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Abstract 
 

The existing large gene expression data repositories hold enormous potential to elucidate disease 

mechanisms, characterize changes in cellular pathways, and to stratify patients based on their 

molecular profile. To achieve this goal, integrative resources and tools are needed that allow 

comparison of results across datasets and data types. We propose an intuitive approach for data-

driven stratifications of molecular profiles and benchmark our methodology using the dimensional 

reduction algorithm t-SNE with multi-center and multi-platform data representing hematological 

malignancies. Our approach enables assessing the contribution of biological versus technical 

variation to sample clustering, direct incorporation of additional datasets to the same low 

dimensional representation of molecular disease subtypes, comparison of sample groups 

between separate t-SNE representations, or maps, and characterization of the obtained clusters 

based on pathway databases and additional multi-omics data. In the example application, our 

approach revealed differential activity of SAM-dependent DNA methylation pathway in the acute 

myeloid leukemia patient cluster characterized with CEBPA mutations that accordingly was 

validated to have globally elevated DNA methylation levels.  

 

Introduction 

 

Gene expression profiling represents the most common genome-wide method for studying cells 

in healthy and disease states. As a result, large data repositories for data sharing across studies 

exist (1-3). However, in practice the major limitation to utilizing these results is the lack of 

integrative tools to compare molecular disease profiles across datasets and for including 

additional studies and data types into the analysis. 

One common approach to discover different cellular states and disease types based on gene 
expression is to use unsupervised methods that require no prior knowledge on sample groups 
within a dataset (4). In this way, new molecular subtypes can be discovered in an unbiased 
manner. Dimensionality reduction belongs to such data-driven methods and is well-suited for 
discovery of sample grouping from complex high-dimensional gene expression data. Currently, 
there are several computational methods available for this task (reviewed in 5). Given a high-
dimensional input matrix containing several thousand gene expression values, the algorithms use 
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measures of (dis)similarity and an optimization strategy to return sample coordinates in a lower 
dimension, in a manner that optimally preserves their relative placement in the original coordinate 
space. To be useful, data points appearing similar (proximate) in the lower dimensional 
visualization should be trusted to be similar in actuality. In addition, all original proximities ideally 
would become visualized close-by. These properties can be captured using the metrics of 
trustworthiness and continuity (6), analogous to precision and recall in classification. However, in 
context of data generated by multiple laboratories, the contribution of technical variation to the 
obtained visualization remains a challenge (7).  
We propose here an approach that incorporates data on lower dimensional representations 

obtained with the well-performing dimensionality reduction algorithm t-stochastic neighbor 

embedding (t-SNE) (8) and benchmark the methodology with multi-center and multi-platform data 

representing hematological malignancies. Our framework enables choice of analysis parameters 

to minimize batch effects that arise from different laboratory protocols, incorporation of additional 

samples to previously defined t-SNE space and integration of data from different measurement 

platforms.  

 

Methods 
 

Datasets 
A dataset of 9,544 gene expression profiles from the Gene Expression Omnibus (GEO) database 

(1), comprising patient samples representing different cancers and proliferative disorders of 

hematopoietic lineage origin, cell lines and normal blood cell types represents the main data used 

for method testing. We refer to this sample set as Hemap in the following text. The curated sample 

annotations and disease categories are available at http://compbio.uta.fi/hemap/. These data 

represent microarray data from the commonly used hgu133Plus2 platform that were processed 

using the RMA probe summarization algorithm (9) with probe mapping to Entrez Gene IDs (from 

BrainArray version 18.0.0, ENTREZG) to generate gene expression signal levels. Next, a bias-

correction method (10) developed for clinical microarray data was applied to correct for technical 

differences between studies. Additional 98 biological replicate samples from these studies, and 

all 108 samples from the study GSE49032 (11) were left out as validation data. A microarray 

dataset (12) from a different array platform (hgu133a+b) and RNA-seq data from the TCGA AML 
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study (13) were included to benchmark robustness in discovery of molecular subtypes and 

addition of samples from different measurement platforms.  

