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Abstract

Clustering is routinely applied to modern high-dimensional data, including gene expres-
sion measurements from microarray and RNA-seq. Iteratively estimating the cluster centers
and assigning memberships according to pre-defined criteria, the clustering algorithms clas-
sify genes or samples to help ascertain molecular processes or sub-types. For example, the
cluster membership assignments of unlabeled single cells from massively parallel RNA-seq
experiments are used as the cell identities. However, how can we evaluate if the cluster
memberships are correctly assigned? To this end, we introduce the jackstraw methods
for unsupervised classifications that rigorously test the assignments of data features into
their clusters. By learning uncertainty in clustering the noisy data, the proposed jackstraw
methods can identify statistically significant features that truly make up the corresponding
clusters. Simulation studies using K-means clustering confirm the accuracy of the proposed
statistical significance. We consider mRNA abundances of 5981 Saccharomyces cerevisiae
genes under cell cycle. After the proposed jackstraw methods are applied for K = 6 clus-
ters, we estimate and use posterior inclusion probabilities (PIP) to select and visualize the
canonical features for their clusters. We also investigate the single cell RNA-seq (scRNA-seq)
data from a mixture of Jurkat and 293T cell lines, where individual cell identities are un-
known. The jackstraw methods evaluate cluster membership assignments of 3381 unlabeled
single cells such that the majority of multiplets are identified in an unsupervised manner.
When clustering is employed in high-dimensional data analysis, the proposed tests enable
rigorous evaluation of membership assignments that readily improve feature selection and
visualization.

Software: jackstraw package in R available at https://github.com/ncchung/jackstraw.

Abbreviations: single cell RNA sequencing (scRNA-seq), principal component analysis (PCA), posterior
inclusion probability (PIP), false discovery rate (FDR)
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Introduction

High-throughput technologies have enabled large-scale measurements of DNA, RNA, metabolites, and oth-
ers. Recent technological and experimental advancements, such as single cell RNA-seq [1,/2] and mass-
spectrometry [3}/4], have resulted in increasing challenges and opportunities for using unlabeled data and
unsupervised learning. For example, a single cell RNA-seq (scRNA-seq) technology enables gene expression
measurements of thousands of blood cells in order to elucidate molecular subtypes. Unsupervised assign-
ments of unlabeled single cells to K clusters according to their gene expression profiles provide cluster-based
cell identities. Despite diverse clustering techniques available, it has not been possible to re-use data-driven
clusters and test their membership in downstream statistical analyses without incurring artificially inflated
significance. We have developed a novel and general method to statistically test the assignment of a data
feature to a particular cluster, aiding in feature selection, dimension reduction, and visualization.

Clustering has been one of the most popular analysis methods for high-dimensional genomic data. In
the absence of external and accurate labels, clustering can identify and approximate co-regulated subsets
of genomic variables (e.g., genes, loci) or subtypes of related observations (e.g., patients, single cells). For
example, a conventional microarray study measures gene expression of samples from either control or disease
groups. Since the molecular functions of genes might not be known, the unsupervised classification of
genomic variables can help identify co-varying subsets that form molecular processes [5H7]. These clusters
and membership assignments of genes have been extensively used in the visualization of systematic patterns
and outliers [8]/9]. Recently, there have been many studies where mRNA abundances from thousands of
single cells are measured en masse using scRNA-seq [10H12]. Then, gene expression profiles of unlabeled
single cells are clustered to obtain cell identities. These cell identities, which may be related to subtypes,
lineage, or other molecular factors, are often used in downstream differential expression and other analyses.
Note that a data feature refers to either a variable or an observation, since clustering can be applied on
either dimension.

