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Abstract	20	

	21	

Multivariate	 decoding	 methods	 applied	 to	 neuroimaging	 data	 have	 become	 the	 standard	 in	22	

cognitive	neuroscience	for	unravelling	statistical	dependencies	between	brain	activation	patterns	23	

and	experimental	conditions.	The	current	challenge	 is	 to	demonstrate	that	 information	decoded	24	

as	 such	 by	 the	 experimenter	 is	 in	 fact	 used	 by	 the	 brain	 itself	 to	 guide	 behaviour.	 Here	 we	25	

demonstrate	 a	 promising	 approach	 to	 do	 so	 in	 the	 context	 of	 neural	 activation	 during	 object	26	

perception	 and	 categorisation	 behaviour.	We	 first	 localised	 decodable	 information	 about	 visual	27	

objects	 in	 the	 human	 brain	 using	 a	 spatially-unbiased	multivariate	 decoding	 analysis.	We	 then	28	

related	brain	activation	patterns	to	behaviour	using	a	machine-learning	based	extension	of	signal	29	

detection	 theory.	 We	 show	 that	 while	 there	 is	 decodable	 information	 about	 visual	 category	30	

throughout	 the	 visual	 brain,	 only	 a	 subset	 of	 those	 representations	 predicted	 categorisation	31	

behaviour,	 located	 mainly	 in	 anterior	 ventral	 temporal	 cortex.	 Our	 results	 have	 important	32	

implications	 for	 the	 interpretation	of	neuroimaging	 studies,	highlight	 the	 importance	of	 relating	33	

decoding	results	to	behaviour,	and	suggest	a	suitable	methodology	towards	this	aim.		34	

	 	35	
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1	Introduction	36	

Multivariate	pattern	analysis	(MVPA),	also	called	brain	decoding,	are	a	powerful	tool	to	establish	37	

statistical	dependencies	between	experimental	conditions	and	brain	activation	patterns	(Carlson,	38	

Schrater,	 &	 He,	 2003;	 Cox	 &	 Savoy,	 2003;	 Haxby	 et	 al.,	 2001;	 Haynes,	 2015;	 Kamitani	 &	 Tong,	39	

2005;	Kriegeskorte,	Goebel,	&	Bandettini,	2006).	 In	 these	analyses,	an	 implicit	assumption	often	40	

made	by	experimenters	is	that	if	information	can	be	decoded,	then	this	information	is	used	by	the	41	

brain	in	behaviour	(de-Wit,	Alexander,	Ekroll,	&	Wagemans,	2016;	Ritchie,	Kaplan,	&	Klein,	2017).	42	

However,	the	decoded	information	could	be	different	(e.g.,	epiphenomenal)	from	the	signal	that	is	43	

relevant	 for	 the	brain	 (de-Wit	et	al.,	 2016;	Williams,	Dang,	&	Kanwisher,	2007),	highlighting	 the	44	

need	to	relate	decoded	 information	to	behaviour.	To	address	this,	previous	work	has	correlated	45	

decoding	performances	to	behavioural	accuracies	(e.g.,	Bouton	et	al.,	2018;	Freud,	Culham,	Plaut,	46	

&	Behrmann,	2017;	Naselaris,	Kay,	Nishimoto,	&	Gallant,	2011;	Raizada,	Tsao,	Liu,	&	Kuhl,	2010;	47	

van	Bergen,	Ji	Ma,	Pratte,	&	Jehee,	2015;	Walther,	Caddigan,	Fei-Fei,	&	Beck,	2009;	Williams	et	al.,	48	

2007).	 However,	 this	 does	 link	 decoding	 and	 behaviour	 at	 the	 level	 of	 individual	 experimental	49	

conditions.	Another	approach	has	been	 to	 compare	neural	 and	behavioural	 similarity	 structures	50	

(e.g.,	Bracci	&	op	de	Beeck,	2016;	Cohen,	Dennett,	&	Kanwisher,	2016;	Grootswagers,	Kennedy,	51	

Most,	 &	 Carlson,	 2017;	 Haushofer,	 Livingstone,	 &	 Kanwisher,	 2008;	Mur	 et	 al.,	 2013;	 Proklova,	52	

Kaiser,	 &	 Peelen,	 2016;	 Wardle,	 Kriegeskorte,	 Grootswagers,	 Khaligh-Razavi,	 &	 Carlson,	 2016).	53	

While	this	approach	allows	to	link	behaviour	and	brain	patterns	at	the	level	of	single	experimental	54	

conditions,	 it	 is	 unclear	 how	 this	 link	 carries	 over	 to	 decision	 making	 behaviour	 such	 as	55	

categorisation.	56	

	57	

Recently,	 a	 novel	 methodological	 approach,	 called	 the	 distance-to-bound	 approach	 (Ritchie	 &	58	

Carlson,	2016),	has	been	proposed	to	connect	brain	activity	directly	to	perceptual	decision-making	59	

behaviour	at	 the	 level	of	 individual	experimental	conditions.	The	 rationale	behind	 this	approach	60	
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(Carlson,	Ritchie,	Kriegeskorte,	Durvasula,	&	Ma,	2014;	Kiani,	Cueva,	Reppas,	&	Newsome,	2014;	61	

Philiastides	&	 Sajda,	 2006;	 Ritchie	&	 Carlson,	 2016)	 is	 that	 for	 decision-making	 tasks,	 the	 brain	62	

applies	a	decision	boundary	 to	a	neural	activation	 space	 (DiCarlo	&	Cox,	2007).	 Similarly,	MVPA	63	

classifiers	fit	multi-dimensional	hyperplanes	to	separate	a	neural	activation	space.	The	distance	of	64	

the	input	to	a	decision	boundary	reflects	the	ambiguity	of	the	evidence	for	the	decision	(Green	&	65	

