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1 Abstract 1

This work targets the replicability of computational models to provide the community with tested and proven 2

open-source models to be used in new studies and implementations. The Potjans-Diesmann model describes a 3

cortical microcircuit containing two cell types (excitatory and inhibitory) distributed in four layers, and 4

represents the cortical network below a surface of 1 mm2. The original implementation of the Potjans-Diesmann 5

model was based on the NEST simulator and our goal here was to re-implement the model in the Brian 2 6

simulator and obtain the same results presented in the reference article. We did not replicate analyses that 7

involve changes in the network structure. Our replicated network model presents activity dynamic patterns very 8

similar to the ones observed in the original model, with comparisons made in terms of firing rates and synchrony 9

and irregularity measures. In conclusion, the Potjans-Diesmann model was successfully replicated in a different 10

platform than the one in which it was originally implemented. 11

2 Introduction 12

Most theoretical studies of cortical activity are based on networks of randomly connected units [2, 6, 7, 12] or 13

with architectures artificially built from random networks [10]. In spite of the usefulness of these models, in 14

order to understand the interplay between network structure and cortical dynamics it is essential to have 15

computational models which accurately represent the cortical network architecture. Recently, Potjans and 16

Diesmann [8] developed a network model of the local cortical microcircuit based on extensive experimental data 17

on the intrinsic circuitry of striate cortex [1, 9]. The model contains two cell types (excitatory and inhibitory) 18

distributed over four layers, L2/3, L4, L5, and L6, and represents the cortical network below a surface area of 1 19

mm2 (a scheme is shown in Fig. 1). 20

The original implementation was based on the NEST simulator [4] and the source code is available at the 21

Open Source Brain platform [11]. Here, we reimplemented the full model in the Brian 2 simulator [5] without 22

direct reference to the original source code. 23

3 Methods 24

In this work, we replicated in Brian 2 every detail of the Potjans-Diesmann model as described in their original 25

article [8]. Hereafter, we will refer to the original NEST implementation of the Potjans-Diesmann model [8] as 26

reference (or original) article. In this section we explain how this reimplementation was done. Further statistical 27

analyses were performed using SciPy, NumPy, and Matplotlib libraries for the Python language. 28
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A

Figure 1. Schematic representation of the cortical network model (adapted from [8]). The model consists of
four layers (L2/3, L4, L5 and L6), each one populated with excitatory (triangles) and inhibitory (circles) neurons
(Table 2). Arrows represent connections with probabilities > 0.04: excitatory in red and inhibitory in blue (Table
3). Black arrows represent background inputs.

3.1 Neurons 29

Network neurons are described by the leaky integrate-and-fire (LIF) neuron model. The subthreshold membrane 30

voltage of neuron i obeys the equation 31

V̇i(t) = − (Vi(t)− Vreset) /τm + Ii(t)/Cm, (1)

where τm is the membrane time constant, Cm is the membrane capacitance, Vreset is the reset potential, and 32

Ii(t) is the total input current. When Vi(t) ≥ Vth the neuron emits a spike and the voltage is reset to Vreset, 33

remaining fixed at Vreset for a refractory period τref . The total input current Ii(t) is divided into external 34

Ii,ext(t) and synaptic Ii,syn(t). Whenever an excitatory (or inhibitory) neuron j presynaptic to neuron i fires at 35

time tfj , the synaptic current to neuron i changes at time tfj + de (or di) by an amount w (or −gw), where w is 36

the excitatory synaptic weight, g is the relative weight of the inhibitory synapse, de is the excitatory synapse 37

transmission delay, and di is the inhibitory synapse transmission delay. In the absence of synaptic inputs the 38

synaptic current changes as 39

İi,syn(t) = −Ii,syn(t)/τsyn (2)

where τsyn is the postsynaptic current time constant (parameter values are shown in Table 1). 40

Table 1. Neuron and synaptic parameters. Neuron and synaptic parameters used in our simulations according
to [8].

membrane time constant τm 10 ms
refractory period τref 2 ms
postsynaptic current time constant τsyn 0.5 ms
membrane capacitance Cm 250 pF
reset voltage Vreset -65 mV
threshold voltage Vth -50 mV
excitatory synaptic weight w N (µ = 87.8, σ = 8.8) pA
relative inhibitory synaptic weight g 4
excitatory synaptic transmission delay de N (µ = 1.5, σ = 0.75) ms
inhibitory synaptic transmission delay di N (µ = 0.8, σ = 0.4) ms
initial membrane potential V0 N (µ = −65.0, σ = 6.5) mV

3.2 Network 41

The procedure to set up the network connections is the following: 42
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• Start with a set of neurons N = 77,169, with model parameter described in Table 1. 43

