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Abstract 
Non-linear complexity of the EEG signal can be used to detect abnormal brain function relating to behavioral deficits. 
Here, we compare the effects of experimental stroke on EEG complexity using Lempel-Ziv complexity analysis (LZC) 
and multiscale entropy analysis (SampEn).  
EEG was recorded in bilateral motor cortex at baseline and during a 30-day recovery period after distal middle 
cerebral artery occlusion in rats. Motor function was assessed using a single pellet reaching task. Stroke caused an 
acute drop in both LZC and SampEn in the ipsilesional hemisphere in wakefulness, NREM and REM sleep, as well as 
reduced pellet reaching success. SampEn reductions persisted for at least 10 days post-stroke, whereas LZC had 
returned to baseline levels by day 4. EEG complexity in the contralesional hemisphere and in sham-operated animals 
were unaffected. 
If EEG complexity reflects post-stroke brain function, post-stroke asymmetry could be used to predict behavioral 
recovery. In rats, acute LZC asymmetry was significantly correlated with the amount of motor function recovery by 
post-stroke day 31, but SampEn asymmetry was not. EEG LZC may thus be a useful tool for predicting functional 
recovery after stroke. MSE could be effective in identifying cortical dysfunction, but does not reflect behavioral 
outcomes. 

 

Introduction 

Stroke remains a common cause of long-term 
disability in industrialized countries [1]. Predictive 
models can aid in the planning and implementation of 
rehabilitation strategies and help optimize functional 
recovery [2,3]. EEG, as an accessible and noninvasive 
method of measuring brain function, could be used to 
complement behavioral post-stroke assessments 
used to guide rehabilitation strategies. 
Post-stroke effects on EEG power and coherence 
spectra have been described previously, but their 
relation to functional recovery is not straightforward 
[4–6]. The use of spectral power to assess brain 
function after stroke is further complicated by inter 
individual differences. Moreover, both overall 
spectral power and power within specific frequency 
bands vary with age and sex and are affected by 
pharmacological treatment and sleep-wake history 
[7–9]. Linking EEG power spectra to behavioral 
function after stroke is further complicated by large 
inter-individual differences in power spectra and 

limited information about the healthy EEG of most 
patients.  
Non-linear complexity measures, such as Lempel-Ziv 
complexity (LZC) [10] and multiscale entropy (MSE) 
[11,12] yield information about the EEG signal that is 
independent of amplitude. Nonlinear complexity 
measures can be more sensitive than spectral power 
in detecting abnormal brain function in epilepsy [13], 
Alzheimer’s disease [14–17], depression, 
schizophrenia [18,19] and after brain injury [20], as 
well as sleep homeostasis in healthy rats [21]. 
Moreover, post-stroke LZC was a more accurate 
predictor of post-stroke depression than spectral 
power in patients [22]. Similarly, LZC predicted 
behavioral responsiveness based on brain function in 
anaesthetized patients with greater accuracy than 
approximate entropy, spectral entropy, or median 
EEG frequency [23]. MSE can be used to detect 
abnormal brain activity in damaged cortical areas in 
chronic stroke [24]. Additionally, MSE might be used 
to predict recovery in a rat model of cardiac arrest 
[25]. 
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Stroke-related changes in EEG complexity have been 
described in stroke patients. Hemispheric stroke led 
to reduced EEG complexity in the ipsilesional 
hemisphere in stroke patients [26], but was increased 
after thalamic stroke [27]. EEG complexity calculated 
was thus differentially affected by lesion location, but 
also by the methods used to compute it [22,24,26,27].  
Here, we compare how distal middle cerebral artery 
occlusion affects EEG complexity calculated using LZC 
or MSE during a 30-day recovery period after in rats, 
as well as the use of these measures in predicting 
motor function recovery.  

 

Materials and Methods 

Experimental setup 
 15 rats were implanted with EEG and EMG electrodes 
after 3 weeks of training on the SPR task. After 
electrode implantation, they were allowed to recover 
for 8-9 days, during which training continued. 24-hour 
baseline EEG recordings were then performed, as well 
as baseline skilled reaching (SPR) tests. Focal cortical 
ischemia by middle cerebral artery occlusion (MCAO) 
was then induced in the hemisphere contralateral to 
the rat’s preferred paw in 8 animals. 7 Sham operated 
animals served as a control group. Post-surgery EEG 
recordings were performed on day 1, 4, 7, 10, and 30. 
The first post-surgery EEG recording (D1) was 
performed approximately 20h after surgery. Post-
surgery SPR testing was performed on days 2, 5, 8, 11, 
and 31. Rats were sacrificed after the final SPR 
session. Mean LZC and SampEn were calculated for 
wake, NREM and REM for each animal to assess 
effects of stroke on temporal complexity of the EEG 
signal.  

Animals 
15 male Sprague-Dawley rats were used (180-200 g at 
the start of the experiment, 8 MCAO, 7 sham, Harlan). 
Rats lived in individual plexiglass cages on a 12h:12 h 
light-dark cycle. They were fed 20-25g of chow once 
per day at lights-on, or after completing motor skill 
testing or training (SPR). The feeding schedule did not 
result in significant weight loss. On SPR testing or 
training days, rats received chocolate flavored 
dustless precision pellets (45 mg, #F0299, Bioserv 
Inc.) in addition to the regular chow. The number of 
pellets a rat consumed depended on SPR success, but 
did not exceed 50. Water was available ad libitum 
throughout the experiment. All experiments were 
carried out in the University Hospital Zurich, 

Switzerland, according to local regulations for the 
care and use of laboratory animals and with 
governmental approval (Licenses 167/2005 and 
190/2008, Kantonales Veterinäramt Zürich, 
Switzerland).  