Swets,	 1966)	 and	 thus	 predicts	 reaction	 times	 (Ashby,	 2000;	 Ashby	 &	Maddox,	 1994).	 If	 for	 a	66	

decision	 task	 (e.g.,	 categorisation),	 the	brain	 uses	 the	 same	 information	 as	 the	MVPA	 classifier,	67	

then	 the	classifier’s	hyperplane	 reflects	 the	brain’s	decision	boundary.	This	 in	 turn	predicts	 that	68	

distance	 to	 the	 classifier’s	 hyperplane	negatively	 correlates	with	 reaction	 times	 for	 the	decision	69	

task.	 Carlson	 et	 al.	 (2014)	 demonstrated	 the	 promise	 of	 the	 distance-to-bound	 approach	 in	 a	70	

region	of	interest	based	analysis	using	fMRI.	Here	we	go	beyond	this	work	by	using	the	distance-71	

to-bound	 method	 and	 a	 spatially	 unbiased	 approach	 to	 create	 maps	 of	 where	 in	 the	 brain	72	

information	can	be	used	to	guide	behaviour.	73	

	74	

2	Materials	and	Methods	75	

In	 this	 study,	 we	 separately	 localised	 information	 that	 is	 decodable,	 and	 information	 that	 is	76	

suitably	 formatted	 to	 guide	 behaviour	 in	 the	 context	 of	 decodable	 information	 about	 visual	77	

objects	and	object	categorisation	behaviour.	To	ensure	robustness	and	generality	of	our	results,	78	

we	analysed	 in	parallel	 two	 independent	 fMRI	datasets	 (Cichy	et	al.,	2014,	2016),	with	different	79	

stimulus	sets,	and	in	relation	to	partly	overlapping	categorisation	behaviours.	Overall,	this	allowed	80	

us	 to	 investigate	 the	 relationship	 between	 decodable	 information	 from	 brain	 activity	 and	81	

categorisation	 behaviour	 for	 six	 different	 distinctions:	 animate	 versus	 inanimate,	 faces	 versus	82	

bodies,	human	versus	animal,	 tools	versus	not	tools,	 food	versus	not	 food,	and	transport	versus	83	

not	food.	Note	that	the	negative	‘not-X’	category	was	defined	as	all	stimuli	that	did	fall	into	one	of	84	

the	 aforementioned	 classes.	 Categorisation	 reaction	 times	 for	 those	 stimuli	 were	 collected	 on	85	
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Amazon’s	Mechanical	Turk.	 In	this	section,	we	describe	the	two-step	searchlight	procedure	used	86	

to	create	decoding	and	correlation	maps	of	areas	involved	in	visual	object	categorisation.	87	

	88	

2.1	Experimental	design	89	

Stimuli	90	

Stimuli	for	experiment	1	consisted	of	92	visual	objects,	segmented	on	a	white	background	(Figure	91	

1A).	 Stimuli	 consisted	 of	 animate	 and	 inanimate	 objects.	 The	 animate	 objects	 could	 be	 further	92	

divided	 into	 faces,	 bodies,	 humans	 and	 animals.	 Inanimate	 objects	 consisted	 of	 natural	 (e.g.,	93	

plants	 or	 fruits)	 and	man-made	 items	 (e.g.,	 tools	 or	 houses).	 The	 stimulus	 set	 for	 experiment	 2	94	

consisted	 of	 118	 visual	 objects	 on	 natural	 backgrounds	 (Figure	 1C).	 A	 small	 proportion	 of	 the	95	

objects	 (27)	were	animate.	 The	 inanimate	objects	 included	 subcategories	 such	as	 tools,	 or	 food	96	

items.	 In	 both	 experiments,	 participants	 were	 presented	 with	 the	 visual	 object	 stimuli	 while	97	

performing	an	orthogonal	task	at	fixation.	Stimuli	were	displayed	at	2.9°	(Experiment	1)	and	4.0°	98	

(Experiment	 2)	 visual	 angle	with	 500	ms	 duration.	 Images	were	 displayed	 (overlaid	with	 a	 grey	99	

fixation	cross)	for	500	ms	in	random	order.		100	

	101	

fMRI	recordings	102	

The	 first	experiment	 (Cichy	et	al.,	2014)	had	high	 resolution	 fMRI	coverage	of	 the	ventral	 visual	103	

stream	 (Figure	 1B)	 from	 15	 participants	 with	 a	 2	 mm	 isotropic	 voxel	 resolution.	 The	 second	104	

experiment	(Cichy	et	al.,	2016)	had	whole	brain	from	15	participants	with	a	3	mm	isotropic	voxel	105	

resolution.	In	both	experiments,	at	the	start	of	a	session,	structural	images	were	obtained	using	a	106	

standard	 T1-weighted	 sequence.	 fMRI	 data	 were	 aligned	 and	 coregistered	 to	 the	 T1	 structural	107	

image,	 and	 then	 normalized	 to	 a	 standard	MNI	 template.	 General	 linear	models	 were	 used	 to	108	

compute	t-values	for	each	stimulus	(92	and	118,	respectively)	against	baseline.	109	

	110	
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Reaction	time	data	111	

We	obtained	 reaction	 times	 for	 the	 stimuli	 in	multiple	different	 categorisation	 contrasts	 (Figure	112	

1A&B).	 For	 experiment	 1,	 these	were	 animate	 versus	 inanimate,	 face	 versus	 body,	 and	 human	113	

versus	animal.	For	experiment	2,	we	tested	animate	versus	inanimate,	tool	versus	not	tool,	food	114	

versus	 not	 food,	 and	 transport	 versus	 not	 transport.	 The	 RTs	 were	 collected	 using	 Amazons	115	

Mechanical	 Turk	 (MTurk).	 For	 each	 of	 the	 categorisation	 contrasts,	 50	 unique	 participants	116	

performed	a	categorisation	task	using	the	same	stimuli	as	were	used	in	collecting	the	fMRI	data.	117	

Participants	were	instructed	to	“Categorise	the	images	as	fast	and	accurate	as	possible	using	the	118	

following	keys:	(z	for	X,	m	for	Y)”,	where	X	and	Y	would	be	replaced	with	the	relevant	categories	119	

(e.g.,	animate	and	inanimate)	for	the	contrast.	On	each	trial,	an	image	was	presented	for	500ms,	120	

followed	by	a	black	screen	until	the	participant’s	response	(Figure	1C).	The	presentation	order	of	121	

the	stimuli	was	randomized	and	stimuli	did	not	repeat.	This	resulted	in	50	reaction	time	values	per	122	

exemplar	 (one	 for	 each	 participant).	 Each	 participant’s	 reaction	 times	 were	 z-scored.	 Next,	 we	123	

computed	 the	median	 reaction	 time	 (across	participants)	 for	each	exemplar.	his	 resulted	 in	one	124	

reaction	time	value	per	exemplar,	which	were	used	in	the	rest	of	the	study.	125	

	126	

2.2	Statistical	Analysis	127	

Searchlight	procedure	128	

For	each	categorisation	contrast	and	subject,	we	used	a	searchlight	approach	(Haynes	et	al.,	2007;	129	

