in a deme where it is disadvanta-16

geous. In this case we find that an intermediate migration rate maximizes the probability17

of establishment. We extend our results to the cases of multiple demes, two demes with18

asymmetric rates of gene flow, and asymmetric carrying capacities. The latter case al-19

lows us to illustrate how density regulation can affect establishment probabilities. Finally20

we use our results to investigate the role of gene flow on the rate of local adaptation21

and identify cases in which intermediate amounts of gene flow facilitate the rate of local22

adaptation as compared to two populations without gene flow.23
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Introduction26

Studying the maintenance of genetic variation under migration-selection balance has a long27

tradition in population genetics. While most theoretical research on the establishment and28

maintenance of local adaptation and population divergence has focused on deterministic models29

(reviewed in [Felsenstein, 1976, Karlin, 1982, Lenormand, 2002, Nagylaki and Lou, 2008]; see30

also [Nagylaki and Lou, 2007, Star et al., 2007, Bürger, 009a, Bürger, 009b, Nagylaki, 2009]),31

considerably less work has been done on the probability of establishment of locally adapted32

mutations. Even in infinitely large populations, new beneficial mutations experience genetic33

drift while they are rare, and hence can get lost from the population despite their selective34

advantage. The probability that a new beneficial mutation evades extinction due to stochas-35

tic fluctuations has been called the invasion probability, establishment probability or fixation36

probability, depending on the context. In the simplest case of a single panmictic popula-37

tion of infinite size, Haldane’s classical result states that the establishment probability of a38

mutation with time- and frequency-independent selection coefficient s is approximately 2s39

[Haldane, 1927]. Since then, Haldane’s result has been generalized and extended to several40

scenarios (see [Patwa and Wahl, 2008] for a review about fixation probabilities of beneficial41

mutations).42

Traditionally, there are two main approaches to study establishment probabilities: branch-43

ing processes and diffusion approximations. Branching processes often allow for the deriva-44

tion of simple and intuitive results [Harris, 2002], but are restricted to beneficial mutations45

in (infinitely large) populations. The diffusion approximation, first used by [Kimura, 1962]46

in this context, is a powerful tool that allows the derivation of results for both beneficial47

or deleterious mutations of arbitrary initial frequency in finite populations. The downside is48

that the derivation of closed form solutions is often harder as compared to branching pro-49

cess, and that the underlying assumptions are not always clear. Applications of establish-50

ment or fixation probabilities include the quantification of the rate of adaption of populations51
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[Orr and Otto, 1994, Wilke, 2004, Desai and Fisher, 2007, Gonçalves et al., 2007], extinction52

risk due to the accumulation of deleterious mutations [Lynch and Gabriel, 1990], or the rate of53

emergence of drug resistance or evolutionary rescue [Carlson et al., 2014].54

In the context of spatially structured populations, [Barton, 1987] extended the diffusion approx-55

imation to account for spatially variation in fitness along a one-dimensional habitat and derived56

analytical solutions for some special cases. [Kirkpatrick and Peischl, 2013] used a similar ap-57

proach to study the contribution of new mutations to evolutionary rescue in environments that58

change in space and time. [McPeek and Holt, 1992] studied the conditions at which a geno-59

type can invade populations fixed for another genotype in environments varying spatially or60

temporally in a two-patch model. [Tachida and Iizuka, 1991, Gavrilets and Gibson, 2002] and61

[Whitlock and Gomulkiewicz, 2005] have explored the probability of a single mutant allele fix-62

ing in both patches of a two-patch model using diffusion approximations. These studies present63

the fixation probability as the solution of a system of two quadratic equations that can be solved64

numerically but so far no closed form solution for the fixation probability has been derived.65