 
Assessment of motor function 
Fine motor function was assessed using a skilled 
reaching task (SPR), in which a rat retrieved a small 
food pellet located outside of the testing cage by 
reaching for it using one forepaw, as described 
previously [28,29]. The SPR testing cage consisted of 
a rectangular plexiglass box with small shelves 
mounted 3 cm above the cage floor on the outside of 
each short wall, which could be reached by the rats 
via a 1.4 cm wide window in the cage wall. Small 
indentations in the shelves aligned with the edges of 
the window assured constant placement of pellets on 
the shelves (1.5 cm from the inside of the cage).  
The first week of three weeks of SPR training 
consisted of daily 10-minute sessions, in which pellets 
initially placed within easy reach of the rat. Once the 
rat reliably consumed these pellets, they were moved 
progressively farther away to encourage reaching 
with the forepaw. Once a rat demonstrated paw-
preference by making more than half of the reaching 
attempts in a session with a single paw, pellets were 
placed in the indentation that could only be reached 
with that preferred paw. In week 2 and 3 of training, 
in which pellets were presented on alternating sides 
of the reaching cage. As a result, the rat fully 
repositioned its body for each reaching attempt. 
Training sessions ended after the rat had performed 
50 reaching attempts, or after 15 minutes.  
During baseline and post-MCAO sessions, pellets 
were only presented on one side of the cage after the 
rat had turned away from the window and moved to 
the other side of the cage. SPR attempts were 
classified as either successful (the rat grasped the 
pellet, transferred it into its mouth and ate it) or failed 
(the rat dropped the pellet or knocked it off the shelf). 
Testing sessions were videotaped for later 
verification. SPR success was calculated as the 
percentage of successfully obtained pellets out of 50 
possible attempts.  

Electrode implantation and MCAO surgery  
During all surgical procedures, rats were 
anaesthetized using 2-2.5% isoflurane in 30% oxygen 
and 70% N2O and rectal temperature was maintained 
at 36°C.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2018. ; https://doi.org/10.1101/248039doi: bioRxiv preprint 

https://doi.org/10.1101/248039
http://creativecommons.org/licenses/by-nc-nd/4.0/


EEG electrodes (gold-plated miniature screws) were 
implanted epidurally in each hemisphere (rostral 
electrode: bregma +2 mm, 2 mm lateral; caudal 
electrode: bregma -2 mm, 2.5 mm lateral). The caudal 
electrode served as reference for the rostral one in 
each hemisphere. Thus, the recorded area covered 
the intact motor cortex, but not the infract in the 
somatosensory cortex (Fig. 3A). Two gold wires 
inserted in the neck muscles served as EMG 
electrodes.  
Ischemic stroke was induced by permanent occlusion 
of the distal branch of the middle cerebral artery 
(MCA), as described previously [30]. In short, the skull 
overlying the MCA was exposed through a vertical 
incision in the temporal muscle. A 4-by-5mm 
craniotomy was then made in the frontal bone, 
exposing the brain and middle cerebral branches. 
After carefully opening the dura mater, the MCA and 
its main branches were closed using bipolar 
electrocoagulation. Finally, the temporal muscle and 
overlying skin were sutured back in place. Sham 
operated rats underwent the same procedure, but 
without opening the dura mater and coagulation of 
the MCA. MCAO and sham surgeries were performed 
in the hemisphere contralateral to the rats’ preferred 
reaching forepaw. 

EEG recording  
EEG and EMG activity were recorded using an Embla 
A10 amplifier and Somnologica Science software 
(Embla) at 100 Hz and 200 Hz sampling rates, 
respectively. The EEG signal was filtered using a low-
cut filter at 0.3 Hz. EMG was filtered for 50 Hz 
artefact, and had a low-cut filter at 10 Hz.  
EEG was scored as wake, NREM or REM in 8-second 
epochs based on the contralesional EEG signal and on 
the EMG using Somnologica Science (Embla). 
Wherever the contralesional EEG contained many 
artefacts, the signal from the ipsilesional hemisphere 
was consulted to help identify the vigilance state. 
Throughout the experiment, wake was characterized 
by a low amplitude, high frequency EEG pattern and 
high EMG activity. NREM was characterized by the 
occurrence of high amplitude slow waves and tonic 
low EMG activity. The low amplitude EEG activity 
during REM was dominated by theta activity and only 
occasional twitches were present in the EMG signal. 
Epochs were classified as belonging to a vigilance 
state when more than half of the epoch matched the 
criteria for that state. 22 hours of each recording day 
were analyzed, beginning 1 hour after the start of the 
recording at lights-on. Only artifact-free epochs were 
included in analyses.  

Data analysis 
Lempel-Ziv complexity. Lempel-Ziv complexity (LZC) is 
a nonparametric measure of temporal complexity of 
the EEG signal. This method estimates the complexity 
of a finite series of numbers by computing the 
number of distinct subsequences within that series 
(Fig. 1A). LZC was calculated based on the methods 
described by Lempel and Ziv (1976) [10]. First, each 
artifact-free EEG epoch was converted into a binary 
sequence by coarse-graining the signal based on the 
median signal value for the epoch [23]. Each data 
point 𝑥(𝑛) of the original 8-second EEG epoch was 
compared to epoch median 𝑀, resulting in a new 
binary 800-point series 𝑠 as follows: 𝑠(𝑛)  =

 {
0 𝑖𝑓 𝑥(𝑛) < 𝑀

1 𝑖𝑓 𝑥(𝑛) ≥ 𝑀
 . The median was chosen for coarse-

graining because of its robustness in case of outliers. 
This resulting binary series was then scanned from 
left to right and a complexity counter 𝑐(𝑛) was 
increased whenever a new subsequence of 
consecutive characters was detected (for a detailed 
description see Zhang et al. (2001), [23]). As 
complexity 𝑐(𝑛) depends on both epoch length, 𝑛 
(here, 𝑛 = 800) and the number of different symbols 
within the coarse-grained series, 𝛼 (here 𝛼 = 2 for a 
binary series), 𝑐(𝑛) was normalized using the 
theoretical upper bound 𝑏 for 𝑐(𝑛), calculated as 

𝑏(𝑛) =
𝑛

log𝛼 𝑛
.  A normalized complexity value that is 

independent of epoch length was then calculated as 

𝐶(𝑛) =  
𝑐(𝑛)