After automatically assigning observed features to K clusters that are summarized by K centers, we are
interested in testing the membership assignments of individual features. This will improve the data-driven cell
identities in scRNA-seq experiments, as well as the clustering of genomic variables to help elucidate molecular
processes. To this end, we have developed an innovative data resampling and testing scheme for unsupervised
classification that rigorously evaluates whether observed features are truly members of corresponding clusters.
By estimating p-values and posterior inclusion probabilities (PIPs), the proposed methods can identify
and visualize features that have been accurately and reliably assigned to the clusters. This bridges direct
estimation of latent variables from large-scale data and fundamental hypothesis framework, which readily
provides p-values, false discovery rates, and posterior probabilities crucial for data exploration and inference.

By utilizing a newly developed resampling technique called the jackstraw [13], the proposed methods
learn overfitting inherent in using cluster centers that are estimated from the data. In other words, the
proposed methods enable the accurate statistical testing of cluster membership while taking into account
uncertainty in the clustering algorithms. Simulation studies demonstrate accurate and favorable operating
characteristics. The joint behavior of p-values are scrutinized by conducting 100 independent simulations that
satisfy the joint null criterion |14]. Two applications are presented using two different dimensions (genomic
variables and samples) available for unsupervised classification. Yeast cell cycle microarray data |8] are used
to cluster 5981 genes into K = 6 clusters, whose statistically significant members are identified. We also
consider the scRNA-seq data from a mixture of two different cell lines [12]. By applying the proposed methods
on unlabeled single cells, we show improved classification and visualization of cell identities. These proposed
methods are implemented in a R package called jackstraw (https://github.com/ncchung/jackstraw).
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Methods and Algorithms

The observed data Y, ) contains m rows and n columns. Because either a set of variables (e.g., genes) or
a set of observations (e.g., cells) may be clustered, we refer to m rows as m observed features for simplicit
Then, mq,...,mi features are assigned into corresponding 1,..., K clusters, where Zszl(mk) = m. The
center cj for k = 1,...K summarizes that k" cluster. For example, in K-means clustering, the nearest
means are used to assign observed features to the clusters. If y, is assigned to k™" cluster with cg, its
membership indicator 3; x is 1. By definition, the subset of features y,; with ; ; = 1 make up c;.

Cluster centers and membership assignments may be viewed as approximating latent variables L and
membership indicators B (i.e., dichotomous coefficients). Latent variables 1 for k = 1,..., K may assume a
wide range of patterns including continuous or categorical structures |15]/16]. Clustering algorithms simul-
taneously identify the data features that contribute to the estimates of Ly:

Y (n,n) = B, k) Liin) + Egmon)

If a particular i*! feature is truly associated with a k*® latent variable, its coefficient b; j, is 1. Otherwise, 0.
Feature-specific noise e; is defined as identically and independently distributed. Row-wise means are handled
by centering the data, whereas row-wise variances are preserved by our proposed resampling scheme.

There have been important developments in clustering that consider mixture or latent variable models
that improve our understanding and interpretation of data |17H19]. However, even model-based clustering
approaches or regularization do not provide cluster centers and membership assignments that can be used
again against the observed features, resulting in so-called “double dipping.” Our proposed approach learns
and incorporates inevitable uncertainty in assigning features to clusters, that are directly derived from the
same set of features. This mirrors the jackstraw test when latent variables are estimated using principal
component analysis (PCA) [13]. Our statistical significance approach using the jackstraw strategy is related
to [201)21], as well as Bayesian p-values [22/23]. Furthermore, regularized methods are available for clustering,
such that sparsity can be induced [24}25].

Jackstraw Data and Strategy

We apply the jackstraw strategy to clustering unlabeled features of observed data Y. Generally, we would
like to create a relatively small number s (< m or n) of synthetic null features without disturbing the overall
patterns of systematic variation. The jackstraw data Y™ refers to this revised data, where m — s observed
features are intact and s synthetic null features have been resampled with replacement . Applying
the clustering algorithm on Y™ produces cluster centers c; that are almost identical to the original cluster
centers ¢ (for k=1,...,K).