• The N neurons are distributed over the eight different populations, L23e, L23i, etc, according to the 44

numbers shown in Table 2. 45

• For each one of the sixty-four possible combinations of two from the eight cell populations, the total 46

number K of synapses is calculated using equation (3) (compare with equation (1) of the original article), 47

where Npre/post are the sizes of presynaptic/postsynaptic populations and Ca is the corresponding 48

connection probability given in Table 3 (the subindex a stands for ‘anatomical’ in the terminology of the 49

original article). 50

K =
log(1− Ca)

log(1− 1/(NpreNpost))
(3)

• For every one of the sixty-four two-cell populations, the K synapses determined above are created by 51

uniformly and randomly choosing K pairs of neurons (one from each population) and placing a connection 52

between them. This is done with repetition to allow the creation of multiple synaptic contacts between 53

any pair of neurons. 54

• The synaptic weight for connections originating from excitatory neurons is set to w and the synaptic 55

weight for connections from inhibitory neurons is set to −gw. In addition, the synaptic weight for 56

connections from neurons of layer L4e to L23e is doubled [8, 13]. 57

Table 2. Layer population sizes (extracted from [8]). Neurons were distributed over four different layers (L23,
L4, L5 and L6), and for each layer they were divided into excitatory (L23e, L4e, L5e and L6e) and inhibitory
(L23i, L4i, L5i and L6i) subpopulations.

L23e L23i L4e L4i L5e L5i L6e L6i
20683 5834 21915 5479 4850 1065 14395 2948

Table 3. Connectivity matrix between the different populations of the model (extracted from [8]). The
connectivity matrix describes the probabilities of the target-specific connections between populations of neurons.

from

L23e L23i L4e L4i L5e L5i L6e L6i

L23e 0.101 0.169 0.044 0.082 0.032 0 0.008 0
L23i 0.135 0.137 0.032 0.052 0.075 0 0.004 0
L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0

to L4i 0.069 0.003 0.079 0.160 0.003 0 0.106 0
L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0
L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0
L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144

The ordinary differential equations were solved with the exact integration method for linear equations 58

available in Brian 2 with a time step ∆t = 0.1 ms. All simulations were carried out in a cluster with 4 nodes 59

each equipped with 2 Intel Xeon processors. 60

3.3 External input 61

We chose from the reference paper three different types of external (“background”) inputs: 62

1. Layer specific: Neurons from each layer receive specific background spike-trains drawn from an 8 Hz 63

Poisson distribution. The number of inputs per neuron is given in the first row of Table 4. 64
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2. Layer independent: Spike-trains are drawn from an 8 Hz Poisson distribution as above, but now the 65

number of inputs per neuron is the same for all the excitatory layers and the same for all the inhibitory 66

layers as shown in the second row of Table 4. 67

3. DC input: The Poissonian background is replaced by constant DC currents to all neurons. The number 68

of inputs per neuron follows the layer specific configuration (first row in Table 4). Observe that the number 69

of inputs per neuron is multiplied by an effective factor which is given by ν × ω × τsyn = 0.3512 pA. 70

Additionally to these inputs, in Fig. 5C we simulate the network in several trials where the number of 71

external inputs change. In every trial, the external inputs to each of the excitatory layers is a number randomly 72

drawn between the layer specific and the layer independent inputs reported in Table 4. The inhibitory layers 73

have their number of external inputs randomly decided between the already chosen number of their respective 74

excitatory layer and the number calculated by 75

Ci =

(
1− T
1 + T

)
Ce, (4)

where T is the target specificity defined in [8] and is assumed here to be T = 0.1. However, there is an exception 76

to this rule: L6i is allowed to have T = 0.2 due to the high number of inputs to L6e. 77

Table 4. Estimated numbers of external inputs per neurons in all network layers. The total number of external
inputs is rounded.

L23e L23i L4e L4i L5e L5i L6e L6i

Layer specific 1600 1500 2100 1900 2000 1900 2900 2100
Layer independent 2000 1850 2000 1850 2000 1850 2000 1850
Background rate (ν) 8 Hz

3.4 Measures 78

Here, we define the measures used to characterize the layer-specific activity of the network. They are the same 79

ones used in the original article. 80

The spike train of a neuron i is represented by a sequence of temporal events (sum of delta functions). The 81

firing rate over an interval T is obtained by summing the number of spikes during that interval and dividing by 82

T (spike-count firing rate). The average firing rate of a population of N neurons is computed by calculating the 83

firing rates of the neurons and dividing by N . With this procedure we calculated the average firing rates of the 84

eight populations in the network. 85

To characterize irregularity in the network we use the coefficient of variation (CV) of the interspike interval 86