 
Inclusion of new data from the same measurement platform  
To benchmark integration of new samples from the same microarray platform, the left-out samples 
were used (refer to Table S1). The data was normalized as similar as possible to that applied to 
the original data. Ideally, RMA summarization (9) and bias correction (10) of new samples should 
be performed together with the original samples. However, considering the dimensions of the 
original data (9,544 samples), co-normalization of new and old samples is not convenient from 
the viewpoint of memory usage and computational complexity. In addition, regeneration of the full 
data matrix would also require re-running all the downstream analysis to maintain the consistency 
of the results. Rather, we revised the preprocessing approach that allows normalization of new 
samples to the space of original data. The background correction step of RMA was performed in 
a standard way as it requires no inter-sample information. The quantile-normalization step, 
however, utilizes information across all samples. In normalizing novel samples, we used the 
normalized distribution from the original data to ensure that data distributions for novel samples 
do not differ from those of the original ones. In the median polish summarization, likewise, the row 
(probe) effect of the original data is used instead of calculating it across the novel samples. 
Otherwise median polishing is performed as usual. In the bias correction step of novel samples, 
the coefficients describing the dependency between the bias metrics and gene expressions were 
obtained from the original data set. It should be noted that all the samples to be normalized should 
also meet the quality control requirements that were used with the original data set.  
 
Inclusion of new data from different measurement platforms 
The TCGA RNA-seq data (13) was obtained through cghub and realigned to hg19 genome using 
Tophat2 (14) version 2.0.12 with default parameters. The expression of genes included in the 
microarray was calculated by counting the reads aligning to the corresponding probe regions. 
RNA-seq data were further processed by log2 transformation. Data from hgu133a and b platform 
was normalized using RMA with probe mapping to Entrez gene IDs as above. 
 
Quantitative metrics for assessing dimensionality reduction and clustering results 
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To account for both biological and technical differences that are characteristic of sample sets 
generated by different studies, we propose two new metrics to guide the feature selection for 
dimensionality reduction in context of such heterogeneous data: 
NMIp: This metric was calculated to assess how well the obtained sample clustering can 
distinguish known biological subtypes (phenotypes) based on normalized mutual information (15) 
(NMI) between cluster assignment and class labels (maximized).  
NMIe: Similar as above, NMI was calculated between cluster and experiment (data series) 
identifiers. The data series differences represent mainly technical (not biological) differences 
between samples and therefore this measure was minimized.  
 
Initial comparison of the different dimensionality reduction methods encouraged the selection of 
t-SNE method, specifically the Barnes-Hut approximated version of t-SNE implementation (BH-
SNE) (16), to serve as a benchmark scenario for data-driven exploration of disease subtypes. We 
compared the default step that uses Principal Component Analysis (PCA) (17) for initial reduction 
of features to selection of genes based on variance. Selecting of 20 to 100 PCs or 2.5 to 50% of 
the most variable genes were compared. 
 
Kernel density-based clustering algorithm known as mean-shift clustering (18) with bandwidth 
parameter set to 1.5 (subsets of data, one cancer type) or 2.5 (all data) was used (LPCM-package 
in R) to cluster the data following the dimensionality reduction. This method allows the discovery 
of sample sets which share similar features without having to pre-specify the number of clusters. 
The term “cluster” is used in the text to refer to this computational clustering result, and the term 
“group” is used in context of visual examination. 

 
Remapping of samples to the t-SNE maps 
New samples were mapped to an existing t-SNE space by using a modified version of the BH-
SNE (16) implementation. While the original algorithm initializes the embedding points by 
sampling from a Gaussian distribution, our implementation for adding new samples used the 
established map for initializing the embeddings for existing samples. Embeddings of existing 
samples were kept locked throughout the run of the gradient-descent optimizer, while the 
embeddings for new samples were computed in parallel and independently of each other. 
Independent embeddings of new samples do not affect each other or the embeddings of locked 
samples, thus preserving the structure of the established t-SNE map. 
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The t-SNE method minimizes the divergence between two distributions: a distribution that 
measures pairwise similarities between the original data objects (by default Euclidean distance is 
used) and a distribution that measures pairwise similarities between the corresponding points in 
the embedding. To remap RNA-seq samples, Euclidean distance was replaced by correlation as 
a distance measure (one minus Pearson correlation between samples). By using a distance 
metric based on correlation, the similarities between RNA-seq samples and different microarray 
samples could be estimated without further transformations or normalizations of RNA-seq data.  
 