Because of the nature of clustering algorithms, all features in Y”, including s synthetic nulls, will be
assigned to one of K clusters. When a synthetic null feature y; is assigned to k*® cluster, an association
statistics between y; and cj is under the null model that assumes independence since y; isi.i.d. by definition.
Yet, because y; does indeed contribute to cj,, we effectively learn the overfitting characteristics of the
clustering algorithms. Over a large number of iterations b = 1, ..., B, we can form the empirical distribution
of null statistics as in Algorithm 1.

Feature-level evaluation of cluster membership requires a pre-defined number of clusters K. There is
a vast amount of literature on the choice of K, which is beyond the scope of this study. In practice, a
data analyst must explore the observed data, often utilizing prior knowledge, visualization, and heuristics.
Methods have been proposed in the last five decades in this area of research including cluster stability
or reliability statistics [26H34]. We recognize that data normalization, cluster stability, and other pre-
classification steps are essential to sensible unsupervised learning. Through re-analysis of microarray and
scRAN-seq data, we showcase the jackstraw tests in a context of broader unsupervised learning pipelines.

IThis convention is also followed in the software package where the rows of input data are clustered and
tested.
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Algorithm 1: Jackstraw Strategy for Unsupervised Classification

1 Apply the clustering algorithm to Y, to obtain C and 3

2 Compute the observed statistics, relating Y and C

3 Create Y* with a small number of synthetic null features y*

4 Apply the clustering algorithm to Y*, to obtain C* and 3"

5 Compute the null statistics, relating y* and C*

6 Repeat the above three steps to form an empirical distribution of null statistics

There are idiosyncratic outcomes of clustering that require our attention. Some clustering algorithms
may generate an empty cluster or a singleton (a cluster with one feature). An empty cluster can be ignored
in our methods as it does not contain any observed feature as a member. We consider the only feature of
a singleton as its true member. It is possible that synthetic null features are rarely clustered into a certain
cluster, such that there is a limited amount of empirical null statistics for that cluster. This likely occurs
when that cluster is substantially smaller than others or has very distinct centers such that its members are
tightly (and accurately) grouped in n dimensions. An increase of B would alleviate this, in tandem with
examining the overall p-value distribution.

Jackstraw Tests for K-means Clustering

We now present a detailed algorithm using K-means clustering [35H37]. K-means clustering is one of the
most popular and well-studied algorithms that has been applied to a wide range of genomic studies. In
this Algorithm 2, we use F-statistics where the full models include appropriate cluster centers. The use of
F-statistics allows us to flexibly specify the full and null models, which may incorporate other covariates in
more complex settings.

Algorithm 2: Jackstraw Test for Membership Assignments in K-means Clustering

1 Apply K-means clustering to the observed data Y, resulting in cluster centers c; for
k =1,..., K and membership assignments b; x fori =1,....,mand K =1, ...,k

2 Compute the observed statistics Fi, ..., F},, where the full models include
corresponding cluster centers c;

3 Create s synthetic nulls by resampling a small proportion of features s < m with
replacement, resulting in a jackstraw data Y™, with m — s observed features and s
synthetic features

4 Apply the clustering algorithm to the jackstraw data Y™, resulting in cluster centers
c;, and membership assignments 0; j

5 Compute the null statistics F7, ..., F, where the full models include corresponding
cluster centers cj,

6 Repeat the above three steps b = 1, ..., B times to obtain a total s * B of null statistics

7 Compute the p-values by empirically ranking the observed statistics among the null
statistics, stratified by cluster assignments

The choices of s and B controls the speed of computation, while the total number of null statistics
(s x B) determines the overall p-value resolution. For B iterations we need to cluster the jackstraw data B
times, and for each iteration b = 1, ..., B, we can obtain s null statistics. Assuming s X B is hold constant,
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a smaller s provides more accurate p-values, while increasing computational burdens. Therefore, we want
to ensure the original clusters are preserved as much as possible, permitting the computational power. As
we increase the number of synthetic null features s in Y*, the overall systematic variation captured by K
cluster centers may be substantially disrupted (seen as an increasing proportion of y* in . While
we recommend s < .1 x m for genomic data, although the number of clusters (K) and the proportion of
features assigned to them (myq,...,mg) must be considered. A higher value of K for a given m would need
a smaller s, so that the clusters with limited members are represented in the jackstraw data.