𝑏(𝑛)
 .  This normalized value is used 

whenever the Lempel-Ziv complexity (LZC) of a signal 
is discussed in the current paper. Mean LZC of all 
artifact-free epochs on a recording day was then 
calculated separately for wake, NREM and REM for 
every rat. 
Multiscale Entropy Like LZC, multiscale entropy 
analysis is used to assess the temporal complexity of 
the EEG signal. Unlike LZC, for which the number of 
unique sequences within a series are counted, 
multiscale entropy analysis assesses the complexity 
of a signal by estimating the likelihood of repeating 
sequences occurring within the signal (Fig. 1B), 
reflected by the signal's sample entropy (SampEn) 
[11,12]. The calculation of SampEn depends on 
parameters 𝑛, 𝑚, 𝜏, and 𝑟. 𝑛 denotes the number of 
data points in the analyzed series (here, 𝑛 = 800 for 
an 8-second EEG epoch). 𝑚 defines the length of the 
repeating sequences. Here we used 𝑚 = 2. That is, we 
calculated the likelihood of 2 subsequent values (a 
template sequence) occurring repeatedly within the 
epoch. This was repeated for each pair of values in the 
epoch.  𝑟 and 𝜏 are coarse-graining parameters. 𝜏 
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specifies coarse-graining within the time-dimension 
of the series; here we analyzed the original EEG signal 
using 𝜏 = 1. 𝑟 is a tolerance value controlling the level 
of similarity between data points in the amplitude-
dimension of the EEG signal. Data points are 
considered equal if the absolute difference between 
them was less than or equal to 𝑟. In this paper, 𝑟 was 
set as 20% of epoch standard deviation. 
SampEn is calculated as follows: 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟, 𝑛, 𝜏) =  −𝑙𝑛 (
𝑈𝑚+1(𝑟)

𝑈𝑚(𝑟)
),  

or the likelihood of an m-length sequence (for 𝑚 = 2, 
2 data points) repeating relative to the likelihood of a 
repeating m+1-length sequence (for 𝑚 = 2, 3 data 
points). 
 𝑈𝑚(𝑟) is calculated as: 𝑈𝑚(𝑟) =

 
1

𝑛−𝑚τ 
∑ 𝐸𝑖

𝑚(𝑟)𝑛−𝑚τ 
𝑖=1 . 𝑈𝑚(𝑟) is based on probability 

function 𝐸𝑖
𝑚(𝑟) , formed by the number of m-length 

sequences 𝑋𝑗 = [𝑥𝑗 , 𝑥𝑗+𝜏 , … , 𝑥𝑗+(𝑚−1)𝜏] (1 ≤ 𝑗 ≤

𝑛 − 𝑚𝜏) in an epoch that are considered equal to 
template sequence 𝑋𝑖(𝑖 ≠ 𝑗), so that  𝐸𝑖

𝑚(𝑟) =

 
𝐵𝑖

𝑛−(𝑚 + 1)𝑟
 . 

 𝐵𝑖 is equal to the number of sequences 𝑋𝑗  whose 

difference from template 𝑋𝑖 is less than or equal to 𝑟. 
That is, 𝐵𝑖 is equal to the number of sequences that 

were equal to the template sequence. After SampEn 
was calculated for each artifact-free EEG epoch, mean 
SampEn of all artifact-free epochs on a recording day 
was calculated separately for each vigilance state for 
every rat. 
Relation between complexity and power spectra. 
Power spectra for frequencies from 0.5 to 25 Hz were 
calculated for artifact-free epochs in wakefulness, 
NREM and REM in baseline EEG recordings (N = 15 
animals; 8 MCAO and 7 sham) using Welch’s power 
spectral density estimate with Hamming window and 
50% overlap between epochs (pwelch in Matlab 
2015b). Pearson's correlation analysis was then 
performed between mean LZC or SampEn in a 
vigilance state and spectral power for each frequency 
bin. Correlations were considered significant when p 
< 0.05.  
Simulated signals. Relations between LZC and 
SampEn were assessed in wake EEG signals, as well as 
in three different simulated signals generated in 
Matlab 2015b: a 15Hz sine wave sampled at 100 Hz, 
Gaussian white noise and 1/f noise. The latter two 
were generated using the the wgn function and 
dsp.ColoredNoise, respectively. LZC and SampEn 

 

 
 
Figure 1: Comparison of Lempel-Ziv and multiscale entropy analysis. 
A: Lempel-Ziv complexity analysis. Signals are coarse-grained to form a binary sequence by classifying each data point as ≤ median (open 
circles, blue) or > median signal amplitude (closed circles, red). Unique subsequences are then detected as described [10]. Lempel-Ziv 
complexity of the sequence is defined as the number of detected unique subsequences c(n).  
B: Multiscale entropy analysis. MSE is used to calculate the probability of a template sequence of two data points repeating within the 
analyzed signal (m = 2). To this end, data points are classified as being equal within a tolerance r (i.e. 20% of the signal standard deviation). 
Here, this is shown for data point n1 (closed circle, green), n2 (triangle, blue) and n3 (closed diamond, red); boxes around these data points 
indicate n1 ± r, n2 ± r and n3 ± r. Two data points are considered equal if the absolute difference between them is < r. As such, data points 
matching n1 are shown as green circles. Points that match n2 and n3 are shown as blue triangles and red diamonds, respectively. To calculate 
Sample entropy (SampEn) of this signal, data points n1 and n2 will compose the first 2-datapoint template sequence n1n2. For the signal 
shown, this sequence is present once more. The matching 3-datapoint template sequence n1n2n3 is not detected in this example. This 
procedure is repeated for each next pair of 2-datapoint and 3-datapoint template sequences (n2n3 and n2n3n4, n3n4 and n3n4n5, etc.). In this 
example, n2n3 and n2n3n4 are each detected twice. The number of sequences that match each of the 2- and 3- data point template sequences 
are added to the previously counted matches. Thus, for the first 4 data points in this signal, the number of detected 2-datapoint sequences 
is 4 and the number of detected 3-datapoint sequences is 2. This procedure is repeated for each pair of 2-datapoint and 3-datapoint template 
sequences in the signal. SampEn is calculated as the natural logarithm of the ratio between the number of detected 2- and 3-datapoint 
sequences and reflects the probability that sequences that match each other for the first two data points will also match for the next point.  
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were calculated for 100 epochs of 800 data points for 
each simulated signal. 
Statistical Analyses. Time and treatment effects on 
SPR performance, LZC and SampEn were analyzed 
using repeated measures ANCOVA. Baseline values 
were included as covariates to control for possible 
confounding effects of baseline differences. 
Greenhouse-Geisser sphericity corrections were 
applied where appropriate. Correlations were 
calculated using Pearson's R. Effects were considered 
significant when p < 0.05. Statistical analyses were 
performed in JASP v0.8.0.1 and Matlab 2015b. Values 
are presented as mean ± s.e.m. unless stated 
otherwise. 