Gene set analysis 
The gene lists for the characterization of sample clusters were obtained from MsigDB v5.0 (19), 
Wikipathways (06.2015) (20), Recon 1 (21), Pathway Commons 7 (22) and DSigDB v1.0 (23). 
Gene sets were limited to contain between 5 to 500 expressed genes per gene set, resulting in 
19,680 gene sets that were evaluated across the dataset.  In addition, gene sets were defined on 
basis of significant cluster correlation. The gene set variation analysis (GSVA) (24), available in 
the R/Bioconductor package GSVA 1.13.0, was used to assign a gene set enrichment score 
(positive for increased and negative for decreased expression) in a sample-wise manner with the 
following settings: mx.diff=F,  tau=0.25, rnaseq=T if RNA-seq, otherwise rnaseq=F. Empirical P-
value was computed using 1000 random permutation of genes within the gene set. Estimation of 
significance was limited to a range of gene set sizes (5-20, 25, 30, 40, 50, 75, 100, 200, 300, 400, 
500) to adequately account for differences in gene set size distribution. The observed pathway 
score was compared with the random permutations of a corresponding gene set size and 
empirical P-value computed as the number of higher/lower scores in the permuted set divided by 
the total number of permutations. Enrichment of significant scores in a specific cluster was 
computed using a hypergeometric test.  
 

Correspondence between t-SNE-map clusters  
Similarity in sample clustering between t-SNE maps was evaluated in a data-driven manner using 
GSVA (24) enrichment scores. Two gene sets (20 top ranked positively or negatively correlated 
genes, separately) were defined for each t-SNE map cluster based on significant Pearson 
correlation to assess the robustness of the clustering and correspondence between the maps. 
Next, enrichment of other gene sets was compared: a nominal P-value cutoff 0.05 was used for 
the single data series with sample sizes less than 100. Next, these gene sets were evaluated 
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from the Hemap dataset, requiring the same directionality in the correlation (to corresponding 
cluster) and adjusted P-values less than 0.001. 
 

Characterization of sample clusters based on multi-omics features  
Categorical or binary annotation features (including clinical variables), continuous/discrete 
numeric expression values (14,274 genes), continuous/discrete numeric molecular data 
(mutation, CNV, methylation and chromosomal translocation) values or continuous GSVA 
pathway scores (19,680 pathways) were collected for each sample. Missing values were marked 
as NA. Each t-SNE map cluster (binary feature) was tested against all other features and the 
statistical significance evaluated using Spearman correlation between a binary cluster feature and 
a numeric or binary other feature. Multiple hypothesis testing correction was performed using the 
Bonferroni method, using the total number of comparisons N x M, where N is the number of binary 
cluster features tested and M is the number of features within the feature type tested. Pairwise 
analysis results were filtered using the adjusted P-value cutoff 0.001 for Hemap data and 0.05 for 
the smaller TCGA AML dataset (13). For gene sets, the cluster to gene set enrichment test was 
used as an additional filter as described before. 
 
Kaplan-Meier survival analysis 
Survival time and status for each TCGA AML sample was obtained from the supplementary table 
from the original publication (13) (“Patient Clinical Data” dated 3.31.12). The R package ‘survival’ 
was used to compute Univariate Kaplan Meier curves for each TCGA cancer-map cluster and to 
calculate the log-rank test. 
 