The overwhelming disruption would further inflate null F-statistics, since a larger number of synthetic
null features would make up cj. In extreme scenarios where all features have been resampled, the new cluster
centers are completely dominated by independent synthetic null features. This operating characteristic allows
us to guard against artificially inflated significance and to guide the input parameters for the proposed
algorithm. In practice, we input C as the initial centers for K clusters when clustering the jackstraw data
for efficient convergence. Furthermore, when a computational cost is a concern, one may correlate C and
C”* to ensure comparability.

In contrast, the conventional resampling methods can be applied to the cluster centers, resulting in a
“naive” significance test. After all m features are resampled with replacement, their F-statistics with respect
to ¢ are used to form an empirical distribution of null statistics. Observed F-statistics are compared to this
empirical distribution to obtain naive p-values. This circular analysis inflates statistical significance, since
the observed features are used twice to compute the cluster centers and to again test against the cluster
centers. Essentially, this represents how the bootstrap or the permutation approaches would be applied to
cluster membership assignments. We apply the conventional methods in simulation studies to demonstrate
how the jackstraw approach overcomes this type of circular analysis.

Posterior Inclusion Probabilities

After the membership assignments for k*" cluster are tested using the jackstraw, we investigated how to
harness their my, p-values (or, the distribution of null statistics) to filter, de-noise, and visualize the clusters.
When considering high-dimensional features typical in large-scale genomic studies, it is advantageous to
consider a family of multiple hypotheses simultaneously [38]. Particularly, from my jackstraw p-values,
we propose to calculate posterior probabilities that features are included in a given cluster. A discussion
of posterior inclusion probabilities (PIPs) that are used for shrinkage and improvement of latent variable
estimates is available in Chapter 3 of |39).

Consider that the my, jackstraw p-values p;, = Dik,...,Pm,,, are obtained for my features that have
been assigned to k' cluster. We are interested in estimating a posterior probability that b; ; # 0, since
non-zero coefficients imply their bona fide inclusion in the cluster:

pir. = Pr(by, # 0|p,,, ) = 1 — Pr(b;y, = 0[p,,, )-

PIP can be readily obtained by estimating Pr(b;x = 0|p,,,, ) through an empirical Bayes approach [40L/41].
In multiple hypothesis testing, Pr(b;, = 0|p,,, ) is called a local false discovery rate (FDR). There also exist
related Bayesian methods that could be explored for specific applications and prior knowledge [4244]. These
results in m PIPs for K families of multiple hypothesis tests corresponding to K clusters, that can be used
for:

1. Retaining a subset of features y; with p; > o, where o, is a user-defined threshold,
2. Visualizing features in reduced dimensions (e.g., PCA, t-SNE) where transparency ~ p,,
3. Improving the cluster centers by weighting the corresponding features with p,.

Local FDRs and PIPs from K families of multiple hypothesis tests can be flexibly combined for down-
stream analyses, as to aid feature selection and dimension reduction. When applying the proposed methods
on microarray and scRNA-seq data, we incorporate PIPs to hard-threshold and soft-threshold the observed
features. Furthermore, this approach may improve a wide range of clustering, by providing probabilistic
measures and/or translating into fuzzy clustering algorithms.
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Results

Unsupervised classification allows us to non-parametrically cluster large-scale data in absence of accurate
external labels for data features. Given the set of features are assigned into K clusters, the proposed methods
test their cluster membership assignments. To demonstrate its operating characteristics, we conducted
comprehensive simulation studies, which enabled a critical assessment using the underlying truth (Oracle
Groups). We then applied the proposed methods on a microarray study of Saccharomyces cerevisiae that
examines the cell cycle and another scRNA-seq data from a mixture of Jurkat and 293T cell lines whose cell
identities are of interest.