Histology 
Rats were killed with an overdose of sodium 
pentobarbital and perfused transcardially with 0.1M 
phosphate-buffered saline (PBS) followed by 4% 
paraformaldehyde (PFA) in 0.1M PBS. Brains were 
removed, post-fixated in 4% PFA in 0.1M PBS and 
cryoprotected in 30% sucrose in 0.1M PBS at 4°C. 
30μm thick coronal sections were collected and 

stained using cresyl violet. Every 12th section was 
stained and analyzed. Chemicals were purchased 
from Sigma-Aldrich. Histological results were 
analyzed using ImageJ software (U.S. National 
Institutes of Health). Infarcts were outlined based on 
the absence of Nissl-stained neurons in the cortex. 
Infarct volume was calculated as follows: 

𝑖𝑛𝑓𝑎𝑟𝑐𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 =  (
𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑒𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑖𝑝𝑠𝑖𝑙𝑒𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
) × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠. 

 

Results 

Relation between LZC, MSE and power spectrum 
Although Lempel-Ziv complexity analysis and 
multiscale entropy analysis are both used to assess 
the temporal complexity of a signal, they differ in 
their approach (Fig. 1). As a result, LZC and SampEn of 
a signal are not correlated in a straightforward 
manner. To investigate the relation between the two, 
we compared LZC and SampEn in four signal types 
with different regularity and complexity (sine, white 
noise, 1/f noise and wake EEG; Fig. 2A).  
As a simple and highly regular signal, the sine wave 

signal had very low LZC 
and SampEn (0.08 ± 
0.002 and 0.681 ± 

2.23*10-17, 
respectively).  By 
contrast, white noise 
had high LZC (1.05 ± 
0.001) and moderately 
high SampEn values 
(2.19 ± 0.003), being 
highly irregular, but by 
definition not 
containing any non-
random structure 
within the signal. 1/f 
noise, an irregular signal 
that is defined by its 

frequency-amplitude 
relation, had lower LZC 
values than white noise 
(0.75 ± 0.005), but 
higher SampEn (2.23 ± 
0.004). Finally, LZC of 
wake EEG (0.538 ± 
0.013) in a 
representative animal 
was similar to that of 1/f 
noise, but its SampEn 
was much higher (4.615 
± 0.033). Within each of 

 
 
Figure 2: Relation between LZC and MSE in simulated and real signals.  
A: Comparison of waveforms and power spectra of wake EEG and simulated signals (1/f noise, white noise 
and sine wave). 
B: Relation between LZC and SampEn in simulated signals and wake EEG. Shown are 100 epochs for each 
signal type. All EEG epochs shown are from the same recording session in a representative animal. 
C: Relation between LZC and SampEn of wake EEG in trained (ips) and untrained (con) hemisphere at 
baseline. Shown are mean values for each animal (N = 15). 
D: Correlation between LZC and spectral power in baseline wake, NREM and REM EEG (N=15 rats). 
E: Correlation between SampEn and spectral power in baseline wake, NREM and REM EEG (N=15 rats).  
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these four signals, LZC was not correlated to SampEn. 
Similarly, mean LZC and mean SampEn for each 
animal were not significantly correlated in the healthy 
rat brain (Fig. 2C, N = 15 animals, ips: R = -0.103, p = 
0.727, con: R = -0.046, p = 0.876).  
Thus, a signal can have high LZC, but low SampEn and 
vice versa. This is a result of the different methods by 
which LZC and MSE analyses assess temporal 
structure of the signals. Where LZC is mostly reflects 
the regularity of a signal, SampEn also reflects 
structure within a signal. Although EEG and 1/f noise 
were less complex than white noise when assessed by 
LZC, their SampEn is higher due to the presence of 
frequency-amplitude dependencies within these 
signals. 
LZC and SampEn are not simply reflections of the low- 
or high-frequency components of a complex signal 
like the EEG. LZC was not significantly correlated to 
spectral power in the wake, NREM or REM (Fig. 2D). 
The relation between LZC and power varies with 
frequency: low frequency power (< 3 Hz) was 
negatively correlated to LZC and a weaker positive 
correlation in was present in frequencies 5-25 Hz in 
wake and NREM, although none of these were 
statistically significant (Fig. 2D). LZC-power 
correlations in REM sleep followed a similar pattern 
of non-significant stronger correlation in low 
frequencies and weaker correlations in higher 
frequencies.  
Similar to LZC, SampEn was not significantly 
correlated to power in all analyzed frequencies in 
NREM, REM and wakefulness. In all three vigilance 
states, SampEn showed a weak positive correlation 

with power. Correlations were stronger in higher 
frequencies (20-25 Hz), but did not reach statistical 
significance (Fig. 2E).  

Stroke-related changes in histology and motor 
function 
Middle cerebral artery occlusion (MCAO) resulted in 
infarcts located in the somatosensory cortex (Fig. 3A). 
Ischemic damage did not extend into subcortical 
regions, nor into cortical areas located directly 
adjacent to or below the EEG electrodes. Infarct 
volume was 23.9 ± 3.1 mm³ (N = 8, Fig. 3A).  

 
Figure 3: Histological and behavioral results. 
A: Location and extent of ischemic lesions after distal middle 
cerebral artery occlusion (MCAO). Outlines show lesions for 
individual animals (N = 8, left), photomicrographs (right) show 
the infarct of a representative animal. 
B: Motor function in MCAO and sham-operated animals pre- 
and post-surgery. Values are mean ± s.e.m, asterisks indicate 
significant difference between sham and MCAO (* p<0.05, 
**p<0.01). 

 
Figure 4: Effects of stroke on LZC. 
Time course of LZC during wake (A), NREM (B), and REM (C) in 
ipsilesional (ips) and contralesional (con) hemispheres of sham 
and MCAO animals. Values are mean ± s.e.m. Asterisks 
indicate significantly reduced values in MCAO-ips (*p<0.05) 
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MCAO led to a marked acute reduction in pellet 
reaching success (Fig. 3B; repeated measures 
ANCOVA, group effect: F(1) = 26.63, p < 0.001; time 
effect: F(2.98) = 10.65, p < 0.001; time*group 

interaction F(2.98) = 8.69, p < 0.001). Performance 
improved from day 2 through 11 and returned to 
baseline levels on D31. Sham surgery had no effect on 
SPR success.  