(ISI) distribution. The CVi for each neuron i is computed as the ratio of the standard deviation over the mean 87

of its ISI distribution. Exponential distributions have CV ≈ 1 while more regular distributions have CV < 1. 88

Synchrony is characterized by the variability of the histogram of population spiking activity (bin size = 3 89

ms). The synchrony index is computed as the variance of the spike count histogram divided by its mean. 90

The degree of asynchronous and irregular activity in a population is quantified by a measure called AIness%. 91

This is the percentage of the population with mean firing rate < 30 Hz, irregularity between 0.7 and 1.2, and 92

synchrony < 8. 93

To compare the distributions of firing rates and CVs obtained from simulations in Brian 2 and NEST we use 94

the Kolmogorov-Smirnov statistical test. To apply this non-parametric test, cumulated histograms were 95

constructed with bins chosen by the Doane method [3]. 96

4 Results 97

In the following, we present results of the replicated studies (with the same data sampling sizes) done in the 98

reference article for the network with parameters as defined in Methods. We did not replicate analyses which 99

involve changes in the network structure. 100
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4.1 Spontaneous Activity 101

The simulated spontaneous activity is asynchronous and irregular (Fig. 2A) and the cell-type specific firing 102

rates are in agreement with the ones observed in the reference article, including the lowest rates for the 103

excitatory cells of layers 2/3 and 6 and the highest rates for L5 cells (Fig. 2B). For all layers the inhibitory cell 104

firing rates exceed the ones of excitatory cells. The firing rate variabilities (Fig. 2B) and the single-cell firing 105

rate irregularities (Fig. 2C) are also similar to the ones reported in the original article. The irregularity measure 106

is > 0.80 for all cell populations (Fig. 2C). The profile of the synchrony of spiking activity across the cell 107

populations is also consistent with the one reported in the reference article. The highest degree of synchrony is 108

found in L5e and the lowest one in L6. 109

A B

C

D

Figure 2. Spontaneous cell-type specific activity (to be compared with Fig.6 from the original article). In this
simulation, g = 4 and background rate is layer-specific (8 Hz). (A) Raster plot of spiking activity for 0.4 s of all
cell layers (from top to bottom; dark color: Excitatory cells, light color: Inhibitory cells). Number of displayed
spike trains corresponds to 2.5% of the total number of neurons (preserving relative number of cells per layer).
(B–D) Statistics based on samples of 1000 neurons per layer recorded for 60 s. (B) Single-cell firing rate boxplot.
Triangles indicate population mean firing rates, crosses show outliers. (C) Irregularity of single-cell firing rates.
(D) Synchrony of spiking activity.

In order to compare the Brian 2 with the NEST implementations of the Potjans-Diesmann model, we used 110

the available pyNEST code [11] to run NEST simulations of the model with the same parameters given in 111

Methods. The comparisons were made in terms of the cumulative distributions of the CVs of ISIs and the firing 112

rates of the eight cell populations in the network (plots not shown here but as in Figs. 3 and 4 below). The 113

p-value (two-sample Kolmogorov-Smirnov test) was higher than 0.6 for all comparisons meaning that no 114

significant difference was found between NEST and Brian 2 simulations. 115

Besides the creation of the network connections by the procedure described above, which is the one used in 116

the original article, it is also possible to connect the neurons in the network using the alternative expression for 117

the total number of synapses between two cell populations, 118

K = Ca(NpreNpost), (5)
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which comes from the first-order Taylor series approximation to the connection probability Ca as explained in 119

the original article (see equation (2) and following text in the original article). 120

To test for possible effects of using this approximate equation, we constructed the network in Brian 2 using 121

both equations (5) and (3). We found that the use of the approximate equation brings discrepancies in 122

comparison with the original model. The comparisons were made in terms of the cumulative distributions of the 123

CVs of ISIs (Fig. 3) and the firing rates (Fig. 4) of the eight cell populations for simulations of the original 124

model based on the pyNEST code [11] and the Brian 2 code with K calculated from equations (5) and (3). 125
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Figure 3. Cumulative distribution of CVs of ISIs for the eight cell populations (indicated atop each panel) for
simulations implemented in Brian 2 using equation (5) (blue), in Brian 2 using equation (3) (green), and in
NEST using equation (3) (orange). NEST code taken from [11].