[Yeaman and Otto, 2011] have used a heuristic ”splicing” approach in which they combine the66

leading eigenvalues of the transition matrix of a deterministic two-deme model with Kimura’s67

classical fixation probability formula. Their approach is surprisingly accurate and allowed them68

to determine the probability of a locally beneficial mutation becoming permanently established69

and the critical threshold migration rate above which the maintenance of polymorphism is un-70

likely in finite populations. [Vuilleumier et al., 2008] studied the fixation of locally beneficial71

alleles through simulations of a metapopulation in a spatially heterogeneous environment. Their72

findings suggest that a mutation experiencing strong positive selection in parts of an otherwise73

neutral environment has a higher chance of reaching fixation than a unconditionally beneficial74

mutation with the same average selection coefficient. This illustrates that heterogeneity in75

selection coefficients across space can have a large impact on the probability of fixation.76

Despite these advances, several open questions remain. Perhaps most importantly, no closed77

form approximation for the establishment probability in a spatially structured population is78

available, even for the simplest cases of two-demes with heterogeneous selection (apart from the79

heuristic formula obtained in [Yeaman and Otto, 2011]). Furthermore, [Vuilleumier et al., 2010]80

showed that details on how migration is modeled can have a large influence on the outcome81

3

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 15, 2018. ; https://doi.org/10.1101/248013doi: bioRxiv preprint 

https://doi.org/10.1101/248013


on the effects of spatial structure on establishing locally adapted mutations. The same study82

also identified cases where fixation probabilities lie outside of the range set by low- and high-83

migration limits, in contrast to what is observed in simpler analytical models84

[Tachida and Iizuka, 1991, Gavrilets and Gibson, 2002, Whitlock and Gomulkiewicz, 2005]. De-85

riving a closed expression for the establishment probability in patchy environments is necessary86

to better understand the role of habitat fragmentation and dispersal on adaptation in spatially87

heterogeneous environments, for instance in models of evolutionary rescue or evolution of drug88

resistance [Gomulkiewicz and Holt, 1995], [Uecker et al., 2013], studying the spatial origin of89

mutations that cause range expansion [Behrman and Kirkpatrick, 2011], or studying the role90

of gene-flow on the establishment of local adaptation [Seehausen, 2004].91

Here we study the establishment of locally adapted mutations in a discrete migration-selection92

model using the framework of multitype branching processes. We present a surprisingly simple93

and intuitive analytical approximation for the probability that new mutations escape genetic94

drift and become permanently established. Our results are valid in the limit of weak positive95

selection in one of the selective habitats but allow for arbitrary migration rates and arbitrarily96

strong negative selection in the other habitat. We recover previous results for special cases97

such as weak or strong migration. Our results allow us to quantify the effects of migration on98

the fate of mutations – depending on whether mutations first occur in individuals living in the99

deme where the mutation is adapted to or in the deme where the mutations is selected against.100

We apply our results to biologically interesting scenarios and derive simple results for the ef-101

fect of asymmetric carrying capacities and density regulation, as well as asymmetric migration,102

the rate of local adaptation and the contribution of different demes to local adaptation. In103

particular, we derive conditions under which gene flow between demes facilitates the rate of104

establishment of locally adapted alleles as compared to the case without gene flow. The latter105

result is in contrast with common wisdom that gene flow tends to hinder local adaptation, and106

could have interesting implications for the the role of hybridization during adaptive radiations.107

Results108

We start with a symmetric two-deme model to present our model and derive our main result.109

We then generalize our results to asymmetric migration, multiple demes and unequal carrying110
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capacities.111

Two-deme model112

We consider an infinitely large population at demographic equilibrium. Generations are discrete113

and non-overlapping. The population is structured into two demes that exchange migrants.114

Population size is regulated independently in the two demes, that is, selection is soft (sensu115

[Wallace, 1975]). Migration is homogoenous and isotropic and the two demes have the same116

carrying capacity. Migration is therefore conservative and the number of immigrants and emi-117

grants are equal in each deme. At the focal locus, a resident allele is fixed in both demes and118

a new mutation occurs in a single individual. Each copy of the mutant allele in the population119

produces a random number of descendant copies in the following generation (“offspring”) that120

is independent of the number produced by other mutant copies. The mean number of offspring121

of a mutant copy is given by 1 + si in deme i.122

In the following, we will focus on the case where selection is acting in opposing directions in123

the two demes, that is sign(s1) 6= sign(s2), but note that our derivations do not require this124

assumption. For the remainder we set s1 > 0 > s2 without loss of generality. In a haploid125