Kriegeskorte	 et	 al.,	 2006)	 to	 create	 maps	 of	 decoding	 accuracy	 and	 of	 correlations	 between	130	

distance	 to	 the	classifier	boundary	and	categorisation	 reaction	 times.	 In	 contrast	 to	pre-defined	131	

ROI’s,	which	 are	 used	 to	 test	 a-priori	 hypotheses	 about	 the	 spatial	 origin	 of	 information	 in	 the	132	

brain,	the	searchlight	results	in	a	spatially	unbiased	map	of	decodable	information.	An	overview	of	133	

the	approach	is	presented	in	Figure	1D.	134	

	135	
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To	 create	 the	 decoding	 accuracy	 maps,	 we	 used	 a	 standard	 searchlight	 decoding	 approach	136	

(Grootswagers,	Wardle,	&	Carlson,	2017;	Haynes,	2015;	Kriegeskorte	et	al.,	2006;	Pereira,	Mitchell,	137	

&	Botvinick,	2009),	as	implemented	in	the	CoSMoMVPA	decoding	toolbox	(Oosterhof,	Connolly,	&	138	

Haxby,	2016).	In	detail,	at	each	spatial	location	(voxel)	in	an	fMRI	image,	a	support	vector	machine	139	

(SVM)	was	used	to	classify	visual	object	category	based	on	local	brain	patterns,	resulting	in	a	map	140	

of	 classification	 accuracies.	 We	 then	 determined	 the	 subset	 of	 the	 locations	 at	 which	 brain	141	

patterns	were	suitably	formatted	for	read-out	by	the	brain	using	the	distance-to-bound	approach	142	

(Ritchie	&	Carlson,	2016)	 in	a	second	searchlight	analysis.	Analogous	to	the	decoding	analysis,	at	143	

each	voxel,	an	SVM	was	trained	to	classify	visual	objects.	Diverging	at	this	point	from	the	decoding	144	

approach	we	did	not	test	the	classifier,	but	rather	obtained	the	distance	for	each	exemplar	to	the	145	

hyperplane	 set	 by	 the	 SVM.	We	 then	 correlated	 those	 distances	 to	 reaction	 times	 acquired	 in	146	

separate	 categorisation	 tasks.	 The	 contribution	 of	 each	 category	 was	 assessed	 individually,	 by	147	

performing	 the	 correlations	 separately	 for	 the	 two	 sides	 of	 the	 categorisation	 (e.g.,	 one	148	

correlation	 for	 animate	 and	 one	 for	 inanimate	 exemplars).	 For	 each	 categorisation	 task	 this	149	

resulted	 in	 two	 correlation	maps	 per	 subject.	 The	maps	 of	 decoding	 accuracy	 and	 correlations	150	

were	 assessed	 for	 significance	 at	 the	 group	 level	 using	 sign-rank	 tests	 for	 random-effects	151	

inference.	The	results	were	thresholded	at	p<0.05,	using	the	false	discovery	rate	(FDR;	(Benjamini	152	

&	Hochberg,	1995))	to	correct	for	multiple	comparisons	at	the	voxel	level.	153	

	154	

Relating	the	results	to	topographical	locations	of	the	visual	system	155	

For	each	of	the	categorisation	contrasts,	we	identified	the	locations	of	the	significant	voxels	with	156	

respect	to	ROIs	of	the	visual	system.	The	significant	voxels	in	the	decoding	maps	and	correlation	157	

maps	 were	 compared	 to	 probabilistic	 topographic	 maps	 of	 visual	 processing	 areas	 (Wang,	158	

Mruczek,	Arcaro,	&	Kastner,	2015),	which	represent	for	each	voxel	the	visual	area	with	the	highest	159	

probability.	 A	 percentage	 score	 for	 each	 ROI	 was	 then	 computed,	 reflecting	 the	 percentage	 of	160	
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voxels	in	this	ROI	that	were	significant	at	the	group	level.	We	obtained	a	bootstrapped	distribution	161	

of	 percentage	 scores	 for	 each	 ROI	 by	 repeating	 this	 procedure	 10,000	 times,	 while	 randomly	162	

sampling	the	subjects	with	replacement	and	recomputing	the	group	level	statistics.	We	report	the	163	

5th,	50th	and	95th	percentiles	of	this	distribution.	This	approach	allows	quantifying	the	difference	164	

between	the	number	of	decoding	voxels	and	correlation	voxels	per	visual	ROI.	165	

	166	
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Figure	 1.	 General	 experimental	 rationale.	 Stimuli	 (A,C)	 used	 to	map	 fMRI	 brain	 responses	 and	167	

brain	coverage	(B,C)	for	fMRI	study	1	and	2	respectively.	E.	Acquisition	of	reaction	times	on	object	168	

categorisation	tasks.	Reaction	times	for	categorisation	contrasts	were	collected	in	a	different	pool	169	

of	participants	than	the	ones	participating	 in	the	fMRI	experiment.	On	each	trial,	a	stimulus	was	170	

displayed	 for	 250ms,	 and	 participants	 categorised	 it	 into	 two	 categories	 (exemplarily	 here:	171	

animate	 vs	 inanimate)	 by	 pressing	 one	 of	 two	 keys.	 F.	 The	 two-partite	 approach	 to	 separately	172	

localize	decodable	information	and	information	that	is	suitable	for	read	out	in	behaviour.	For	both	173	

parts,	 a	 local	 cluster	of	neighbouring	voxels	 (i.e.,	 searchlight)	was	used	 to	 train	a	 linear	 support	174	

vector	 machine	 (SVM)	 on	 an	 image	 category	 classification	 task	 (e.g.,	 animacy).	 To	 localize	175	

decodable	 information,	 the	 classifier	 was	 tested	 on	 left-out	 data,	 storing	 the	 classification	176	

accuracy	at	the	centre	voxel	of	the	searchlight.	To	localise	information	that	was	suitably	formatted	177	

for	 read-out	 in	 a	 categorisation	 task,	 the	 distances	 of	 objects	 to	 the	 classifier	 hyperplane	were	178	

correlated	with	 the	 reaction	 times	 for	 the	 same	 object	 images	 on	 the	 same	 classification	 task.	179	

Repeated	 for	every	voxel,	 this	 resulted	 for	each	 subject	 in	one	map	of	decoding	accuracies	and	180	

one	 of	 correlations.	 For	 visualisation,	 significant	 correlation	 voxels	 were	 superimposed	 on	181	

significant	decoding	accuracy	voxels,	each	showing	group	average	values	in	significant	voxels.	182	