Discretizing methylation signal levels with mixture models 
Gaussian finite mixture models were fitted by expectation-maximization algorithm provided in the 
R package mclust (25) (version 4.3) to identify whether the value obtained for a given methylation 
probe belonged to the signal (expressed) or noise distribution in each sample. The model was 
chosen by fitting both equal and variable variance models and ultimately choosing the model 
which achieved a higher Bayesian Information Criterion (BIC) to avoid overfitting. A model with 
three components was fitted by choosing either an equal or unequal variance model according to 
BIC. After model fitting, the percentages of measurements belonging to each component were 
calculated for each sample. The portions of highly methylated regions in the studied cluster were 
compared against the rest of the samples by calculating the Mann-Whitney U test. 
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Code availability 
All custom code for analysis and normalized data matrices (RData files) for reproducing the 
analysis presented will be freely accessible upon publication of the manuscript.  
 

Results 

 

Assessing the contribution of technical variation in sample separation  
A fundamental challenge for joint analysis of the genome-wide data available in public repositories 

is the technical variability between data generated by different laboratories. To develop robust 

data integrative solutions, we use here a microarray dataset, Hemap, that was collected across 

several studies for researching disease mechanisms in context of hematological malignancies 

(see Methods). The data was jointly processed, including established normalization (9) and batch 

effect correction (10) steps. To organize the disease subtypes in a data-driven manner, we used 

the dimensionality reduction method t-SNE that has been successfully applied in context of both 

simulated and real datasets (8). The challenge in application of t-SNE across the heterogeneous 

data is illustrated with the subset of Hemap AML samples upon iterative addition of experiments 

in Fig. 1a. A PCA pre-processing step is included to the default implementation, which in this case 

results in separation of the data based on the study (Fig. 1A, PCA BH-SNE). Testing alternative 

solutions, we found that selection of genes based on variable expression results in sample 

grouping that does not reflect data origin (Fig. 1A, Variable genes BH-SNE). The technical bias 

in the PCA BH-SNE result, was not apparent based on two common metrics, continuity and 

trustworthiness (6) (PCA BH-SNE 0.92 and 0.96; Variable genes BH-SNE 0.95, 0.97, 

respectively). To address this issue, we defined two new quality measures for quantitative 

evaluation of the sample clustering in context of heterogenous datasets: NMIp that captures the 

separation of phenotypes (maximized), and NMIe that can be used to penalize the separation of 

data by experiment (minimized) (see Methods). The calculation of these metrics requires that at 

least some samples have an annotated class and that origin (study/experiment identifier) of the 

samples is known. The effect of choosing different number of principal components, or different 

percentage of genes, is compared using these metrics in Figure 1B for the AML subset and the 

full sample collection. In both cases, feature selection based on genes with highest variance 
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performed favorably, reducing the technical biases. Therefore, we selected 15% most variable 

genes for t-SNE analysis in this study. Overall, the obtained AML t-SNE map separated clinical 

subtypes in 38/38 (100%) of cases in an unsupervised manner, similarly to the supervised 

classification with a Prediction Analysis for Microarrays (PAM) classifier (26) (Table S2). The 

annotated sample category is visualized in Figures 1C-E on t-SNE maps, including two other 

sample subsets (acute lymphoblastic leukemia (ALL) and lymphomas). In each, a sample 

grouping driven by cancer subtypes was obtained. Therefore, the quantitative assessment based 

on the new metrics can guide parameter selection for unsupervised sample stratification methods 

to mitigate technical variation effects.  

 

Incorporation of additional datasets to predetermined t-SNE space 

We next asked whether the clustering of disease (sub-)types on the t-SNE maps could be used 

to characterize new samples. We developed a remapping algorithm that allows additional 

samples to be included to the existing map (see Methods). The left-out samples (N=10 from AML) 

were all assigned to the same cluster as their replicates on the Hemap AML t-SNE map (Fig. 2A, 

diamond shapes, see also Table S3 and Fig. S1 that shows the successful association of all 98 

validation samples with the disease-of-origin). Re-mapping an independent microarray dataset to 

the ALL t-SNE-map successfully assigned the clinical subtype for 95% of samples (Fig. 2B). 