 
Effects of stroke on Lempel-Ziv complexity and sample 
entropy 

Stroke acutely reduced LZC in ipsilesional EEG in 
MCAO rats in wakefulness (Fig. 4A; repeated 
measures ANOVA; group effect F(3) = 3.081, p = 
0.046; time effect: F(4) = 6.939, p < 0.001; group*time 
interaction F(12) = 1.661, p = 0.087). Contralesional 
EEG in MCAO rats showed a small, non-significant 
reduction in LZC. Ipsilesional wake LZC had returned 
to sham and baseline levels by day 4.  
Effects of stroke on NREM were similar to those found 
during wake (Fig. 4B; repeated measures ANOVA; 
group effect F(3) = 3.371, p = 0.034; time effect: 
F(2.943) = 7.796, p < 0.001; group*time interaction 
F(8.830) = 2.132, p = 0.038). NREM LZC returned to 
baseline levels by day 4 as well.  
 By contrast, ipsilesional reductions in REM lasted 
slightly longer and had recovered by day 10 (Fig. 4C; 
repeated measures ANOVA; group effect: F(3) = 
3.077, p = 0.046; time effect: F(2.591) = 6.679, p < 
0.001; group*time interaction F(7.774) = 1.535, p = 
0.108).  
Like LZC, SampEn was significantly reduced in the 
ipsilesional hemisphere of MCAO rats. This reduction 
was longer lasting than the stroke-related changes in 
LZC. Ipsilesional SampEn in wake was significantly 
reduced on day 1, 4 and 10, but returned to baseline 
levels by day 30 (Fig. 5A; repeated measures ANOVA; 
group effect F(3) = 9.648, p < 0.001; time effect: 
F(2.708) = 1.841, p = 0.127; group*time interaction 
F(8.125) = 5.795, p < 0.001). Effects of stroke on 
ipsilesional SampEn in NREM were similar to those 
found in wakefulness (Fig. 5B; repeated measures 
ANOVA; group effect F(3) = 9.746, p < 0.001; time 
effect: F(2.702) = 1.810, p = 0.159; group*time 
interaction F(8.105) = 5.427, p < 0.001). SampEn in 
REM was also significantly reduced ipsilesionally in 
MCAO animals (Fig. 5C; repeated measures ANOVA; 
group effect F(3) = 9.746, p < 0.001; time effect: 
F(3.029) = 1.761, p = 0.161; group*time interaction 
F(9.087) = 5.790, p < 0.001). 

Relation between EEG complexity and motor function 
recovery 
EEG complexity measures have previously been 
linked to altered brain function in stroke patients 
[22,24,26,27], although their relation to behavioral 
outcomes has not been studied. LZC and SampEn 
might be useful to help predict functional recovery 
after stroke (i.e. recovery of motor function). To this 
end, LZC and MSE asymmetry on day 1 post-stroke 
were correlated with the amount of SPR 
improvement from day 2 to 31. LZC and SampEn 
asymmetry were calculated as the ratio of 
contralesional to ipsilesional values for each animal, 

 
Figure 5: Effects of stroke on MSE. 
Time course of SampEn during wake (A), NREM (B), and REM 
(C) in ipsilesional (ips) and contralesional (con) hemispheres of 
sham and MCAO animals. Values are mean ± s.e.m. Letters 
denote significant differences between groups: MCAO-ips vs. 
MCAO-con: a p < 0.05, aa p < 0.01, aaa p ≤ 0.001, MCAO-ips vs. 
sham-con: : b p < 0.05, bb p < 0.01, bbb p ≤ 0.001, MCAO-ips vs. 
sham-ips: c p < 0.05, cc p < 0.01, ccc p ≤ 0.001. 
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so that a large ipsilesional reduction resulted in a high 

asymmetry score.  
Even though stroke-related changes in LZC were more 
transient than those found in SampEn, acute LZC 
asymmetry predicted the amount of functional 
recovery on D31 (Fig. 6A; wake R = -0.72, p = 0.021; 
NREM: R = -0.64, p = 0.048; REM: R = -0.71, p = 0.023). 
By contrast, MSE asymmetry had no relation to 
functional recovery (Fig. 6B; wake R = 0.11, p = 0.796; 
NREM: R = -0.19, p = 0.651; REM: R = 0.07, p = 0.874).  

Stability of LZC and MSE during the day  
If LZC or SampEn are to be useful predictors of 
behavioral outcome after stroke, they ideally show 
little circadian and other non-stroke related variation.  
Wake LZC slightly increased during the first 4 hours of 
recording, although this increase was not statistically 
significant and variability was high (Fig. 7A; repeated 
measures ANOVA; group effect F(3) = 1.372, p = 
0.275; time effect: F(2.205) = 22.344, p < 0.001; 
time*group interaction: F(6.614) = 1.326, p = 0.259). 
Likewise, no significant time effects were found in 
NREM in the first 4 hours of the day (Fig. 7B; repeated 
measures ANOVA; group effect F(3) = 1.426, p = 
0.260; time effect: F(1.305) = 1.183, p = 0.300; 
time*group interaction: F(3.914) = 0.987, p = 0.105). 
LZC remained stable throughout the 22-hour 
recording period in both wake (Fig. 7C) and NREM 
(Fig. 7D) as well. This was the case in the healthy brain 
at baseline and one day post-stroke. Interhemispheric 
LZC asymmetry (contralesional/ipsilesional LZC) was 
not significantly affected by time of day at baseline or 
on day 1 post-stroke (Fig. 7D, E). 