population, si is the relative fitness (dis)advantage of a mutant in deme i, while in a randomly126

mating diploid population, it is the relative fitness (dis)advantage of a heterozygote. Because127

the ultimate fate of the mutation is decided while mutant homozygotes are still rare, we can128

ignore their fitness. After reproduction each mutant copy migrates to the other deme with129

probability m/2 and remains in its current deme with probability (1 − m/2). Thus, m = 0130

corresponds to two demes without gene flow whereas m = 1 corresponds to a single panmicitic131

population with frequency dependent selection (i.e., the Levene model, [Levene, 1953]). There132

are two possible outcomes to the above described process: the mutant allele dies out or it133

becomes permanently established. Note that establishment does not necessarily imply fixation134

in our model: alleles may become permanently established in a balanced polymorphism under135

certain conditions [Bulmer, 1972, Nagylaki, 2009]. We denote by p(i) the probability of estab-136

lishment of a mutation that initially appears in an individual in deme i.137

We model the evolution of the number of copies of a mutant allele that first appears in a single138

individual using a branching processes with two types of individuals. The type i (i ∈ {1, 2})139
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corresponds to the deme in which an individual carrying a copy of the mutant allele resides.140

We assume that the number of offspring of each copy of the mutant allele is independent of141

the offspring numbers of the rest of the population. The number of mutant copies present in142

generation n can then be described by a vector X(n) = (X1(n), X2(n)), where Xi(n) denotes143

the number of mutant copies in deme i at generation n. Each random variable Xi(n) has two144

associated random variables ξ
(i)
j , describing the number of offspring of type j from a parent of145

type i.146

The theory of multi-type branching processes (e.g., [Harris, 2002]) tells us that the vector of147

extinction probabilities (1− p(1), 1− p(2)) is given by148

lim
n→∞

f (n)(0, 0), (1)

where f is the vector of probability-generating functions of the offspring distribution and f (n)149

denotes the n−fold application of f . It can be shown that the establishment probabilities are150

given by the smallest positive solution of (1 − p(1), 1 − p(2)) = (f1(1 − p(1)), f2(1 − p(2))), with151

fi the i-th element of vector f (n) (see Supplemental Material, equations S1–S17, for details).152

Table 1: The mean number of individual of type 1 and 2 for parents of type 1 and 2
Type of the parent Type of the offspring

1 2
1 (1 + s1)(1−m/2) (1 + s2)m/2
2 (1 + s1)m/2 (1 + s2)(1−m/2)

Under a Wright-Fisher model of selection, offspring numbers are determined via binomial153

sampling from the parental generation, which can be approximated by Poisson-distributed154

offspring in large populations. The mean number of offspring for each type are summarized in155

table 1. Assuming Poisson distributed offspring, the establishment probabilities are then given156

by the smallest positive solution of157

1− p(1) = e−(1−
m
2
)(1+s1)p(1)−m

2
(1+s2)p(2) , (2)

1− p(2) = e−
m
2
(1+s1)p(1)−(1−m

2
)(1+s2)p(2) . (3)

Equations (2) and (3) are transcendental equations for which one can in general not obtain158
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exact solutions and we resort to approximation. We first introduce new parameters that describe159

the strength of the evolutionary forces relative to the strength of selection for the mutant allele160

in deme 1: ζ = s2/s1 and χ = m/s1. Assuming s1 > 0 > s2, and taking the limit of weak161

selection, that is ignoring second- and higher-order terms in s1, in the Supplemental Material162

(derivation of equations S17) we show that the establishment probabilities can be written as163

p(1) = max[s1(1 + σ) + s2µ, 0] (4)

p(2) = max[s1µ+ s2(1− σ), 0] (5)

where164

σ =
s1 − s2√

m2 + (s1 − s2)2
(6)

and165

µ =
m√

m2 + (s1 − s2)2
(7)

are scaled measures of the heterogeneity in selection and the migration rate, respectively. We166

note that σ, µ ∈ [0, 1]. Equations (4) and (5) show that the probability of establishment can167

be written as a weighted sum of the strength of selection in the two demes. Figure 1 shows168

establishment probabilities for various combinations of selection intensities.169