	183	

3	Results	184	

We	 examined	 the	 relationship	 between	 decodable	 information	 and	 information	 that	 is	 suitably	185	

formatted	for	read-out	by	the	brain	in	the	context	of	decodable	information	about	visual	objects	186	

and	 object	 categorisation	 behaviour.	 We	 determined	 the	 relationship	 between	 decodable	187	

information	and	behaviour	 separately.	 First,	we	determined	where	 information	about	objects	 is	188	

present	in	brain	patterns	using	decoding	in	a	standard	fMRI	searchlight	decoding	analysis	(Haynes	189	

et	al.,	2007;	Kriegeskorte	et	al.,	2006).	We	then	determined	the	subset	of	the	locations	at	which	190	

brain	 patterns	 were	 suitably	 formatted	 for	 read-out	 by	 the	 brain	 using	 the	 distance-to-bound	191	

approach	 (Ritchie	 &	 Carlson,	 2016)	 in	 a	 second	 searchlight	 analysis.	 The	 subject-specific	192	

searchlight	 results	were	 subjected	 to	 inference	 statistics	at	 the	group	 level	using	one-sided	 sign	193	

rank	tests	and	thresholded	at	p	<	0.05	(fdr-corrected	for	multiple	comparisons	across	voxels).	194	

	195	
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3.1	A	subset	of	locations	that	have	decodable	information	about	animacy	also	had	information	196	

suitably	formatted	for	animacy	categorisation	behaviour	197	

Animacy	is	a	pervasive	and	basic	object	property	according	to	which	any	object	can	be	classified	as	198	

animate	or	inanimate	(Caramazza	&	Shelton,	1998).	Previous	studies	have	shown	that	the	division	199	

of	animate	versus	inanimate	objects	is	reflected	in	the	large-scale	architecture	of	high-level	visual	200	

areas	 such	 as	 the	 ventral	 temporal	 cortex	 (VTC)	 (Caramazza	 &	 Shelton,	 1998;	 Grill-Spector	 &	201	

Weiner,	2014;	Kriegeskorte	et	al.,	 2008),	However,	 it	has	also	been	 shown	 that	animacy	 can	be	202	

decoded	not	 only	 from	VTC,	 but	 from	 the	whole	 ventral	 visual	 stream	 (Cichy	 et	 al.,	 2016;	Grill-203	

Spector	 &	Weiner,	 2014;	 Long,	 Yu,	 &	 Konkle,	 2017).	 Furthermore,	 categorical	 object	 responses	204	

have	also	been	found	in	the	dorsal	visual	stream	(Bracci,	Daniels,	&	op	de	Beeck,	2017;	Freedman	205	

&	Assad,	2006;	Konen	&	Kastner,	2008)	and	 in	 frontal	areas	 (Freedman,	Riesenhuber,	Poggio,	&	206	

Miller,	 2001,	 2003).	 This	 prompts	 the	 question	 of	 where	 in	 the	 visual	 system	 object	207	

representations	are	suitably	formatted	for	read-out	by	the	brain	for	animacy	decisions.	208	

	209	

Corroborating	 previous	 studies,	 we	 found	 decodable	 information	 about	 animacy	 in	 the	 entire	210	

ventral	visual	stream	from	the	occipital	pole	to	anterior	ventral	temporal	cortex	(Figure	2AB,	Table	211	

1AD,	N	=	15,	one-sided	 sign-rank	 test,	 p	<	0.05	 fdr-corrected).	 In	 addition,	we	 found	decodable	212	

information	 in	 dorsal	 and	 prefrontal	 cortex	 (Figure	 2B)	 in	 experiment	 2	 which	 had	 full	 brain	213	

coverage.	Localising	the	brain	representations	suitable	to	guide	animacy	categorisation	behaviour	214	

(using	 the	 distance-to-bound	 approach)	 revealed	 convergent	 evidence	 across	 experiments	 that	215	

only	a	subset	of	voxels	containing	decodable	information	fulfilled	this	criterion.	In	detail,	distance-216	

RT-correlations	for	animate	objects	were	strongest	in	the	high-level	regions	of	the	ventral	and	the	217	

dorsal	stream.	For	inanimate	objects,	we	found	no	voxels	with	significant	distance-RT-correlations	218	

(Carlson	et	al.,	2014;	Grootswagers,	Ritchie,	Wardle,	Heathcote,	&	Carlson,	2017).	219	

	220	
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	221	

Figure	 2.	 Relationship	 between	 decodable	 information	 and	 categorisation	 behaviour	 for	222	

animacy.	A.	In	experiment	1,	decodable	animacy	information	(hot	colours)	was	found	throughout	223	

the	ventral	stream.	A	correlation	between	distance	to	the	classifier	boundary	and	reaction	time	for	224	
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animate	stimuli	(cool	colours)	was	found	in	a	subset	of	these	areas.	B.	The	results	of	the	analysis	225	

for	 experiment	 2	 corroborated	 these	 findings,	 and	 showed	 decodable	 information	 in	 prefrontal	226	

areas	and	in	the	dorsal	visual	stream.	Correlations	between	distance	and	reaction	time	were	also	227	

present	 in	 the	 dorsal	 stream.	 Visualizations	 show	 average	 results	 across	 subjects	 in	 significant	228	

voxels	 (N=15,	 sign-rank	 test,	 p<0.05	 fdr-corrected)	 projected	 onto	 axial	 slices	 of	 a	 standard	 T1	229	

image	in	MNI	space.	230	

Contrast	 #significant	

voxels	

Max/min	 uncorr.	