In contrast to LZC, SampEn in wake increased during 
the first 4 hours of 
recording (Fig. 8A; 
repeated measures 
ANOVA; group effect F(3) 
= 2.019, p = 0.138; time 
effect: F(3) = 29.296, p < 
0.001; time*group 
interaction: F(9) = 1.028, 
p = 0.427). A concurrent 
decrease of similar 
magnitude was found in 
NREM sleep (Fig. 8B; 
repeated measures 
ANOVA; group effect F(3) 
= 1.316, p = 0.292; time 
effect: F(3) = 115.73, p < 
0.001; time*group 
interaction: F(9) = 1.513, 
p = 0.160), possibly 
reflecting some aspect of 
sleep homeostasis. Other 

than these early changes, SampEn remained stable 
throughout the 22-hour recording period in both 
wake (Fig. 8C) and NREM (Fig. 8D) at baseline and day 
1 post-stroke in MCAO rats. Although SampEn 
showed evidence of circadian modulation, inter 
hemispheric MSE asymmetry 
(contralesional/ipsilesional SampEn) was not 
significantly affected by time of day at baseline or on 
D1 post-stroke (Fig. 8D, E). 

 

Discussion 

Many neurological disease states have been 
associated with reduced complexity, or reduced 
information content, in EEG signals [13–20,22,24,26]. 
Thus, loss of complexity seems to be an aspect of 
many pathological dynamics. Conversely, it seems 
likely that, the degree of complexity within a signal 
could be related to the ability of a system to recover 
from damage. EEG complexity could therefore be 
used as a diagnostic or predictive tool in clinical or 
pre-clinical settings and aid in the planning and 
implementation of optimal rehabilitation. 
Complexity can be defined as meaningful structure or 
the information content within a signal [11]. While 
this intuitive definition is quite straightforward, there 
are many different approaches to quantifying 
complexity. Both Lempel-Ziv complexity analysis [10] 
and multiscale entropy analysis [11,12] detect the 

 
Figure 6: Correlation between functional recovery and EEG signal complexity. 
A: Correlation between acute LZC asymmetry (contralesional/ipsilesional on D1) and amount of motor 
function recovery on D30 (SPR success as % of baseline, ΔD30-D2) in wake (R = -0.72, p = 0.02), NREM (R 
= -0.64, p = 0.048) and REM (R = -0.71, p = 0.02). 
B: Correlation between acute SampEn asymmetry (MSE, contralesional/ipsilesional on D1) and degree of 
motor function recovery on D30 (SPR success as % of baseline, ΔD30-D2) in wake (R = 0.11, p = 0.79), 
NREM (R = -0.19, p = 0.65) and REM (R = 0.07, p = 0.87). 
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number of repeating sequences within a signal as a 
measure of regularity or predictability of a time 
series. Irregularity, however, does not necessarily 
imply complexity: a random signal such as white noise 
has by definition no meaningful information content, 
but is highly irregular and therefore has high Lempel-
Ziv complexity. By contrast, information-rich signals 
such as the EEG don’t have very high LZC values. 
Sample entropy, as calculated via multiscale entropy 
analysis, aims to quantify complexity so that both 

completely predictable and 
completely random signals results in 
low complexity values [12], resulting 
in high values for EEG and lower 
values for white noise, as well as 
sine waves. As a result, sample 
entropy and Lempel-Ziv complexity 
of the same signal are not closely 
correlated. Thus, although these 
different measures of complexity 
are both assumed to reflect the 
information content of the same 
signal and to point to possibly 
identical underlying neuronal 
functions, the mechanistic 
implications of altered signal 
complexity remain somewhat 
nebulous.  
In this paper, we compared the use 
of LZC and sample entropy analysis 
in quantifying changes in EEG 
complexity after stroke, as well as 
the use of these measures in 
predicting recovery. As in stroke 
patients [22,24,26,27], cortical 
strokes in rats led to reduced EEG 
complexity in the ipsilesional 
hemisphere, but not in the 
contralesional hemisphere. This was 
the case for both LZC and SampEn, 
although both complexity measures 
show different temporal dynamics. 
LZC was acutely reduced and 
returned to baseline levels 4 days 
after stroke. SampEn, by contrast, 
remained low much longer and 
returned to baseline and sham 
levels only after more than 10 days. 
As such, MSE could be used to 
identify the lesioned hemisphere in 
subchronic and chronic phases after 
stroke in rats as well as in patients 
[24]. 

Although SampEn was more severely affected by 
stroke than LZC, acute changes in SampEn were not 
correlated to functional recovery. By contrast, acute 
LZC asymmetry was correlated to the amount of 
recovery 31 days post-stroke in all vigilance states, 
providing a window for predicting behavioral 
outcome acutely after stroke. Likewise, LZC has been 
shown to outperform entropy measures such as 
SampEn in predicting behavioral function in other 
conditions [20,23]. Because LZC was only reduced 

 
Figure 7: Circadian effects on LZC and LZC asymmetry 
A: Mean wake LZC in the first 5 hours after lights-on in ipsilesional (ips) and contralesional 
(con) hemispheres of stroke (MCAO) and sham animals at baseline.  Values are mean ± s.e.m. 
B: Mean NREM LZC in the first 5 hours after lights-on in ipsilesional (ips) and contralesional 
(con) hemispheres of stroke (MCAO) and sham animals at baseline. Values are mean ± s.e.m. 
C: Mean wake LZC in 4-hour bins at baseline (BL) and on D1 in MCAO animals. ips = 
ipsilesional, con = contralesional. Values are mean ± s.e.m. 
D: Mean wake LZC in 4-hour bins at baseline (BL) and on D1 in MCAO animals. ips = 
ipsilesional, con = contralesional. Values are mean ± s.e.m. 
E: MSE asymmetry in wake and NREM (contralesional/ipsilesional LZC) during the first 5 
hours after lights-on in MCAO animals at baseline (BL) and on D1. 
F: MSE asymmetry in wake and NREM (contralesional/ipsilesional LZC) in 4-hour bins after 
lights-on in MCAO animals at baseline (BL) and on D1. 
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acutely after stroke in rats and 
recovered quickly, it had little 
value as a predictor for 
behavioral outcome in later 
EEG recordings. However, 
because stroke recovery in 
rodent models is typically much 
faster than in humans [31], LZC 
may remain altered for a longer 
time after stroke in patients. If 
such a prolonged change is 
indeed present, this this 
provides an extended window 
for the use of LZC in predicting 
functional recovery in patients.  
If an aspect of the EEG is to be 
easily useable for predicting 
recovery, it is ideally not very 
sensitive to factors that are not 
related to altered brain or 
behavioral function. Unlike 
spectral power, inter-animal 
variability is quite low for both 
LZC and SampEn, even after 
stroke. A baseline measure or 
other normalization is not 
therefore not necessary to 
obtain interpretable LZC 
asymmetry values. Both 
measures are also independent 
of signal amplitude, which can 
be affected by factors such as 
age and sex [7–9].  However, 
both LZC and SampEn are not 
simply reflective of power 
spectral changes in the EEG.  
Additionally, a useable 
predictor should remain 
relatively stable during a 
recording period. This seems 
contradictory to the greater 
sensitivity of complexity 
measures in detecting EEG dynamics compared to 
time-frequency analysis [21]. Both SampEn and LZC 
showed circadian changes in wakefulness and NREM 
sleep that are possibly related to sleep homeostatic 
processes. Although time-of-day effects on 
complexity were much smaller in LZC than in SampEn, 
sleep deprivation has previously been shown to affect 
LZC in NREM sleep [21]. Sleep disturbances are 
common in stroke patients [4], but did not occur in 
the animals in the current study [32]. However, unless 
largely asymmetrical wake activity occurred [33–35], 