The weak selection approximation requires that the establishment probability is small, that is,170

s1 � 1 and is valid even if the mutation is, on average, deleterious, i.e., s1 + s2 < 0. Figure 2171

shows comparison between the analytical approximation and exact solutions of equations (2)172

and (3), obtained by numerical iteration of the probability-generating function. We find that173

the approximation is very accurate with respect to the solutions of equations (2) and (3).174

The establishment probabilities are positive if m < s1s2
s1+s2

or if s1+s2 > 0. Note that this con-175

dition is equivalent with the invasion conditions derived in deterministic models [Bulmer, 1972].176

Because σ is monotonically decreasing in m and µ is monotonically increasing in m it follows177

immediately that p(1) is monotonically decreasing in m (see figure 1). For p(2) the dependence178

in m is more complicated. If m = 0, it is clear that p(2) = 0 because s2 < 0. Because p(2) > 0 if179

m < s1s2
s1+s2

or s1+s2 > 0, p(2) is always maximized for some positive migration rate if s1 < 0 < s2180

(figure 1). Straightforward calculations yield that either the maximum of p(2) is attained at181

m = s1
s2

(s2 − s1) > 0 or p(2) is monotonically increasing in m.182
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Figure 1: Establishment probabilities as a function of migration rate for various combinations
of selection intensities. (A) p(1) with fixed s2 = −0.03. (B) p(2) with fixed s2 = −0.03. (C) p(1)

with fixed s1 = 0.03. (D) p(2) with fixed s1 = 0.03.
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Figure 2: Comparison between exact solution of (2) and (3) and our approximation from
equations (4) and (5). The exact solution is obtained numerically after 10’000 iterations of (2)
and (3) (see equation (1)). (A) Probabilities of establishment for a scenario where s1 + s2 < 0.
(B) Probabilities of establishment for a scenario where s1 + s2 > 0. The limit for very high
migration is p(1) = p(2) = s1 + s2 (see main text).

Comparison with previous results183

Equations (2) and (3) recover several previous results for establishment probabilities. In the184

absence of migration, we have that σ = 1 and µ = 0 and we get p(i) = max[2si, 0], in185
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agreement with Haldane’s classical result for a single panmictic population [Haldane, 1927].186

In the limit of strong migration, we get p(1) = p(2) = max[s1 + s2, 0] which means that187

the establishment probability is determined by the average selection coefficient across demes188

[Nagylaki, 1980]. In the limit of weak migration, we get p(1) = 2s1 − ms2
|s1−s2| and p(2) = ms1

|s1−s2| .189

[Gavrilets and Gibson, 2002] used a diffusion approximation to compute fixation probabilities190

in a biallelic one-locus two-deme model similar to ours. The key difference between our and191

their approach that we calculate establishment rather than fixation probabilities, which makes it192

hard to directly compare our results. Furthermore, no closed-form solution is available for their193

model. However, in the case where establishment implies fixation, our results are in very good194

agreement (see Supplemental Material, figure S1). [Yeaman and Otto, 2011] extended classical195

deterministic two-deme models for diploid individuals (such as [Bulmer, 1972]) to derive a196

heuristic approximation for the establishment probability of new mutations. They calculate197

the rate of increase in frequency of a rare locally beneficial mutation and use this initial growth198

rate as a the selection coefficient in Kimura’s classical equation for fixation probabilities in finite199

populations [Kimura, 1962]. Numerical comparison reveals a good fit between their results and200

our equations (4) and (5) (see Supplemental Material, figure S2).201

Island model with multiple demes202

Here we extend our results to an island model with multiple demes and two selective habitats.203

Let s1 and s2 denote the selection coefficients of the mutation in habitat 1 and 2, respec-204

tively. We assume that migration occurs at rate m between all demes (i.e., the island model,205

[Wright, 1931]). This model can readily be reduced to a two-deme model with asymmetric206

migration rates [Whitlock and Gomulkiewicz, 2005]. Let mij denote the migration rate from207

selective habitat i to selective habitat j. We assume that all demes are of the same size and that208

selective habitats 1 and 2 contain k1 and k2 = n− k1 demes, respectively. The migration rates209

between the two selective habitats are then given by m12 = mk2/n and m21 = m(n − k2)/n.210