Since many new studies currently use RNA-seq, the remapping algorithm was extended to 

incorporate alternative types of data by revising the similarity metric (see Methods). From AML 

RNA-seq samples (13), 88% were placed to a cluster matching the annotated category (Fig. 2C). 

In this manner, our approach readily extends beyond the present sample set and shows 

robustness for different technologies.  

 
Comparison of data-driven stratifications of molecular disease subtypes 

Comparisons between studies to determine whether the same molecular subtypes segregate in 

a reproducible manner was considered next. Towards this end, we developed methodology for 

examining the correspondence between clusters on separate t-SNE maps. We chose the TCGA 

AML (13) (RNA-seq, Fig. 3) and Ross ALL (12) (microarray, Fig. S2) studies for comparative 

analysis. Figure 3A shows the generated t-SNE map for TCGA RNA-seq samples, which resulted 

in seven distinct clusters (referred to as TCGA clusters 1-7). The comparison with annotated 
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cytogenetic types was consistent; samples carrying PML-RARA, RUNX1-RUNX1T1, CBFB-MYH 

or MLL fusions segregated into distinct clusters. To identify matching clusters from the Hemap 

AML t-SNE map, we developed a data-driven approach that defines and scores gene sets for 

each cluster (see Methods, refer to Table S4 for TCGA cluster gene sets). The samples with 

significant enrichment are colored on the HEMAP AML t-SNE map, and their enrichment score 

compared to annotations as an oncoprint (Fig. 3B). Samples with matching fusion gene status 

received the highest enrichment scores, allowing matching of clusters between the maps (Table 
S5). The application to ALL samples (12) (Fig. S2) showed similar robustness in discovery of 

matching subtypes.  

 

Integration with multi-omics profiles and pathway activity analysis to characterize the 
discovered molecular subtypes  
The clinical classification of AML has traditionally distinguished between fusion gene-positive 

categories (27). However, additional clusters segregate in the TCGA and Hemap AML t-SNE 

maps (Figs. 3A and C) that can be matched between the studies (Fig. 4A, Table S5). Statistically 

significant associations between the map clusters and different multi-omics features or pathway 

activity scores were queried to characterize the discovered patient groups (see Methods). Based 

on correlation of cluster assignment with multi-omics TCGA data (13), NPM1 mutations were 

associated with two clusters (TCGA clusters 3 and 6), whereas CEBPA mutations characterized 

TCGA cluster 5 (Fig. 4B). This could be confirmed in corresponding Hemap AML clusters (Fig. 
4C). The distinction between the two NPM1 positive clusters was associated with the cellular 

morphology (FAB type in Fig. 4B). In addition, our analysis revealed a subgroup (TCGA cluster 

4 and corresponding Hemap samples indicated in Fig. 4A) with several patients positive for either 

TP53 or RUNX1 mutations and/or complex karyotypes (Figs. 4B-D). The distinction between 

these non-fusion samples is clinically relevant, as the identified clusters differed in overall survival 

(Fig. 4E). 

Next, we detected significant associations between the cluster category and pathway activity. The 

gene set enrichment analysis (see Methods) confirmed that the TCGA and Hemap patients from 

the matched clusters share interesting molecular characteristics (Table S5). Intriguingly, TCGA 

cluster 5 (CEBPA mutated, Fig. 4B) and its corresponding cluster on the Hemap AML map (refer 

to Figs. 4A and C) were significantly associated with S-adenosylmethionine (SAM)-dependent 
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methyltransferase activity (Fig. 4F, hypergeometric test adjusted P-values 5.6e-05 and 1.5e-26, 

respectively). Because all DNA methyltransferases use SAM, we quantified TCGA DNA 

methylation data to test whether global changes in methylation patterns exist between clusters 

(see Methods). Accordingly, we observed a significant elevation in DNA methylation level in the 

TCGA cluster 5 compared to other samples (Fig. 5G, Mann-Whitney U-test P=2.681e-06).  