Simulation Studies

In the simulation studies, we follow the latent variable model described in Methods and Algorithms. Latent
variables L are drawn from the Normal(y = 0, 02 = 1) distribution. Relationships between 1; and features
are given by dichotomous coefficients B where b; ;, indicates whether y; is a member of 1 for k =1, ..., K and
i =1,..,m. The noise B is drawn i.i.d. from Normal(0, af), where its variance governs the noise level. A
total of m = 1000 features (rows) are simulated over n = 100 dimensions (columns). Forming Oracle Group
A, 500 rows are true members of the signal cluster arisen from 1; with b; 1 = 1 for ¢ = 1,...,500. Other 500
rows are purely noise, in Oracle Group B, which can be viewed as being centered around the n-dimensional
origin. Therefore, a true proportion of null features is mg = .50.

We simulated three scenarios using Ug = 5,10,15 as an increasing noise level brings these two groups
closer and makes the clustering task more difficult. PCA was applied on the dataset realized from each
configuration to visualize the top 2 PCs (Figure S1). Being blind to Oracle Groups, the K-means clustering
and the jackstraw tests were applied. Theoretically, the null p-values from the features that are not related
to the latent variables (corresponding to Oracle Group B) should form the Uniform(0,1) distribution, which
can be evaluated by the Kolmogorov-Smirnov (KS) test. We repeated a given simulation configuration 100
times independently and investigated how 100 KS test p-values from 100 independent simulations meet the
joint null criterion [14].

We describe one simulation from the main scenario involving a moderate amount of noise o7 = 10.
While 1000 features were split equally between Cluster 1 and 2, 30 and 470 null features were members of
Cluster 1 and 2, respectively. Because Cluster 1 contained 470 features related to the latent variable 1,
its center and 1; were highly correlated with a Pearson correlation of 0.99. The jackstraw test was then
applied on the simulated data with s = 100 synthetic null features over B = 5000 iterations, while being
blind to simulation parameters. [Figure 2|a) shows histograms of p-values stratified by Oracle Groups as
parametrized by dichotomous coefficients in B. In Oracle Group B, the jackstraw p-values corresponding
to 500 null features are uniformly distributed between 0 and 1. In contrast, the naive significance tests are
highly anti-conservative, pushing towards 0. In Oracle Group A, the jackstraw p-values are greater than
the naive p-values because the jackstraw approach learns the overfitting characteristics and fixes an anti-
conservative bias (Figure 2|(a)). Utilizing all m p-values, the proportion of null features are estimated to be
7o = 0.55 for the jackstraw and 7y = 0.29 for the naive methods.

We repeated this configuration to ensure accuracy and robustness across 100 independent simulations.
In each simulation, we examined the joint behavior of 500 null p-values from Oracle Group B using a double-
sided KS test. When the joint behavior of those KS test p-values follows the i.i.d. Uniform(0,1) distribution
(where the double KS test p-value > ajp.), the subsequent multiple hypothesis testing procedures, including
false discovery rates, hold true [14]. In other words, meeting the stringent standard of the joint null criterion
demonstrates that the proposed methods overcome “double-dipping” inherent in utilizing cluster centers
and membership assignments and that the p-values are jointly and marginally accurate [14]. A set of
100 KS test p-values, estimated from both the jackstraw and naive methods, are visualized against the
Uniform(0,1) distribution (Figure 2|(b)). The jackstraw tests satisfy the joint null criterion, where 100 KS
test p-values are uniformly distributed (double KS test p-value = 0.79). In contrast, the naive methods
are strongly anti-conservative, where 100 KS test p-values are strongly skewed towards 0 (double KS test
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p-values < 2.2 x 10716).