Note that migration is conservative in this scenario since each deme sends and receives the211

same number of migrants. In the Supplemental Material (equations S23), we show that the212

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 15, 2018. ; https://doi.org/10.1101/248013doi: bioRxiv preprint 

https://doi.org/10.1101/248013


establishment probabilities for the island model are given by213

p
(1)
IM = max[s1

(
1 + σ −∆µ

)
+ s2 · µ12, 0] (8)

p
(2)
IM = max[s1 · µ21 + s2

(
1− σ + ∆µ

)
, 0] (9)

where ∆µ = (µ12 − µ21)/2 (with µij = mij/λ), σ = (s1 − s2)/λ. In these last definitions, we214

used λ =
√
m̄2 + (s1 − s2)2 − (m12 −m21)(s1 − s2), with m̄ = (m12 + m21)/2. An mcrit > 0215

always exists, such that p(i) is positive if m ∈ [0,mcrit]; also, p
(1)
IM is monotonically decreasing.216

The theoretical maxima of the functions can be easily calculated (see Supplemental Material,217

derivation of equation S23).218

If the selective habitat where the mutation is beneficial is larger than the habitat where the219

mutation is detrimental, we have more individuals migrating from habitat 2 to habitat 1 and220

∆µ < 0. As a consequence the contribution of selection in habitat 1 is amplified as compared221

to the case with symmetric migration (see eqs. (8) and (9)), and the chances of establishment222

generally increase with respect to the symmetric migration model (Figure 3). We note that223

even though we introduced this scenario as a multiple-deme island model, the result (8) and224

(9) are also valid in a 2-deme model with asymmetric migration between demes.
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(i), as a function of k1/k2.
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225

Asymmetric carrying capacities and density regulation226

So far we ignored the effects of density regulation because we assumed demographic equilibrium227

and that migration is conservative, i.e., gene flow does not change the number of individuals in228
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each deme. We next relax the assumption of equal deme sizes and introduce a simple model229

of deme-independent density regulation (soft selection, sensu Wallace 1953). Let κ1 and κ2230

denote the carrying capacities of deme 1 and 2, respectively. If migration is isotropic the larger231

deme acts as a source, that is, it sends out more migrants than it receives. Here we assume232

that density regulation acts after migration and brings each deme back to its carrying capacity233

instantaneously. Let κi denote the carrying capacity of deme i. Initially both demes are at234

carrying capacity. The number of individuals ind deme i after migration but before density235

regulation are denoted N ′i and are given by236

N ′1 = κ1(1−m) + κ2m, and N ′2 = κ1m+ κ2(1−m). (10)

Density regulation will then change the number of individuals in each deme by a factor237

δi =
κi

κi(1−m) + κjm
; i, j ∈ {1, 2}, i 6= j. (11)

This modifies the absolute fitness of individuals in deme i (see table 1) to wi = (1 + si)δi.238

The establishment probabilities for this case are explicitly calculated in the Supplemental Ma-239

terial (see equation (S28)).240

If κ1 < κ2, deme 1 receives more migrants than it sends out and density regulation will cull the241

population size back to carrying capacity. Thus, in a certain sense deme 1 is behaving like a242

shrinking population, which should reduce the establishment probability of mutations that are243

beneficial in that deme [Otto and Whitlock, 1997]. Our results confirms this intuition (figure244

4) and show that the establishment probability increases if the deme where the allele is bene-245

ficial has a smaller carrying capacity. Likewise, if κ2 < κ1, deme 1 is growing after migration,246

which reduces drift and increases the establishment probability of mutations that are adapted247

to deme.248

Comparison with simulations249

A comparison with simulations yields good results (see figure 5) for the case of symmetric demes,250

asymmetric migration and also both cases of asymmetric demes (i.e. κ1 > κ2 and κ1 < κ2).251

