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Abstract

Mathematical models continue to be essential for deepening our understand-

ing of biology. On one extreme, simple or small-scale models help delineate gen-

eral biological principles. However, the parsimony of detail in these models as

well as their assumption of modularity and insulation make them inaccurate for

describing quantitative features. On the other extreme, large-scale and detailed

models can quantitatively recapitulate a phenotype of interest, but have to rely

on many unknown parameters, making them often difficult to parse mechanis-

tically and to use for extracting general principles. We discuss some examples

of a new approach —complexity-aware simple modeling— that can bridge the

gap between the small- and large-scale approaches.

Highlights

• Simple or small-scale models allow deduction of fundamental principles of

biological systems

• Detailed or large-scale models can be quantitatively accurate but difficult

to analyze

• Complexity-aware simple models can extract principles that are robust to

the presence of unknown complex interactions
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Graphical abstract

Introduction

Mathematical models have long been the crutch for our intuition in many

fields of science. Models have also rapidly become accepted tools in the biolog-

ical sciences, used to organize data and knowledge, understand how biological

phenomena arise from the collective action of components [1] and predict emer-5

gent organizational properties [2, 3].

In general, the most useful model for a particular process would depend

on the specific question at hand as well as the information available (previous

knowledge and attainable experimental data) [4, 5, 6]. As a result, a single

model is rarely appropriate for all possible instances of a problem [7]. This said,10

modelers of biology have long argued (and continue to do so) about the most

useful approach, creating some tension between the supporters of large- and

small-scale models [8]. Detailed or large-scale models attempt to incorporate

most or all the available information about a system that is being modeled,

resulting in many components and interactions explicitly stated in the resulting15

model. These models are criticized for being poorly parametrized and not eas-

ily amenable to abstraction and general insight. On the other hand, simple or
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small-scale models actively seek to discern the minimal essential components and

interactions required to explain a particular behavior. As a result, the quantita-

tive predictive power of small-scale models is often questioned. All models, by20

definition, fail to incorporate every mechanistic detail of a biological system [9].

Simply stated, since models are necessarily approximations of reality, even the

most elaborate model contains a set of assumptions, and any conclusion derived

from this model would be dependent on the validity of these assumptions.

While keeping this in mind, we discuss some examples of “small-scale” mod-25

els and “large-scale” models. We then introduce the potential hybridization of

these two through an approach we call “complexity-aware simple modeling”.

We discuss two recent examples of this promising approach.

Small-scale models: The power of simplicity

The motivation behind small-scale models is that the most parsimonious set30

of components and their interactions that can explain a phenotype also provide

the most power for unraveling its underlying requirements. These models pro-

vide a major benefit: by using a small number of components, the number of

unknown parameters is minimal and their associated assumptions are tractable.

This greatly facilitates interpretation and provides an opportunity for vetting35

the generality of conclusions. As a result, small-scale models are often associated

with the quest for uncovering principles.

In support of this notion, many concepts that are deeply embedded in our

current knowledge of biological circuits result from small-scale models (see [10]).

These include prominent principles such as the need for positive feedback for40

multistability [11], and negative feedback and time delays to produce oscilla-

tions [12]. Such simple but powerful guiding principles have been crucial for the

study of many biological systems, ranging from circadian rhythms [13, 14, 15]

to cell cycle regulation [16, 17, 18], and have led to profound insights into these

complex systems.45

While many small-scale models are derived with a biological system in mind,
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some are constructed to probe the general requirements of a broad biological

property. For example, small-scale models have been used to pinpoint specific

structural attributes of the biochemical networks that produce “absolute con-

centration robustness” (ACR). An ACR network is one in which one of the50

molecular species maintains a constant concentration, irrespective of fluctua-

tions of other circuit components. A simple model of two molecular species A

and B, present at a total concentrate A+B = θ, interconverting along the two

simple reactions A+B → 2B and B → A (at rates α and β respectively) shows

ACR in that the concentration of A is constant (at β/α) irrespective of total55

concentration θ. This example motivated the development of a broad theory for

defining large classes of ACR networks [19, 20] that can produce this property

irrespective of biochemical parameter values.

Often however, the most meaningful understanding derives from a conver-

gence of the general investigations of “principles” with the focused investigations60

of a concrete biological network. Unraveling how frog oocytes implement an ir-

reversible differentiation switch was accomplished through a keen interest in

this biological question as well as exploration of the properties of ultrasensitiv-

ity and positive feedback using simple models [21, 22, 23]. Another example is

that of perfect adaptation in which a functional quantity of a biological circuit65

can maintain a steady-state value that is constant despite a perturbing input.