Results from two other simulation configurations, that are also independently repeated 100 times, are
shown in|Figure S2{and |[Figure S3| Simulated data with a relatively small noise 0‘2 = 5 can be almost perfectly
clustered. Nonetheless, the naive methods exhibit substantial overfitting where the double KS test p-value
is < 2.2 x 10716, The double KS test p-value for the jackstraw tests in this configuration is 0.81 (Figure S2).
On the other hand, a greater noise with af = 15 represents a situation whose members of different clusters
are substantially overlapping (Figure S1J). The jackstraw tests indeed satisfy the joint null criterion with the
double KS test p-value of 0.67 (Figure S3)). Additional simulation studies further confirm that unlike the
naive methods that overfit and produce an anti-conservative bias (downward deviations from the diagonal
line), the proposed methods take account for uncertainty in clustering and result in valid p-values that enable
rigorous error control.

Genomic Applications

Microarray Data from Yeast Cell Cycle Experiments

Cell cycle in Saccharomyces cerevisiae and other organisms are traditionally known to progress through
discrete stages, such as M, G1, S, and so on [45]. With the advent of the microarray, gene expression levels
from synchronized S. cerevisiae samples had been measured and analyzed in order to identify comprehensive
sets of genes under cell cycle [8,46-48|. However, in these conventional studies, experimentally verified genes
under cell cycle are used to identify related genes that follow similar patterns. In contrast, we re-analyzed
the expression data of 5981 genes from [§] in an unsupervised manner.

Genome-wide mRNA levels of elutriation-synchronized yeast cells were measured at 30 min intervals for
390 min (approximately 1 cell cycle) [8]. We processed and normalized this gene expression data according
to [131/49]. The number of clusters K = 6 was determined by the prior knowledge that there exist 6 stages of
cell cycle [45]. While there are on-going debates on how to characterize and categorize cell cycle progression,
K = 6 seems to be a reasonable choice. After having gotten K = 6 clusters from applying K-means
clustering, we conducted the proposed jackstraw tests with s = 300 and B = 10000 to identify canonical
genes within those clusters.

Histograms of p-values are shown in a), where the proportions of null features my for 6 clusters
are estimated to be .143,.149, .116, .178, .170, .175, .087, respectively. Note that the numeric values identifying
those clusters are arbitrary without a meaningful order, but consistent within this manuscript. From a set of
p-values, we calculated posterior probabilities that those genes are truly members of their assigned clusters.
For example, among 709 genes that are originally assigned to the cluster 4, 45.1% (320) have posterior
inclusion probabilities (PIPs) > 0.9. Repeating this analysis for all 6 clusters, a total of 3826 genes are found
to be significant at the same PIP threshold c)) In other words, these are the canonical genes that
drive the clusters of cell cycle.

Single Cell RNA-Seq Data from Jurkat and 293T Cells

Whereas conventional microarray and RNA-seq experiments obtain “bulk” gene expression from a sample
that contains multiple cells, scRNA-seq enable more precise and accurate quantification from single cell
samples. Recent studies using high-throughput and efficient scRNA-seq often measure gene expression from
unlabeled single cells, in order to elucidate detailed molecular landscapes and identify cell identities (e.g.,
blood sub-types, sub-classifications of a disease) |[L0H12|. Commonly, the cell identities are determined by
applying the clustering algorithms to their gene expression profiles.

We analyzed the scRNA-seq data from [12] that used a mixture of Jurkat and 293T cells (50:50). Note
that while the mixture proportion is known, the identities of individual cells that have been sequenced are
unknown. Because Jurkat (male and expressing CD3D) and 293T (female and expressing XIST) cell lines
are highly distinct, we observed intelligible two groups separated along the 1st PC from their gene expression
profiles [12|. However, massively parallel scRNA-seq regrettably generates multiplets (doublets, triplets, etc).
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The rate of multiplets increases linearly with the recovered cell number, and through single nucleotide variant
(SNV) detection, they inferred a 3.1% multiplet rate for this mixture experiment [12]. For ~ 10000 single
cells, |12] reports > 8% multiplet rates. The ambiguous identities of singe cells would become increasingly
challenging as scRNA-seq becomes more affordable and widespread.