p-value	

X	 Y	 Z	

A)	decoding	'animate'	vs	'inanimate'	(exp	1)	 11745	 0.80	 0.0000	 36	 -52	 -15	

				Distance-RT-correlation	'animate'	 6410	 -0.38	 0.0000	 38	 -58	 -19	

				Distance-RT-correlation	'inanimate'	 0	 -0.16	 0.0021	 -48	 -58	 5	

B)	decoding	'human'	vs	'animal'	 4863	 0.69	 0.0000	 22	 -90	 -13	

				Distance-RT-correlation	'human'	 0	 -0.29	 0.0002	 30	 -58	 -15	

				Distance-RT-correlation	'animal'	 0	 -0.17	 0.0072	 48	 -46	 -4	

C)	decoding	'face'	vs	'body'	 10661	 0.84	 0.0000	 44	 -78	 -10	

				Distance-RT-correlation	'face'	 226	 -0.32	 0.0000	 40	 -76	 -15	

				Distance-RT-correlation	'body'	 0	 -0.20	 0.0000	 -54	 -68	 16	

D)	decoding	'animate'	vs	'inanimate'	(exp	2)	 8824	 0.80	 0.0000	 36	 -55	 -11	

				Distance-RT-correlation	'animate'	 2015	 -0.34	 0.0000	 51	 -73	 -2	

				Distance-RT-correlation	'inanimate'	 0	 -0.12	 0.0002	 -21	 -43	 -2	

E)	decoding	'tool'	vs	'not	tool'	 0	 0.58	 0.0002	 -30	 -94	 7	

				Distance-RT-correlation	'tool'	 0	 -0.25	 0.0013	 -33	 -13	 19	

				Distance-RT-correlation	'not	tool'	 0	 -0.24	 0.0001	 -33	 -52	 -17	

F)	decoding	'transport'	vs	'not	transport'	 0	 0.59	 0.0001	 33	 -94	 1	

				Distance-RT-correlation	'transport'	 0	 -0.32	 0.0003	 15	 50	 4	

				Distance-RT-correlation	'non-transport'	 0	 -0.18	 0.0000	 -33	 -55	 -14	

G)	decoding	'food'	vs	'not	food'	 1092	 0.62	 0.0002	 36	 -55	 -14	

				Distance-RT-correlation	'food'	 0	 -0.16	 0.0177	 -18	 26	 -5	

				Distance-RT-correlation	'not	food'	 154	 -0.13	 0.0002	 27	 -40	 -14	

Table	 1.	 Results	 for	 all	 categorisation	 contrasts.	 For	 all	 categorisation	 contrasts,	we	 report	 the	231	

number	of	significant	voxels	(after	correction	for	multiple	comparisons),	its	peak	value	(maximum	232	

for	 decoding	 or	minimum	 for	 distance-RT-correlation)	 and	 uncorrected	 p-value,	 and	 the	 peak’s	233	

location	in	MNI-XYZ	coordinates.	234	
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3.2	The	proportion	of	region-specific	representations	suitably	formatted	for	behaviour	increases	235	

along	the	ventral	stream	and	decreases	along	the	dorsal	stream	236	

We	next	explicitly	determined	the	degree	to	which	representations	in	single	brain	regions	within	237	

the	ventral	and	dorsal	streams	are	suitably	 formatted	for	behaviour.	For	this	we	parcellated	the	238	

cortex	 (Figure	3A)	using	a	probabilistic	 topographic	map	of	visual	processing	areas	 (Wang	et	al.,	239	

2015).	For	each	 region,	we	calculated	 the	 ratio	between	 the	number	of	 significant	voxels	 in	 the	240	

decoding	analysis	and	the	total	number	of	voxels,	so	that	a	high	ratio	indicates	that	a	large	part	of	241	

a	region	contains	object	representations	with	categorical	information.	Similarly,	we	calculated	the	242	

ratio	 between	 the	 number	 of	 significant	 voxels	 in	 the	 distance-to-bound	 analysis	 and	 the	 total	243	

number	 of	 voxels.	 Here,	 a	 high	 ratio	 indicates	 that	 a	 large	 part	 of	 a	 region	 contains	 object	244	

representations	that	are	suitably	formatted	for	read	out	in	a	categorisation	task.	245	

	246	

In	the	ventral	stream,	we	observed	a	systematic	increase	in	ratio	with	processing	stage,	from	early	247	

visual	 areas	 to	 high-level	 visual	 areas,	 with	 highest	 ratios	 in	 ventral	 occipital	 (VO)	 and	248	

parahippocampal	 (PHC)	 cortex	 (Figure	 3	 B&C).	 In	 contrast,	 in	 the	 dorsal	 stream	we	 observed	 a	249	

systematic	decrease	of	the	correlation	ratio	with	processing	stage.	In	addition,	significant	animacy	250	

decoding	information	was	found	in	similar	proportions	in	the	ventral-temporal	areas	as	in	lateral-251	

occipital	areas,	however,	the	proportion	of	voxels	with	information	suitable	for	categorisation	was	252	

lower	 in	 lateral-occipital	 areas.	 This	 is	 consistent	with	 the	 notion	 that	while	 both	 these	 regions	253	

contain	 object	 representations,	 the	 VTC	 contains	 location-invariant	 representations	 which	 are	254	

essential	for	object	categorisation	(Cichy	et	al.,	2013;	Haushofer	et	al.,	2008;	Schwarzlose,	Swisher,	255	

Dang,	&	Kanwisher,	2008;	Williams	et	al.,	2007).	256	

	257	

In	sum,	these	results	show	that	representations	along	the	ventral	stream	are	shaped	for	optimal	258	

read-out	of	categorical	information	(Cichy	et	al.,	2013;	Grill-Spector	&	Weiner,	2014).	In	contrast,	259	
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representations	in	the	dorsal	stream	might	be	shaped	for	the	read-out	in	different	tasks	(Bracci	et	260	

al.,	2017;	Freud	et	al.,	2017).	These	results	also	suggest	that	intermediate	stages	along	the	ventral	261	

and	 dorsal	 streams	 may	 be	 similar	 or	 partly	 shared,	 as	 suggested	 by	 the	 similar	 ratios	 of	262	

information	suitable	for	read-out.	263	

	264	

	265	

Figure	 3.	 Quantifying	 the	 decodable	 information	 in	 visual	 areas	 and	 their	 contribution	 to	266	

categorisation	behaviour.	A.	 Locations	of	 topographical	 ROIs	 of	 the	 visual	 system	 (Wang	et	 al.,	267	

2015),	containing	early	visual	cortex	(EVC)	areas	V1	and	V2,	mid-level	areas	V3	and	hV4,	high	level	268	

ventral	 occipital	 (VO)	 and	 parahippocampal	 cortex	 (PHC),	 temporal	 occipital	 (TO)	 and	 lateral	269	

occipital	(LO)	areas,	areas	in	the	intra-parietal	sulcus	(IPS),	the	superior	parietal	lobule	(SPL),	and	270	
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the	frontal	eye	fields	(FEF).	B-C.	The	ratio	between	significant	voxels	in	an	ROI	and	the	size	of	the	271	

ROI.	Orange	points	show	the	ratio	of	voxels	within	the	ROI	that	had	significant	animacy	decoding	272	

performance.	Blue	points	show	the	ratio	of	voxels	with	a	significant	correlation	between	distance	273	

to	the	hyperplane	and	RT	for	‘animate’.	The	lower,	middle	and	upper	points	on	these	lines	indicate	274	