Simulations were performed assuming that the population dynamics is represented through a252
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Figure 4: Ratio between probabilities of establishment computed within the model with sym-
metric migration or within the model with asymmetric carrying capacities (see equations for

p
(i)
dens, Supplemental Material, equation (S28)), defined as R

(i)
p = p

(i)
dens/p

(i), as a function of
κ1/κ2. (A) i = 1 and (B) i = 2. In both cases s1 = 0.02 and s2 = −0.03.

logistic growth, and inserting one mutant in either deme 1 or 2 and letting the system evolve253

for 20000 generations. 50000 replications are done for each simulated scenario. Simulations254

were done with small populations (300). Our approximation tends to overestimate p(1) and255

underestimate p(2). This is expected, since the same behavior can be seen when compared the256

approximation to the exact solution (see figure 2).257

Global rate of establishment of locally adapted alleles258

It is commonly assumed that gene flow hampers or even prevents local adaptation [Lenormand, 2002].259

Here we use our results to quantify the effect of migration on the overall establishment proba-260

bility, defined as261

P = cp
(1)
est + (1− c)p(2)est (12)

where c and 1− c denote the relative sizes of deme 1 and deme 2, respectively.262

We next take the derivative of P with respect to m at m = 0. If this derivative is positive,263

the rate of adaptation increases when we introduce some gene flow as compared to the case264

without gene flow between demes. In other words, we derived the condition under which265

the unconditional establishment probability of locally adapted mutations increases when we266

introduce small amounts of migration. We find that this is the case in all our models if267

N1|s1| > N2|s2| (13)
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Figure 5: Comparison of simulations and analytical approximations. Our model is represented
by the dashed line. (A) Model with symmetric migration and symmetric demes, s1 = 0.02,
s2 = −0.03. (B) Model with symmetric migration and symmetric demes, s1 = 0.02, s2 = −0.01.
(C) Island model with two demes of type 1 (d1 = 2, s1 = 0.02) and three demes of type 2 (d2 = 3,
s2 = −0.03). (D) Island model with three demes of type 1 (d1 = 3, s1 = 0.02) and two demes
of type 2 (d2 = 2, s2 = −0.03). (E) Model with different carrying capacities, with carrying
capacities κ1 = 300 and κ2 = 400. (F) Model with different carrying capacities, with carrying

capacities κ1 = 400 and κ2 = 300. The form of p
(i)
dens, shown in images (E) and (F), is described

in the Supplementary Information (equations S28).
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where N1 and N2 are the number of individuals in deme 1 and 2 respectively. Hence, in the268

symmetric model where the probability of establishment is given by (4) and (5), we find that269

gene flow increases the chances of establishment when |s1| > |s2|. Therefore, if the selective270

advantage in one deme is larger than the selective disadvantage in the other deme, some gene271

flow can facilitate the establishment of local adaptation as compared to completely isolated272

demes. This can also be seen directly via the weak migration approximation p
(1)
est = 2s1− ms2

|s1−s2|273

and p
(2)
est = ms1

|s1−s2| derived above.274

If we consider the model with asymmetric migration in the context of a multi-deme model (see275

above), the condition becomes276

m21|s1| > m12|s2|. (14)

Using the definitions of m12 and m21 that we defined in the section above, for the multi-deme277

model, equations (13) and (14) are identical.278

Discussion279

We used multi-type branching processes to study the establishment of locally beneficial mu-280

tations in a spatially heterogeneous environment with two selective habitats. Our main result281

is a simple and analytical closed-form approximation for the probability of establishment of a282

locally beneficial mutation in a two-deme model with divergent selection and symmetric mi-283

gration between demes (equations (4) and (5) ). By establishment we mean that a mutation284

permanently establishes in the meta-population, either by going to fixation or by maintenance285

as a balanced polymorphism. To our knowledge this is the first closed-form analytical approx-286

imation for an establishment probability in this context that is valid for arbitrary migration287

rates (but see [Yeaman and Otto, 2011] for a heuristic approach). The resulting formula is288

intriguingly simple and intuitive: the probability of establishment is simply a weighted average289

over selection coefficients in the two demes, where the weights are determined by the relative290

contributions of migration and spatial variation in selection. We extended our main result to291

asymmetric migration between and a multi-deme island model with two selective habitats, and292

studied the impact of variation in carrying capacities and density regulation on the establish-293

ment of locally adapted mutations. We show that establishment probabilities can fall outside294
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the range spanned by the weak or strong migration limits, and provide conditions for when this295

is the case. In particular, we identify conditions under which small amounts of migration can296

facilitate the build-up of adaptive divergence as compared to two demes without gene-flow.297