Following the original analysis pipeline, we applied the K-means clustering on the top 10 PCs based on
unique molecular identifier (UMI) counts. The jackstraw tests for those K = 2 clusters were conducted with
s = 100 and B = 10000. We found that the jackstraw p-values capture deviation away from two centers,
along the 1st PC axis (Figure 4{(a)). Using the g-value methodology [50], the proportion of null features
(that are not members of the clusters) is estimated to be 7g = 0.05. Then, we computed the proposed
PIPs from p-values (Figure 4(b)). At PIP < 0.80 (equivalent to 20% local FDRs), 3.3% of 3381 single
cells would be removed from corresponding clusters, effectively and automatically removing the majority of
suspected multiplets. Instead of hard-thresholding the single cell samples at an arbitrary threshold, we can
also visualize posterior probabilities as levels of transparency in a conventional PCA projection, where the
top 2 PCs are plotted c)) Please note that because dimension reduction does not fully capture
local and global structures in the original high dimensions, distances in reduced dimensions (PCA, t-SNE,
and alike) should be considered with caution.

Discussion

The explosion of biological data has increased the importance of unsupervised learning. Without the external
and accurate labels for the observed data, unsupervised learning aims to estimate latent structure, reduce
dimensions, and classify data features. In particular, clustering of high-dimensional genomic data has led to
better understanding of and informative hypotheses for biological functions [8l/51], molecular subtypes [7./52],
and cell identities [53]. However, data-dependent classification cannot be used in downstream analyses
without incurring spurious statistical significance. Our proposed methods solve this challenge by learning the
uncertainty inherent in deriving clusters from the data and conducting a statistical test using the jackstraw
strategy.

There exists a wide range of clustering algorithms to automatically assign the m observed features
into K clusters. The proposed methods test whether the observed features are correctly assigned to the
corresponding clusters. Our key ingredient is to generate and re-cluster the jackstraw data, which include a
very small number s of synthetic null features. Because of s < m, the majority of observed features are intact,
resulting in cluster centers that are almost identical to the original cluster centers. Subsequently, eventual
assignments of s synthetic null features into K clusters are used to derive the empirical null distribution. We
have demonstrated favorable operating characteristics using simulated and real genomic data. The proposed
PIP methods open new possibilities for selecting canonical cluster members, shrinking cluster centers and
improving cluster algorithms. Furthermore, the proposed methods may adaptively guide the choice of stable
clusters.