A multi-decade interest in understanding how bacteria implement perfect adap-

tation in chemotaxis [24, 25, 26, 27, 28, 29] led to a compelling formulation of

this problem, with renewed interest generated by the identification of perfect

adaptation in other systems [30, 31, 32]. Here again, insights gained from simple70

models of biological systems that feature perfect adaptation (see [33]) converged

with general inquiries about motifs and topological features that can generate

such a property (see [34]) to produce a meaningful and deep understanding.

In particular, many of these studies converged on the use of integral feedback

control, which was mathematically demonstrated decades ago to ensure perfect75

adaptation in the field of control theory [26, 35, 36].

Despite the success of small-scale and simple models, biology itself is neither
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small-scale nor simple. And, when using small-scale models to describe local

nodes of a bigger biological network or to simplify elaborate interactions, we

should continuously challenge our conclusions by asking about the effects of80

the surrounding complexity. What happens if the network motif that ensures

perfect adaptation has an extra link or is connected to another network, or if

the positive feedback that implements a switch is also entangled in a negative

feedback loop? Each of these cases would have to be explored thoroughly,

building our understanding from the bottom-up.85

Large-scale models: Embracing biological complexity

The premise of large-scale models is that all components and interactions

that comprise a system might be needed in order to reproduce its quantitative

behavior accurately. The construction and simulation of such models that are

faithful to details and complexity is now facilitated by acceleration in experi-90

mental data collection and growth in computational power (e.g. see [37]).

At the extreme of this spectrum are studies that attempt whole-cell mod-

eling, seeking to describe how the phenotype arises from the genotype by ac-

counting for all genes/proteins and interactions in a cell (i.e. human pathogen

Mycoplasma genitalium), integrating multiple sources of data, as the transcrip-95

tome, proteome, and metabolome in a condition of interest, as well as more gen-

eral properties of the cell, such as mass, geometry, and cell-cycle state [38, 39].

The resulting models have so far included hundreds of variables and thousands

of parameters whose values have to be mostly assumed. Insights generated by

these models include the identification of new gene functions and the prediction100

of biological processes not directly accessible by existing experimental measure-

ments [38].

Large-scale models also arise from efforts to reconstruct cellular networks in

an unbiased way (top-down) from high-throughput data [40]. These reconstruc-

tions have proven to be useful to provide an overview of cellular connectivity,105

but the analyses of the resulting models have often focused on isolating a few
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structural components and interactions associated with a phenotype of inter-

est [41].

A third general approach for large-scale modeling is one in which the com-

plexity is built stepwise, first by building simple models and then embedding110

them in a more elaborate physiological reality. For example, Spiesser et al. [42]

presented a multiscale simulation platform to integrate an osmostress response

model with its physiological context (e.g. cell division cycle), as well as the cell-

to-cell variation expected in a cellular culture. This model revealed previously

under-estimated features that are dependent on population dynamics, such as115

partial synchronization during osmoadaptation [42].

Overall, while large-scale models are undeniably closer to biological reality,

the task of interpreting their findings remains difficult. The many parameters of

these models, most of which are poorly measured or not measured at all, makes

it difficult to differentiate conclusions and predictions that are dependent on120

parameter choices from those that are robust and general.

A new approach: Accounting for complexity without getting entan-

gled in it

Recent years have seen the emergence of an exciting modeling approach,

which we call here “complexity-aware simple modeling”. The goal is to preserve125

the small-scale modeling approach for representing a biological process, but

without ignoring the complexity surrounding it. In fact, the point is to identify

the largest and most complex class of interactions, which when connected to

the simple model, fail to perturb its behavior. In this framework, the biological

process of interest is modeled with the resolution needed but the surrounding130

complexity (e.g. connected networks) is deliberately kept undefined or defined

by the most abstract representation possible. Statements about the behavior

of the system of interest are then formulated and demonstrated to hold even in

the presence of the unmodeled interactions (Figure 1).