Our derivation assumes an (infinitely) large population and that selection for the beneficial298

mutation is sufficiently weak. Let s1 > 0 denote the selection coefficient in the deme where the299

mutation is beneficial. Our approximation should hold as long as the product of population300

size and selection coefficient s1 is larger than 1 (Ns1 > 1, fig.5) and selection is so weak that301

we ignore second- and higher-order terms in s. Worthy of note, our approximation remains302

valid if the mutation is strongly deleterious (or even lethal) in one of the demes (see figure S3303

in the Supplementary Material). Furthermore, we have modeled a haploid population to avoid304

the intricacies of dominance. However, our results should remain valid in diploid populations if305

we use the fitness of the mutant allele in our model as the fitness of heterozygotes in a diploid306

model. The ultimate fate of a mutation will be determined while it is rare so that we can ignore307

the fitness of homozygotes.308

We have been discussing single mutations in isolation and neglected genetic events that may309

interfere with the establishment process (e.g., clonal interference [Gerrish and Lenski, 1998]).310

Our results should therefore hold in sexually reproducing species with strong recombination.311

Our approximation is less plausible in organisms that reproduce with little or no recombina-312

tion, such as most microbes, or for mutations in genomic regions with low recombination rates.313

Competition between simultaneously spreading beneficial mutations (clonal interference) can314

have severe impacts on each other’s establishment [Gerrish and Lenski, 1998, Orr, 2000]. This315

effect is difficult to account for [Wilke, 2004] and is most important in populations with little or316

no recombination, because recombination can break associations between mutations that occur317

in different parts of a genome [Muller, 1932, Hill and Robertson, 1966]. A second effect that318

we did not account for is the genomic background on which the mutation falls via additive or319

epistatic interactions between mutations. This can be sidestepped by interpreting the selection320

coefficient as referring to the focal individuals fitness rather than to the effect of the mutation.321

Previous work based on individual based simulations has shown that variation in densities322

across demes can affect the establishment of new mutations [Vuilleumier et al., 2010]. Our323

results confirm this and show selection is more efficient in source-demes. We show that the324
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combination of density regulation and asymmetric migration mimics the effects of a growing325

population, which increases the absolute fitness of individuals and leads to more efficient posi-326

tive selection [Otto and Whitlock, 1997].327

The solution that we presented in this paper also assumes that migration rates remain fixed328

in time. We know, however, that spatially varying selection can lead to evolution of dispersal329

[Ronce, 2007]. Our model is therefore plausible if migration is mainly determined by geograph-330

ical features of the environment, or if there is little or no genetic variability for traits related331

to dispersal. Furthermore, variation in density can introduce non-random movement between332

demes. We have accounted for this in eqs. (8) and (9) where we allowed migration rates to333

be asymmetric. In equations (8) and (9), the carrying capacity of each type of habitat is not334

explicitly taken into account. A combination of the result for asymmetric migration rates with335

the scenario with density regulation (see equations S28) may be necessary to study extreme336

cases in which asymmetry of migration is related with asymmetry in carrying capacities. While337

this should be possible in a multi-type branching process framework, the derivations are com-338

plicated and are beyond the scope of this work.339

We have presented here a mathematically rigorous approximation of establishment probabilities340

in a spatial framework using the theory of multi-type branching processes. It would be very341

interesting to generalize our approach to more than two different types of individuals. While342

the theoretical foundation is laid out, finding actual solutions for establishment probabilities343

in higher-dimensional system poses algebraic challenges that might be difficult to overcome.344

Nevertheless, the simple and intuitive form of our solution suggests that this approach can be345

exploited further and that our results can be generalized and extend to various scenarios that346

include more than two types of individuals.347
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