sleep loss likely has similar effects on the EEG in the 
damaged and healthy hemisphere. In this study, fine 
motor performance, an asymmetric behavior, was 
tested on the day after EEG was recorded. As these 
skilled reaching sessions lasted fewer than 15 minutes 
and have been shown to have only have short-lasting 
effects on the sleep EEG [34], it is unlikely that this 
affected EEG complexity recorded on the following 
day. Moreover, wake LZC remained unaffected by 
sleep deprivation, even though variability between 
epochs increased [21]. Thus, resting wake EEG LZC 

 
Figure 8: Circadian effects on SampEn and MSE asymmetry 
A: Mean wake SampEn in the first 5 hours after lights-on in ipsilesional (ips) and contralesional 
(con) hemispheres of stroke (MCAO) and sham animals at baseline.  Values are mean ± s.e.m. 
B: Mean NREM SampEn in the first 5 hours after lights-on in ipsilesional (ips) and contralesional 
(con) hemispheres of stroke (MCAO) and sham animals at baseline. Values are mean ± s.e.m. 
C: Mean wake SampEn in 4-hour bins at baseline (BL) and on D1 in MCAO animals. ips = ipsilesional, 
con = contralesional. Values are mean ± s.e.m. 
D: Mean wake SampEn in 4-hour bins at baseline (BL) and on D1 in MCAO animals. ips = ipsilesional, 
con = contralesional. Values are mean ± s.e.m. 
E: MSE asymmetry in wake and NREM (contralesional/ipsilesional SampEn) during the first 5 hours 
after lights-on in MCAO animals at baseline (BL) and on D1. 
F: MSE asymmetry in wake and NREM (contralesional/ipsilesional SampEn) in 4-hour bins after 
lights-on in MCAO animals at baseline (BL) and on D1. 
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asymmetry is likely stable even in the context of 
sleep-wake disturbances and may thus be the best 
choice for use in patients.  

 

References 

[1] S. Mendis, Stroke disability and rehabilitation of stroke: 
World Health Organization perspective, Int. J. Stroke. 8 
(2013) 3–4. 

[2] B. Kim, C. Winstein, Can Neurological Biomarkers of 
Brain Impairment Be Used to Predict Poststroke Motor 
Recovery? A Systematic Review, Neurorehabil. Neural 
Repair. 31 (2017) 3–24. 

[3] A. Douiri, J. Grace, S.-J. Sarker, K. Tilling, C. McKevitt, C. 
DA Wolfe, A.G. Rudd, Patient-specific prediction of 
functional recovery after stroke, Int. J. Stroke. (2017) 
174749301770624.  

[4] C. Baglioni, C. Nissen, A. Schweinoch, D. Riemann, K. 
Spiegelhalder, M. Berger, C. Weiller, A. Sterr, 
Polysomnographic Characteristics of Sleep in Stroke: A 
Systematic Review and Meta-Analysis., PLoS One. 11 
(2016) e0148496. 

[5] J.M. Gottselig, C.L. Bassetti, P. Achermann, Power and 
coherence of sleep spindle frequency activity following 
hemispheric stroke., Brain. 125 (2002) 373–83.  

[6] A.-L. Mouthon, A. Meyer-Heim, S. Kurth, M. Ringli, F. 
Pugin, H.J.A. van Hedel, R. Huber, High-Density 
Electroencephalographic Recordings During Sleep in 
Children and Adolescents With Acquired Brain Injury, 
Neurorehabil. Neural Repair. 31 (2017) 462–474. 

[7] D. Hamacher, F. Herold, P. Wiegel, D. Hamacher, L. 
Schega, Brain activity during walking: A systematic 
review, Neurosci. Biobehav. Rev. 57 (2015) 310–327. 

[8] O.M. Weiner, T.T. Dang-Vu, Spindle Oscillations in Sleep 
Disorders: A Systematic Review., Neural Plast. 2016 
(2016) 7328725. 

[9] M. Ringli, R. Huber, Developmental aspects of sleep 
slow waves, in: 2011: pp. 63–82.  

[10] A. Lempel, J. Ziv, On the Complexity of Finite Sequences, 
IEEE Trans. Inf. Theory. 22 (1976) 75–81. 

[11] M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale 
Entropy Analysis of Complex Physiologic Time Series, 
Phys. Rev. Lett. 89 (2002) 68102. 

[12] M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale 
entropy analysis of biological signals, Phys. Rev. E. 71 
(2005) 21906. 

[13] C.C. Jouny, G.K. Bergey, Characterization of early partial 
seizure onset: frequency, complexity and entropy., Clin. 
Neurophysiol. 123 (2012) 658–69. 

[14] D. Abásolo, R. Hornero, C. Gómez, M. García, M. López, 
U. Schreiter-Gasser,  et al., Analysis of EEG background 
activity in Alzheimer’s disease patients with Lempel-Ziv 
complexity and central tendency measure., Med. Eng. 
Phys. 28 (2006) 315–22. 

[15] T. Takahashi, Complexity of spontaneous brain activity 
in mental disorders, Prog. Neuro-Psychopharmacology 
Biol. Psychiatry. 45 (2013) 258–266. 