When comparing the network constructed in Brian 2 with equation (5) and the one constructed in NEST, 126

most of the layer-specific comparisons yielded p-values higher than 0.6 as before, indicating no significant 127

differences. However, the p-value of the comparison between the CV of ISIs for the layer 5 excitatory neurons 128

was 0.07, and the p-values of the comparisons between the firing rates of excitatory cells from layers 2/3 and 6 129

were, respectively, 0.10 and 0.08. Therefore, in the cases of excitatory cells of layers 2/3, 5 and 6 there were 130

statistically significant differences in the firing properties of neurons. The major discrepancy was found for L5e 131

cells, which in the replicated Brian 2 version using equation (5) have firing rate 12.2 ± 6.1 Hz while in the 132

original version their mean firing rate is 7.8 ± 5.1 Hz. 133

The differences found highlight the importance of using the exact expression for the connection probability 134

Ca given in equation (1) of the original article (which corresponds to equation (3) of this text) in simulations of 135

the Potjans-Diesmann model. Observe the close agreement of the cumulative histograms when Brian 2 (K from 136

equation (3)) and NEST (K from equation (3)) are compared. 137

We now return to the reimplementation of the Potjans-Diesmann model in Brian 2 using equation (3), which 138

will be kept for the rest of this replication work. 139

4.2 Dependence of Spontaneous Activity on External Inputs 140

In agreement with the results obtained in the reference article, the activity features of the Brian 2 141

implementation are also robust to changes in the external inputs. These are shown in Fig. 5A, in which the 142

Poissonian inputs are replaced by constant DC currents, and in Fig. 5B, in which the layer-dependent 143

Poissonian inputs are replaced by layer-independent inputs. In the latter case, the absence of activity in L6e 144

resulting from the layer-independent inputs indicates the importance of realistic input structure to yield 145

plausible activity in all layers. In Fig. 5C we present the population firing rates for 100 trials with the rule 146

explained in the methods section. This latter experiment presented an excellent agreement with the histograms 147

observed in Fig. 7 of the original article. 148
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Figure 4. Cumulative distribution of firing rate for the eight cell populations (indicated atop each panel) for
simulations implemented in Brian 2 using equation (5) (blue), in Brian 2 using equation (3) (green), and in
NEST using equation (3) (orange). NEST code taken from [11].
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Figure 5. Raster plot of spiking activity over a 0.4 s period and average firing rate for different types of
external input (to be compared with Fig. 7 of the original article). Color codes and sample cell sizes as in Fig. 2.
(A1–A2) DC input. (B1–B2) Layer independent input. (C1–C4) Histograms containing the population firing
rates of 100 trials where the external inputs were drawn with a specific rule (see details in methods).

7/9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2018. ; https://doi.org/10.1101/248401doi: bioRxiv preprint 

https://doi.org/10.1101/248401
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.3 Stability of Network Activity 149

The activity features obtained in the original article by changing the relative strength of inhibitory synapses and 150

the background rate are reproduced in our reimplementation (Fig. 6). 151

The asynchronous and irregular activity of the reimplemented network model, as characterized by the 152

AIness%, is similar to the one found in the reference article for background rates ¿5 Hz and relative inhibitory 153

synaptic strengths ¿4 Hz. In comparison with the reference article, the relative order of excitatory firing rates is 154

maintained for every combination between background rate and relative synaptic strength, with highest values 155

in L5 and smallest in L2/3 and L6. Similarly to the original article, the firing rate of L4e cells is the most 156

sensitive to variations in the background rate whereas the firing rate of L5e cells is the most sensitive to 157

variations in the relative inhibitory synaptic strength g. 158

A B

C

Figure 6. Network activity dependence on background rate and relative inhibitory weight (to be compared
with Fig. 8 of the original article). (A) Mean population firing rates of excitatory neurons in layers 2/3 (dashed
line), 4 (triangles), 5 (stars) and 6 (squares) as a function of the background rate for fixed g = 4. (B) AIness%
(see Methods) as a function of the background rate and the relative inhibitory synaptic strength g. Labeled
dashed contour lines indicate areas where 25%, 50% and 75% of all populations fire in an asynchronous and
irregular mode at low rate. (C) Mean population firing rates of excitatory neurons as a function of the relative
inhibitory synaptic strength g for fixed background rate 8 Hz (markers as in (A)).

5 Conclusion 159

Using the Brian 2 reimplementation of the Potjans-Diesmann model we were able to reproduce the main results 160

of the original article [8]. The spontaneous activity of the network reimplementation is asynchronous and 161

irregular as evaluated by the different measures used to characterize spiking behavior. 162
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We also have shown the importance of using the exact expression in equation (1) of the original article instead 163

of the approximate one in equation (2) in implementations of the model. The use of the approximate expression 164

leads to mean firing rates of L5e neurons significantly higher than in the original implementation of the model. 165

The successful replication of the results of the reference article confirms the correctness of the original 166

implementation of the model. 167
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