Our proposed strategy enables rigorous application of unsupervised learning, such that the estimated
latent structure can be re-used in downstream analyses. The jackstraw test for PCA and related methods |13]
have been used in many specialized areas of genomic studies [11}/12}/51,54H56]. Complementing this successful
approach, we have developed the jackstraw test for clustering. It may be useful to integrate both variants of
the jackstraw tests, from selecting highly informative genes to deriving cell identities. Differential expression
analyses based on cluster-based cell identities may become more robust by incorporating the jackstraw tests.
Because the proposed methods are not limited to genomics, we anticipate its adaptation in other fields of
data-intensive science.
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Figure 1: Tllustration of the jackstraw data Y™ consisted of s synthetic null features (y*) and m —s
observed features. By re-clustering Y*, y* that have been independently resampled are assigned
into clusters. The jackstraw methods leverage this information to learn overfitting characteristics
in clustering and to construct an empirical distribution of null statistics.
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Figure 2: Evaluation of the jackstraw tests for clustering using the main simulation study with o =
10. Oracle Group A contains 500 features that are derived from a latent variable 1 vad Normal(0,1),
whereas 500 features in Oracle Group B are noise. (a) Histograms of p-values stratified by methods.
The jackstraw tests (s = 100, B = 5000) and the naive tests (at the same resolution) were applied
without using any prior information. (b) This simulation study was repeated 100 times, where null
p-values corresponding to Oracle Group B were evaluated against Uniform(0,1) distribution using
Kolmogorov-Smirnov (KS) tests. QQ plot of KS p-values from the jackstraw and naive methods are
shown, where valid p-values follow a diagonal line. The double KS test p-values for the proposed
jackstraw and naive methods are = 0.79 and < 2.2 x 107!, respectively.
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Figure 3: The jackstraw clustering analysis of microarray data of yeast cell cycle experiments.
K-means clustering is applied on 5981 genes from [8] with K = 6. (a) Histograms of p-values from
the yeast cell cycle gene expression profiles. The jackstraw tests for these 6 clusters are conducted
with s = 300 and B = 10000. (b) The top 2 PC projection using the original data with 5981 genes.
(b) The top 2 PC projection using 3826 genes with PIP > .9 from the proposed methods.
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Figure 4: The jackstraw clustering analysis of scRNA-seq data of Jurkat and 293T cells. Two
distinct cell lines are mixed at equal proportions (50:50) and sequenced without labeling using s10X
Genomics’ GemCode [12|. (a) Clustering membership p-values are plotted against the 1st PC,
which largely separates two cell lines. (b) Posterior inclusion probabilities (PIPs) are computed
from p-values. At a PIP threshold of 0.80, 3.3% of 3381 single cells would be discharged from
corresponding clusters. (¢) PIPs are visualized as alpha levels on the scatterplot of the top 2 PCs.
Essentially, this is identical to Figure 2(e) in [12], except transparencies are set to PIPs from the
proposed methods. Note that when PIP=0, as appeared in (b)7 the data point is completely
transparent.
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Figure S1: Scatterplots of the top 2 principal components (PCs) from the simulated data. Oracle

Groups are shown in colors. An increasing level of noise, 02 = 5,10, 15 brings data features from

two different underlying structures closer together.

14


https://doi.org/10.1101/248633
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/248633; this version posted January 16, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

A Jackstraw Naive B 1.00 »’
500 ’.7'
o
400 "',
o P
300 ?,._j 0.75 L
4
o) " , /.’
200 £ o e
> © o
1 &
100 a4 050 el
2 [ P P P D P [ R R P s s @ &
5 0 o - * — — T "i“o 2 K
s 4 1
9] X .: . o
.
iy g .
0.25 b .

40

g dnoio spoeI0
AY
v,

0.00 0.25 0.50 0.75 1.00
Theoretical Uniform(0,1)

000 025 050 075 100000 025 050 075 1.00 Method @ Jackstraw ® Naive
P-value

Figure S2: Simulation studies using 0> = 5. The jackstraw tests (s = 100 and B = 5000) or
the naive tests are applied without using any information from simulation. (a) P-values are shown
stratified by Oracle Groups, where the naive tests result in an anti-conservative bias. The uniformity
of null p-values corresponding to Oracle Group B is examined by KS tests, which are independently
repeated 100 times. (b) The total of 100 independent simulation studies are conducted, and 100
KS-test p-values are plotted against the Uniform(0,1) distribution. The proposed jackstraw tests
meet the joint null criterion with a double KS test p-value of 0.81, whereas the naive tests are highly
anti-conservative with a double KS test p-value of < 2.2 x 10716,
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Figure S3: Simulation studies using 0> = 15. The jackstraw tests (s = 100 and B = 5000) or
the naive tests are applied without using any information from simulation. (a) P-values are shown
stratified by Oracle Groups, where the naive tests result in an anti-conservative bias. The uniformity
of null p-values corresponding to Oracle Group B is examined by KS tests, which are independently
repeated 100 times. (b) The total of 100 independent simulation studies are conducted, and 100
KS-test p-values are plotted against the Uniform(0,1) distribution. The proposed jackstraw tests
meet the joint null criterion with a double KS test p-value of 0.67, whereas the naive tests are highly
anti-conservative with a double KS test p-value of < 2.2 x 10716,
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