5th,	50th,	and	95th	percentiles	(bootstrapping	of	participants	10,000	times).	These	results	quantify	275	

the	 increasing	 contribution	 of	 early	 to	 late	 areas	 in	 the	 ventral	 visual	 stream	 to	 animacy	276	

categorisation	behaviour.	277	

	278	

3.3	Decodable	information	about	subordinate	categorisation	tasks	is	also	suitably	formatted	for	279	

categorisation	behaviour	280	

While	 animacy	 categorisation	 may	 be	 based	 on	 large-scale	 representational	 differences	 in	 the	281	

visual	 brain	 (Carlson,	 Tovar,	 Alink,	 &	 Kriegeskorte,	 2013;	 Downing,	 Chan,	 Peelen,	 Dodds,	 &	282	

Kanwisher,	 2006;	 Grill-Spector	 &	 Weiner,	 2014;	 Kriegeskorte	 et	 al.,	 2008),	 subordinate	283	

categorisation	tasks	(e.g.,	faces,	bodies,	tools)	may	depend	more	on	fine	grained	patterns	in	focal	284	

brain	regions	(Downing,	Jiang,	Shuman,	&	Kanwisher,	2001;	Downing	&	Peelen,	2016;	Kanwisher,	285	

McDermott,	&	Chun,	1997).	Here,	we	 tested	whether	decodable	 information	about	 subordinate	286	

category	membership	is	also	suitably	formatted	for	read	out	in	respective	categorisation	tasks.	We	287	

tested	 two	subordinate	contrasts	 for	experiment	1:	 face	versus	body,	and	human	versus	animal	288	

using	the	same	general	procedure	as	for	animacy.	We	found	that	both	contrasts	were	decodable	289	

(Table	1B-C).	We	found	a	significant	correlation	between	distance	to	the	classifier	hyperplane	and	290	

reaction	time	for	faces	in	the	face	versus	body	task	(Figure	4A).	Of	the	subordinate	categorisation	291	

contrasts	 in	 experiment	 2	 (food,	 transport	 or	 tool	 versus	 everything	 else),	 transport	 and	 tool	292	

versus	 everything	 else	 were	 not	 significantly	 decodable	 information	 nor	 had	 they	 significant	293	

correlations	(Table	1E-F).	Food	versus	not	food	resulted	in	significant	decodable	information,	and	294	

significant	 distance-RT	 correlations	 were	 present	 for	 this	 contrast	 in	 the	 ‘not	 food’	 category	295	

(Figure	 4B,	 Table	 1G).	 Taken	 together,	 for	 some	 subordinate	 categorisation	 contrasts	 that	were	296	
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decodable,	 we	 were	 successful	 in	 localising	 brain	 patterns	 suitably	 formatted	 for	 read-out	 in	297	

behaviour.	298	

	299	
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Figure	 4.	 Relationship	 between	 decodable	 information	 and	 behaviour	 for	 subordinate	300	

categorisation	 tasks.	A.	 In	 experiment	 1,	 decodable	 face	 versus	 body	 information	 (hot	 colours)	301	

was	found	in	the	entire	ventral	stream.	A	distance-RT-correlation	for	the	face	stimuli	(cool	colours)	302	

was	found	in	a	subset	of	these	areas.	B.	In	experiment	2,	food	versus	not	food	was	decodable	in	303	

some	areas	 in	 the	ventral	visual	 stream.	A	distance-RT-correlation	 for	 the	 ‘not	 food’	stimuli	was	304	

found	in	a	subset	of	these	areas.	Visualisations	show	average	results	across	subjects	in	significant	305	

voxels	 (N=15,	 sign-rank	 test,	 p<0.05	 fdr-corrected)	 projected	 onto	 axial	 slices	 of	 a	 standard	 T1	306	

image	in	MNI	space.	307	

	308	

4	Discussion	309	

4.1	Dissociating	between	decodable	information	and	information	that	is	used	in	behaviour		310	

The	 aim	 of	 this	 study	 was	 to	 examine	 where	 in	 the	 brain	 decodable	 information	 is	 suitably	311	

formatted	for	read-out	by	the	brain	in	behaviour.	We	found	that	only	a	subset	of	information	that	312	

is	decodable	could	be	related	to	behaviour	using	 the	distance-to-bound	approach,	which	argues	313	

for	 a	 partial	 dissociation	 between	 decodable	 information	 and	 information	 that	 is	 relevant	 for	314	

behaviour.	This	speaks	to	a	current	challenge	in	neuroimaging,	which	is	to	show	that	information	315	

visible	to	the	experimenter	is	in	fact	used	by	the	brain	(de-Wit	et	al.,	2016;	Ritchie	et	al.,	2017).	To	316	

illustrate,	 consider	 the	question	about	what	 regions	are	used	by	 the	brain	 to	perform	an	object	317	

animacy	categorisation	task	(DiCarlo,	Zoccolan,	&	Rust,	2012;	Grill-Spector	&	Weiner,	2014).	On	its	318	

own,	 the	 result	 of	 the	 animacy	 decoding	 searchlight	 might	 be	 interpreted	 as	 the	 brain	 using	319	

animacy	 information	 from	 anywhere	 in	 the	 ventral	 stream.	 However,	 when	 investigating	 this	320	

interpretation	 directly	 using	 the	 distance-RT-correlation	 results,	 it	 becomes	 clear	 that	 object	321	

animacy	information	is	represented	for	read-out	in	mid-	and	high-level	visual	areas	only.	322	

	323	

It	is	important	to	note	that	not	finding	a	correlation	between	distance	to	the	classifier	hyperplane	324	

and	RT	does	not	imply	that	the	information	revealed	using	the	decoding	approach	is	irrelevant	or	325	

epiphenomenal.	 The	 distance-to-bound	 approach	 taken	 here	makes	 specific	 assumptions	 about	326	
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the	 brain’s	 read-out	 process,	 such	 as	 distance	 in	 representational	 space	 as	 the	 measure	 for	327	

evidence,	 and	a	 rank-order	 relationship	between	distance	 and	 reaction	 time	 (Ritchie	&	Carlson,	328	