A representative example of this approach asked whether there is a simple135
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Figure 1: Complexity-aware simple models consider a small number of components

and interactions necessary to explain a behavior of interest. They also include an abstract

representation of the largest class of complex interactions, which when connected to the simple

model, have a minimal impact on its behavior.

biochemical motif (with its corresponding simple model) that can achieve in-

tegral feedback when connected to an arbitrarily complex network (with any

number of components and interactions, as well as undefined parameter val-

ues) [43]. The result was the so-called “antithetic motif”, where two molecular

species bind to each other and annihilate each others function through this bind-140

ing. Now, imagine that one of the “antithetic” molecular species controls the

input of the complex network while the other is produced by the output of the

same network. In this case, it can be mathematically demonstrated that the

steady-state value of the network’s output perfectly adapts regardless of any

step perturbation inside this network (Figure 1). The antithetic motif used in145

this configuration therefore implements integral feedback action. One require-

ment of this adaptation is that the only source of decay for the two molecules

of the antithetic motif is their mutual annihilation, not their individual degra-

dation or inactivation. While such perfect adaptation holds for an arbitrarily
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complex network connected to the antithetic motif, it is of course contingent on150

the network being responsive to the input from this motif. Its behavior is also

dependent on the properties and constraints of the connection between the mo-

tif and its interconnected complex network. Still, this is a remarkable property

with two main implications. First, it provides a recipe for building a simple

“adduct” to a very complex network that makes it perfectly adapting. Sec-155

ond, when this antithetic motif is found in endogenous biological networks, we

can isolate the motif, ignore the rest and declare the network perfectly adapting

without the need to detail its complexity in order to infer the perfect adaptation

property. A similar approach has been implemented to identify other integral

control motifs [44] and to prescribe a general and robust cell fate reprogramming160

strategy [45].

A variation on this theme seeks to find bounds on behavior for classes of

systems that share a small number of parts but can be arbitrarily different in

others. For instance, being cognizant that all molecular interactions in cells are

probabilistic, it is possible to define general relationships and bounds on the cell-165

to-cell variability in the antithetic motif (explained above) that hold irrespective

of any complex network connected to it. Assuming stochastic birth, death, and

binding reactions of the molecules in this motif, algebraic expressions based on

relating average abundances and covariances for the two antithetic species can

be combined with simple mathematical properties of normalized covariances to170

derive an appropriate bound on the fluctuations of these species. This approach

showed a fundamental trade-off: molecular fluctuations in the counts of free

molecules have to increase if a higher efficiency of binding between the anti-

thetic molecules (and formation of their bimolecular complex) is desired [46].

This bound holds irrespective of, and cannot be alleviated by, connectivity to175

any network of arbitrary size or complexity. Therefore, this relationship is only

based on a few specified interactions and is invariant to any networks in which

those interactions might be embedded. This idea can further be exploited to rule

out the plausibility of specific classes of interactions for an underlying biological

process given experimental data. For example, if one is hypothesizing the pres-180
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ence of an antithetic motif, but experimental measurements of fluctuations and

complex formation efficiency are outside the general bound delineated by their

theoretically determined relationship, one can efficiently rule out the involve-

ment of this motif irrespective of other un-characterized components present in

the network. Such an approach was productively used in a different context185

to determine that a common class of gene expression models in which protein

synthesis is proportional to mRNA levels cannot account for experimental single

cell measurements in E. coli [47, 48]. This determination was based on the fact

that the measured values of covariance metrics between mRNA and protein dif-

fer significantly from predicted relationships. Here again, predicted values are190

based on a simple model but are invariant to the potential complex connectivity

of this model.

Final thought

Systems biology is often thought of as “the tool to unravel black boxes” [49].

We pose here the question of whether, when modeling biological systems, it195

is sometimes more productive to deliberately keep some boxes closed through

what we have called “complexity-aware simple models”, or other approaches

that adopt a similar philosophy. We find this idea appealing, and advocate for

considering its implications. Might it be a fruitful way to approach the coarse-

graining that is needed to traverse the different scales of biological organization?200

Might it a useful replacement for detailed descriptions of certain processes in

whole cell models? Finally, the resemblance between this concept of modeling

and the main tenants of Robust Control Theory is unmistakable. Might it be

developed and become known as Robust Modeling Theory?

At the same time, we caution that only a few examples of the success of this205

approach exist and that there is still no clear disciplined way to implement such

analyses in a general sense. We also caution that models are used for a variety

of reasons and for asking different questions [5]. Therefore, we must continue to

unabatedly define models at a resolution that enables them to be useful tools for
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answering these questions. Fundamentally, we aim our discussion of complexity-210

aware simple models to provide some food for thought and hopefully a subject

for a vigorous scientific debate.
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