 

Discussion 

 

A large number of biological conditions have been characterized at genome-wide level since the 

introduction of microarray and deep sequencing technology (1-3), However, most of the studies 

include only tens to hundreds of samples. Cancers of hematopoietic origin serve as an important 

example where data integration is essential from the sample availability perspective, as many of 

these cancers are rare on the population level (27,28). Thus, understanding the complete 

heterogeneity and similarity of diseases states and their subtypes requires integrative data 

analysis methodology. Here, we tested solutions that allow distinguishing technical variation and 

evaluating the robustness of the obtained biological stratifications between studies, comparative 

analysis of pre-existing patient molecular data and inclusion of new sample sets and data types, 

as they become available.  

 

Removing technical variation, i.e. batch effects, from data before downstream analysis is a vital 

part of studies analyzing multiple datasets generated from different experiments (7,10,29). We 

propose here two NMI metrics that can guide the choice among alternative methods that achieve 

minimal loss of biologically relevant gene information (high separation of phenotypes) while at the 

same time reduce the technical variation enough not to interfere with the biological interpretation 

of the results. In the analysis presented, after data normalization and batch correction, we further 

remedy the technical biases by removing less variable genes as a preprocessing step for t-SNE 

(8). Evaluating the dimensionality reduction alone (continuity, trustworthiness (6)) was found 

insufficient to capture the technical bias that persisted when the default PCA pre-processing step 

was used. Alternatively, decomposing the variation could be attempted to reduce batch effects, 

including methods that attempt to remove the variation contained in top principal components 

(30,31). Our approach to evaluate the obtained sample clustering does not make any 
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assumptions about the data. Therefore, it extends to more than just microarray and RNA-seq data 

presented here. For example, it will be very relevant in single-cell context where the challenge of 

batch effects has been recognized (32) and new data sets are becoming increasingly available.  

 

To date, microarray repositories are still by far the largest resource for molecular data and hold a 

vast potential for large-scale studies. Compared to existing transcriptome collections (33,34), our 

goal was to develop methods that can generalize the integrative analysis beyond the initial 

dataset. We showed that in the context of the popular dimensionality reduction method t-SNE, 

new samples can be added to extend the existing map. Moreover, as next-generation sequencing 

based assays are gaining ground, we also present methodology to include RNA-seq profiles for 

joint analysis with microarray results. Secondly, we introduce a gene set-based method to 

compare clusters between different datasets, using the unsupervised t-SNE projection and 

clustering as the initial starting point, and identifying corresponding clusters using gene set 

enrichment. In both cases, there are considerations related to how representative the initial 

dataset (for remapping or defining cluster gene sets) are of the biological context, such as the 

cancer subtypes considered here. The enrichment results can be different if the sample 

composition changes, as genes are ranked based on kernel estimation of the cumulative density 

function using all samples (24). For comparing samples from small studies to a larger reference 

study, the re-mapping approach would be better suited. 

 

Finally, we demonstrate the integration of additional data types to further characterize the 

identified sample groups. Our approach considers gene expression levels as the main phenotype 

that gene set and pathway analysis can further characterize. Other data types (binary and 

continuous features such as mutations and methylation levels) were included by correlating them 

with the cluster observed in this phenotype (gene expression) space. Alternatively, many multi-

view methods have been introduced that are designed to preserve structures between several 

layers of data (35,36). While these methods appear theoretically promising, in practice different 

data types and result interpretation present challenges (36). Our analysis in AML revealed new 

insight on molecular subtypes, revealing a distinct clustering of CEBPA, NPM1, RUNX1 and TP53 

mutation positive samples. These molecular phenotypes that we found to distinguish fusion gene 

negative samples matched a distinct gene expression state. The gene set scoring allowed the 
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same patient groups to be identified from the Hemap sample AML map, further demonstrating 

that the molecular subtypes found are robust, in a comparable manner to the fusion genes 

distinguished in previous classifications (26,27). The cluster with the worst survival in our analysis 

included samples that were characterized by complex karyotypes and TP53 mutations, agreeing 

with recent genotyping data of recurrent mutations (37). Furthermore, the analysis of cluster-

associated mutations distinguished a patient cluster with CEBPA mutations. Using pathway 

analysis, we could demonstrate that TCGA and Hemap patients from the matched clusters had 

elevated expression of genes involved in SAM-dependent methylation activity. Previous studies 

have found contradicting results, reporting both specific (13) and broad (38) methylation changes. 