2016).	 Other	 assumptions	 follow	 from	 those	 imposed	 by	 the	 decoding	 approach,	 such	 as	 the	329	

binary	classification,	the	size	of	the	searchlight	radius,	and	the	choice	of	classifier.	For	example,	it	330	

could	be	 that	 the	 representations	 are	 relevant	 in	 a	 different	 task	 (Grootswagers,	 Ritchie,	 et	 al.,	331	

2017;	 Ritchie	 &	 Carlson,	 2016),	 or	 that	 read-out	 involves	 pooling	 over	 larger	 spatial	 scales	 or	332	

multiple	 brain	 areas.	 Therefore,	 the	 current	 approach	only	 allows	 the	positive	 inference	on	 the	333	

level	 of	 suitability	 of	 decoded	 information	 for	 behaviour	 in	 the	 context	 of	 the	 current	 task	 and	334	

decoding	parameters.	On	 the	other	hand,	a	 correlation	with	behaviour	 still	does	not	prove	 that	335	

the	information	is	used	by	the	brain,	but	 it	shows	that	the	information	is	at	 least	formatted	in	a	336	

way	that	 is	suitable	to	be	used	by	the	brain	 for	decisions.	Future	work	can	use	causal	measures	337	

(e.g.,	TMS)	targeting	the	areas	highlighted	in	the	current	results.	338	

	339	

4.2	The	contribution	of	ventral	and	dorsal	visual	regions	to	categorisation	behaviour	340	

We	 found	 that	 neural	 representations	 suitably	 formatted	 for	 behaviour	 in	 categorisation	 were	341	

most	prominently	 located	 in	 the	anterior	 regions	of	 the	VTC.	This	corroborates	previous	studies	342	

(Afraz,	 Kiani,	&	 Esteky,	 2006;	 Carlson	 et	 al.,	 2014;	Hong,	 Yamins,	Majaj,	&	DiCarlo,	 2016;	Hung,	343	

Kreiman,	 Poggio,	 &	 DiCarlo,	 2005),	 and	 reinforces	 the	 tight	 link	 between	 VTC	 and	 visual	344	

categorisation	behaviour.	In	these	areas,	our	results	provide	converging	evidence	for	the	(implicit)	345	

assumption	 made	 in	 neuroimaging	 studies,	 which	 is	 that	 information	 that	 is	 available	 to	 the	346	

experimenter	is	also	available	for	read	out	by	the	brain	in	behaviour	(cf.	de-Wit	et	al.,	2016).	347	

	348	

However,	we	found	that	correlations	between	distance	to	boundary	and	RT	were	not	restricted	to	349	

anterior	 regions	of	 the	VTC,	but	were	also	prominent	 in	V3	and	hV4.	This	 is	 consistent	with	 the	350	

view	that	lower	level	visual	features	encoded	in	mid-level	visual	regions	could	aid	faster	read-out	351	
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of	 category	 information.	 V4	 is	 thought	 of	 as	 an	 intermediate	 stage	 of	 visual	 processing	 that	352	

aggregates	 lower	 level	 visual	 features	 into	 invariant	 representations	 (Riesenhuber	 &	 Poggio,	353	

1999).	 It	 has	 been	 proposed	 that	 direct	 pathways	 from	V4	 to	 decision	 areas	 allow	 the	 brain	 to	354	

exploit	visual	feature	cues	for	fast	responses	to	ecologically	important	stimuli	(Hong	et	al.,	2016;	355	

Kirchner	 &	 Thorpe,	 2006;	 Thorpe,	 Fize,	 &	 Marlot,	 1996),	 such	 as	 identifying	 faces	 (Crouzet,	356	

Kirchner,	&	Thorpe,	2010;	Honey,	Kirchner,	&	VanRullen,	2008).	An	alternative	possibility	 is	 that	357	

read	out	is	not	happening	directly	from	V4,	but	its	representational	structure	is	shaped	by	the	low-358	

level	 feature	 differences	 in	 animacy.	 This	 structure	 is	 then	 largely	 preserved	 when	 it	 is	359	

communicated	to	more	anterior	areas,	 leading	to	similar	distance-RT-correlations.	Both	of	 these	360	

accounts	 are	 also	 consistent	 with	 recent	 findings	 that	 show	 differential	 responses	 for	 object	361	

categories	in	mid-level	visual	areas	(Long	et	al.,	2017;	Proklova	et	al.,	2016).	The	extent	to	which	362	

visual	 features	 contribute	 to	 the	 read-out	 process	 could	 be	 further	 investigated	 by	 using	 the	363	

approach	 from	 this	 study	 with	 different	 stimulus	 sets	 that	 control	 for	 these	 features	 (Kaiser,	364	

Azzalini,	&	Peelen,	2016;	Long	et	al.,	2017;	Proklova	et	al.,	2016).	365	

	366	

We	 found	 that	 distance-RT-correlations	 were	 also	 present	 in	 early	 parietal	 areas.	 The	 classical	367	

view	is	that	the	ventral	and	dorsal	visual	streams	are	recruited	for	different	function	(Ungerleider	368	

&	Mishkin,	1982).	However,	areas	 in	 the	ventral	and	dorsal	 streams	have	been	 found	 to	exhibit	369	

similar	object-selective	responses	(Freud	et	al.,	2017;	Konen	&	Kastner,	2008;	Sereno	&	Maunsell,	370	

1998;	 Silver	&	Kastner,	 2009).	 Consistent	with	 this,	we	 found	 similar	RT-distance-correlations	 in	371	

mid-level	 areas	 in	 the	 ventral	 and	 dorsal	 streams.	 However,	 our	 results	 also	 showed	 that	 the	372	

proportion	 of	 correlations	 decreased	 along	 the	 dorsal	 stream,	 while	 they	 increased	 along	 the	373	

ventral	 stream.	 This	 suggests	 that	 representations	 in	 the	 ventral	 and	 dorsal	 streams	 undergo	374	

similar	transformations	at	first,	and	then	diverge	for	different	goals.	375	

	376	
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4.3	 Without	 a	 task,	 neural	 object	 representations	 in	 the	 VTC	 are	 formatted	 for	 read-out	 in	377	

categorisation	decisions	378	

Here,	 the	 fMRI	 participants	 performed	 an	 orthogonal	 task,	 and	 were	 not	 actively	 categorising.	379	

Despite	 this,	 categorisation	 reaction	 times	 could	 still	 be	 predicted	 from	 representations	 in	 the	380	

visual	stream.	This	highlights	that,	without	a	categorisation	task,	information	in	the	visual	system	381	

is	 represented	 in	 a	way	 that	 is	 suitable	 for	 read	 out	 in	 behaviour	 (Carlson	 et	 al.,	 2014;	 Ritchie,	382	

