Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Lempel-Ziv complexity of the EEG predicts long-term functional recovery after stroke in rats

Susan Leemburg, Claudio L. Bassetti
doi: https://doi.org/10.1101/248039
Susan Leemburg
1Department of Neurology, University Hospital Zurich, Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claudio L. Bassetti
2Neurology Department, University Hospital Bern, Switzerland
3Medical Faculty, University of Bern, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Non-linear complexity of the EEG signal can be used to detect abnormal brain function relating to behavioral deficits. Here, we compare the effects of experimental stroke on EEG complexity using Lempel-Ziv complexity analysis (LZC) and multiscale entropy analysis (SampEn).

EEG was recorded in bilateral motor cortex at baseline and during a 30-day recovery period after distal middle cerebral artery occlusion in rats. Motor function was assessed using a single pellet reaching task. Stroke caused an acute drop in both LZC and SampEn in the ipsilesional hemisphere in wakefulness, NREM and REM sleep, as well as reduced pellet reaching success. SampEn reductions persisted for at least 10 days post-stroke, whereas LZC had returned to baseline levels by day 4. EEG complexity in the contralesional hemisphere and in sham-operated animals were unaffected.

If EEG complexity reflects post-stroke brain function, post-stroke asymmetry could be used to predict behavioral recovery. In rats, acute LZC asymmetry was significantly correlated with the amount of motor function recovery by post-stroke day 31, but SampEn asymmetry was not. EEG LZC may thus be a useful tool for predicting functional recovery after stroke. MSE could be effective in identifying cortical dysfunction, but does not reflect behavioral outcomes.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted January 15, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Lempel-Ziv complexity of the EEG predicts long-term functional recovery after stroke in rats
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Lempel-Ziv complexity of the EEG predicts long-term functional recovery after stroke in rats
Susan Leemburg, Claudio L. Bassetti
bioRxiv 248039; doi: https://doi.org/10.1101/248039
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Lempel-Ziv complexity of the EEG predicts long-term functional recovery after stroke in rats
Susan Leemburg, Claudio L. Bassetti
bioRxiv 248039; doi: https://doi.org/10.1101/248039

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4222)
  • Biochemistry (9095)
  • Bioengineering (6733)
  • Bioinformatics (23916)
  • Biophysics (12066)
  • Cancer Biology (9484)
  • Cell Biology (13720)
  • Clinical Trials (138)
  • Developmental Biology (7614)
  • Ecology (11644)
  • Epidemiology (2066)
  • Evolutionary Biology (15459)
  • Genetics (10610)
  • Genomics (14281)
  • Immunology (9447)
  • Microbiology (22749)
  • Molecular Biology (9056)
  • Neuroscience (48811)
  • Paleontology (354)
  • Pathology (1478)
  • Pharmacology and Toxicology (2558)
  • Physiology (3817)
  • Plant Biology (8300)
  • Scientific Communication and Education (1466)
  • Synthetic Biology (2285)
  • Systems Biology (6163)
  • Zoology (1295)