We validated that patients with high pathway activity score had an elevated global DNA 

methylation level using multi-omics TCGA data.  

 

In conclusion, we present new data integration approaches for multi-center and multi-omics 

datasets that allow researching disease subgroups. This analysis framework can be adopted to 

support the utilization of genome-wide data across different biological systems and disease 

contexts.  

 

Supplementary material 
 

The supplementary material consists of the description of methods (Online Methods) and 

Supplementary display items (two figures and five tables) with their legends. 
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Figure Legends 

 

Figure 1. Assessing the contribution of technical variation in sample clustering. A. Iterative 
addition of AML data series to the sample set used for t-SNE is shown. The difference between 
using the PCA preprocessing step (above) or using 15% of most variable genes (below) is 
visualized from a succession of maps (a single data series, 2, 5 or all). B. The metrics for 
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separation of phenotypes (NMIp, in blue) and data series (NMIe, in red) shown represent the 
mean of 30 permutations with different seed selections. Selecting a different number of principal 
components (PCs) is compared to selecting a different percentage of variable genes using the 
Hemap AML sample set. For all Hemap samples, BH-SNE results using PCA (P) or 15% most 
variable genes (G) are compared. The fine structure on the t-SNE maps with 15% gene selection 
matches closely pre-B-ALL (C), AML (D) and BCL (E) clinical subtypes (in color). 
 

Figure 2. Remapping new samples to the t-SNE map. A. AML microarray validation samples 

that were left out (N=10, diamonds) and TCGA RNA-seq samples13 (N=162, triangles) re-mapped 

on the Hemap AML t-SNE map. Notice that similar samples mapped in close proximity to each 

other may overlap on the visualization. B. Remapping result for samples from an independent 

ALL study11 (GSE49032) to the Hemap ALL t-SNE map. The subtype of re-mapped samples is 

indicated in color in A and B.  

 

Figure 3. Evaluation of disease subtypes across datasets. Comparison of sample clustering 

on the t-SNE maps for TCGA AML RNA-seq samples (N=162) and Hemap AML is shown. A. The 

data-driven cluster assignment (TCGA clusters 1-7) can be compared with sample molecular 

annotations colored on the map and the oncoprint heatmaps below. B. Enrichment scores for 

TCGA cluster gene sets that matched samples with common fusion genes (clusters 1, 2, 6 and 

7) are colored on the Hemap AML map (significant enrichment adj. P-value < 0.001 in red). The 

raw GSVA scores are shown below as an oncoprint heat map (red tones indicate high expression 

of the gene set and blue tones low expression).  

 

Figure 4. Multilevel data integration reveals AML clusters with distinct mutation and 
epigenetic phenotypes. A. Significant enrichment (adj. P-value < 0.001) of TCGA clusters 3-5 

gene sets is colored on the Hemap AML map (as in Fig. 3B). B. Oncoprint heatmap comparing 

fusion gene, mutation, karyotype and phenotype (FAB type) of samples in different TCGA 

clusters. C. Mutational status for most significantly cluster-associated mutations is indicated in 

color on the Hemap AML map. D. Location of complex karyotype samples indicated in color on 

the Hemap AML t-SNE map. E. The survival analysis of Hemap patients comparing the clusters 

matched with the TCGA map are shown as Kaplan-Meyer plots. F. Significant enrichment (adj. 
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P-value < 0.05) for SAM-dependent methyltransferase activity is shown as in A. G. DNA 

methylation levels compared between TCGA AML clusters. The percentage of regions assigned 

to the high methylation state compared between TCGA cluster 5 patients (N = 20) and rest of 

TCGA AML clusters (Mann-Whitney U-test P-value is indicated).  
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