Tovar,	&	Carlson,	2015).	In	addition,	the	orthogonal	task	in	the	scanner	has	the	advantage	that	it	383	

avoids	RT-	 and	difficulty	 confounds	 (see	e.g.,	Hebart	&	Baker,	 2017;	Woolgar,	Golland,	&	Bode,	384	

2014).	 Future	 studies	 might	 use	 the	 distance-to-bound	 approach	 with	 participants	 actively	385	

performing	 the	 same	 task	 in	 the	 scanner,	where	we	predict	 that	 areas	 involved	 in	 the	 decision	386	

making	and	execution	processes	would	contain	information	that	correlates	with	reaction	time.	For	387	

example,	 some	 areas	 preferentially	 represent	 task-relevant	 information,	 such	 as	 areas	 in	 the	388	

prefrontal	cortex	 (Duncan,	2001;	 Jackson,	Rich,	Williams,	&	Woolgar,	2016;	Woolgar,	 Jackson,	&	389	

Duncan,	2016),	and	in	the	parietal	stream	(Bracci	et	al.,	2017;	Freedman	&	Assad,	2016;	Jeong	&	390	

Xu,	 2016).	 In	 the	 absence	 of	 an	 animacy	 categorisation	 task,	 one	 would	 predict	 that	 animacy	391	

information	 would	 not	 be	 strongly	 represented	 in	 these	 areas.	 Yet,	 our	 results	 showed	 that	392	

animacy	 information	 can	 be	 decoded	 from	 prefrontal	 and	 parietal	 areas	 when	 participants	393	

perform	an	orthogonal	 task.	However,	 our	 results	 also	 showed	 that	 the	animacy	 information	 in	394	

these	 areas	was	 not	 predictive	 of	 reaction	 time.	 This	 again	 highlights	 the	 dissociation	 between	395	

information	 that	 can	 be	 decoded,	 and	 information	 that	 is	 suitable	 for	 read	 out	 in	 behaviour.	 A	396	

prediction	 that	 follows	 from	 this	 is	 that	 performing	 an	 active	 object	 categorisation	 task	 in	 the	397	

scanner	 would	 change	 the	 representations	 in	 these	 task-relevant	 areas	 so	 that	 they	 become	398	

predictive	of	reaction	time	(Bugatus,	Weiner,	&	Grill-Spector,	2017;	McKee,	Riesenhuber,	Miller,	&	399	

Freedman,	2014).	400	

	401	
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4.4	Asymmetric	distance-RT-Correlations	in	binary	categorisation	tasks	402	

In	 both	 experiments,	 we	 found	 correlations	 between	 distance	 and	 reaction	 time	 for	 animate	403	

stimuli,	but	none	 for	 the	 inanimate	stimuli.	This	 is	consistent	with	previous	work	 (Carlson	et	al.,	404	

2014;	Grootswagers,	Ritchie,	et	al.,	2017;	Ritchie	et	al.,	2015),	which	argued	that	this	discrepancy	405	

might	be	caused	by	inanimate	being	a	negatively	defined	category	(i.e.,	“not	animate”).	Under	this	406	

hypothesis	the	animacy	categorisation	task	can	be	performed	by	collecting	evidence	for	animate	407	

stimuli	and	responding	inanimate	only	when	not	enough	evidence	was	accumulated	after	a	certain	408	

amount	 of	 time.	 Here,	 we	 tested	 a	 prediction	 of	 this	 hypothesis	 by	 contrasting	 two	 positively	409	

defined	categories,	face	versus	body,	and	found	that	there	was	a	distance-RT-correlation	only	for	410	

faces.	This	goes	against	the	notion	of	the	negative	definition	of	inanimate	as	the	main	reason	for	a	411	

lack	of	correlation.	However,	it	still	is	possible	that	observers	still	treated	these	tasks	as	‘A’	or	‘NOT	412	

A’,	with	 ‘A’	being	the	category	 that	 is	easiest	 to	detect	 (Grootswagers,	Ritchie,	et	al.,	2017).	For	413	

example,	perceptual	evidence	for	a	face	would	be	easier	to	obtain	that	evidence	for	a	body-part,	414	

as	faces	share	low	level	visual	features	(Crouzet	&	Thorpe,	2011;	Honey	et	al.,	2008;	Wu,	Crouzet,	415	

Thorpe,	&	Fabre-Thorpe,	2015).	Thus,	while	not	explicitly	specified	as	a	negative	category,	it	could	416	

have	been	treated	as	such.	417	

	418	

This	 suggest	 that	 the	 binary	 categorisation	 might	 be	 an	 unnatural	 way	 of	 approaching	 human	419	

categorisation	behaviour	 in	 the	 real	world.	Other	 operationalisations	 such	 as	 picture	naming	or	420	

visual	 search	may	be	better	 suited	 to	 capture	 the	 relevant	behaviours	 (cf.	 Krakauer,	Ghazanfar,	421	

Gomez-Marin,	MacIver,	&	Poeppel,	2017).	Still,	it	is	important	to	note	that	the	binary	task	matches	422	

the	brain	decoding	task	performed	by	the	classifier.	The	above-chance	decoding	accuracy	 in	 the	423	

brain	decoding	task	is	commonly	interpreted	as	a	similar	dichotomy	in	the	brain’s	representation	424	

that	the	brain	can	use	in	a	decision.	However,	when	only	the	information	in	one	of	the	categories	425	
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(i.e.,	 animals	 or	 faces)	 can	 be	 used	 to	 predict	 decision	 behaviour,	 as	 shown	 here,	 then	 this	426	

interpretation	needs	to	be	revisited.	427	

	428	

4.5	Conclusion	429	

In	 this	 study,	 we	 combined	 the	 distance-to-bound	 approach	 (Ritchie	 &	 Carlson,	 2016)	 with	 a	430	

searchlight	decoding	analysis	 to	 find	brain	areas	with	decodable	 information	 that	 is	 suitable	 for	431	

read-out	 in	 behaviour.	 Our	 results	 showed	 that	 decodable	 information	 is	 not	 always	 equally	432	

suitable	for	read-out	by	the	brain	in	behaviour.	This	speaks	to	the	current	debate	in	neuroimaging	433	

research	about	whether	the	information	that	we	can	decode	is	the	same	information	that	is	used	434	

by	the	brain	in	behaviour	(de-Wit	et	al.,	2016).	435	

	436	
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