[16] A.C. Yang, S.-J. Wang, K.-L. Lai, C.-F. Tsai, C.-H. Yang, J.-P. 
Hwang, M.-T. Lo, N.E. Huang, C.-K. Peng, J.-L. Fuh, 
Cognitive and neuropsychiatric correlates of EEG 
dynamic complexity in patients with Alzheimer’s 
disease, Prog. Neuro-Psychopharmacology Biol. 
Psychiatry. 47 (2013) 52–61.  

[17] T. Mizuno, T. Takahashi, R.Y. Cho, M. Kikuchi, T. Murata, 
K. Takahashi, Y. Wada, Assessment of EEG dynamical 
complexity in Alzheimer’s disease using multiscale 
entropy, Clin. Neurophysiol. 121 (2010) 1438–1446. 

[18] Y. Li, S. Tong, D. Liu, Y. Gai, X. Wang, J. Wang, Y. Qiu, Y. 
Zhu, Abnormal EEG complexity in patients with 
schizophrenia and depression, Clin. Neurophysiol. 119 
(2008) 1232–1241. 

[19] A.C. Yang, C.-J. Hong, Y.-J. Liou, K.-L. Huang, C.-C. Huang, 
M.-E. Liu, M.-T. Lo, N.E. Huang, C.-K. Peng, C.-P. Lin, S.-J. 
Tsai, Decreased resting-state brain activity complexity in 
schizophrenia characterized by both increased regularity 
and randomness, Hum. Brain Mapp. 36 (2015) 2174–
2186. 

[20] G. Valenza, M.C. Carboncini, A. Virgillito, I. Creatini, L. 
Bonfiglio, B. Rossi, A. Lanata, E.P. Scilingo, EEG 
complexity drug-induced changes in disorders of 
consciousness: A preliminary report, in: 2011 Annu. Int. 
Conf. IEEE Eng. Med. Biol. Soc., IEEE, 2011: pp. 3724–
3727. 

[21] D. Abasolo, S. Simons, R. Morgado da Silva, G. Tononi, V. 
V Vyazovskiy, Lempel-Ziv complexity of cortical activity 
during sleep and waking in rats, J. Neurophysiol. (2015) 
jn.00575.2014.  

[22] Y. Zhang, C. Wang, C. Sun, X. Zhang, Y. Wang, H. Qi, F. 
He, X. Zhao, B. Wan, J. Du, D. Ming, Neural complexity in 
patients with poststroke depression: A resting EEG 
study, J. Affect. Disord. 188 (2015) 310–318.  

[23] X.S. Zhang, R.J. Roy, E.W. Jensen, EEG complexity as a 
measure of depth of anesthesia for patients, IEEE Trans. 
Biomed. Eng. 48 (2001) 1424–1433. 

[24] A. Kielar, T. Deschamps, R.K.O.O. Chu, R. Jokel, Y.B. 
Khatamian, J.J. Chen, J.A. Meltzer, Identifying 
dysfunctional cortex: Dissociable effects of stroke and 
aging on resting state dynamics in MEG and fmri, Front. 
Aging Neurosci. 8 (2016) 40.  

[25] X. Kang, X. Jia, R.G. Geocadin, N. V Thakor, A. Maybhate, 
Multiscale entropy analysis of EEG for assessment of 
post-cardiac arrest neurological recovery under 
hypothermia in rats., IEEE Trans. Biomed. Eng. 56 (2009) 
1023–31.  

[26] M. Molnár, J. Osman-Sági, Z. Nagy, J. Kenéz, Scalp 
distribution of the dimensional complexity of the EEG 
and the P3 ERP component in stroke patients, Int. J. 
Psychophysiol. 34 (1999) 53–63.  

[27] S. Liu, J. Guo, J. Meng, Z. Wang, Y. Yao, J. Yang, H. Qi, D. 
Ming, Abnormal EEG Complexity and Functional 
Connectivity of Brain in Patients with Acute Thalamic 
Ischemic Stroke., Comput. Math. Methods Med. 2016 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2018. ; https://doi.org/10.1101/248039doi: bioRxiv preprint 

https://doi.org/10.1101/248039
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2016) 2582478.  

[28] C. Zunzunegui, B. Gao, E. Cam, A. Hodor, C.L. Bassetti, 
Sleep disturbance impairs stroke recovery in the rat., 
Sleep. 34 (2011) 1261–9.  

[29] I.Q. Whishaw, S.M. Pellis, The structure of skilled 
forelimb reaching in the rat: A proximally driven 
movement with a single distal rotatory component, 
Behav. Brain Res. 41 (1990) 49–59.  

[30] A. Tamura, D.I. Graham, J. McCulloch, G.M. Teasdale, 
Focal cerebral ischaemia in the rat: 1. Description of 
technique and early neuropathological consequences 
following middle cerebral artery occlusion, J Cereb 
Blood Flow Metab. 1 (1981) 53–60.  

[31] S.T. Carmichael, Rodent models of focal stroke: Size, 
mechanism, and purpose, NeuroRX. 2 (2005) 396–409.  

[32] S. Leemburg, B. Gao, E. Cam, J. Sarnthein, C.L. Bassetti, 
Power spectrum slope and motor function recovery 
after focal cerebral ischemia in the rat, bioRxiv. (2018) 
242388.  

[33] F. Siclari, G. Tononi, Local aspects of sleep and 
wakefulness, Curr. Opin. Neurobiol. 44 (2017) 222–227. 

[34] E.C. Hanlon, U. Faraguna, V. V Vyazovskiy, G. Tononi, C. 
Cirelli, Effects of skilled training on sleep slow wave 
activity and cortical gene expression in the rat., Sleep. 
32 (2009) 719–29. 

[35] R. Huber, M.F. Ghilardi, M. Massimini, F. Ferrarelli, B.A. 
Riedner, M.J. Peterson, G. Tononi, Arm immobilization 
causes cortical plastic changes and locally decreases 
sleep slow wave activity, Nat. Neurosci. 9 (2006) 1169–
1176.  

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 15, 2018. ; https://doi.org/10.1101/248039doi: bioRxiv preprint 

https://doi.org/10.1101/248039
http://creativecommons.org/licenses/by-nc-nd/4.0/

