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Abstract
Clustering is routinely applied to microarray, RNA-seq, and other genomic data, to help
ascertain biological processes, disease subtypes, and cell identities. Recently, single cell
RNA-seq (scRNA-seq) is used to automatically generate a large amount of gene expression
profiles of unlabeled single cells. With no prior knowledge, the clustering algorithms are
used to classify unlabeled single cells, that ultimately determine cell identities. However,
how can we evaluate if the cluster memberships – the cell identities – are correctly assigned?
To this end, we introduce the jackstraw methods for unsupervised classifications that rigor-
ously test the assignments of genomic features into their clusters. By learning uncertainty
in clustering the noisy data, the proposed jackstraw methods can identify statistically signif-
icant genomic features that truly make up the corresponding clusters. We investigated the
proposed methods on scRNA-seq data from a mixture of Jurkat and 293T cell lines, where
individual cell identities are unknown. The jackstraw methods evaluate cluster membership
assignments of 3381 unlabeled single cells such that the majority of multiplets are identified
in an unsupervised manner. We propose posterior inclusion probabilities (PIPs) for cluster
membership to help select and visualize the reliable features in reduced dimensions. Addi-
tionally, we consider clustering 5981 yeast genes under cell cycle. When clustering is used in
high-dimensional genomic data analysis, the proposed jackstraw tests enable rigorous evalu-
ation of membership assignments that readily improve feature selection and visualization.

Software: jackstraw package in R available at https://github.com/ncchung/jackstraw
Keywords: scRNA-seq, RNA-seq, microarray, clustering, unsupervised classification
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Introduction
High-throughput technologies have enabled large-scale measurements of DNA, RNA, metabolites, and others.
Recent technological and experimental advancements, such as single cell RNA-seq (Shalek et al., 2013; Wills
et al., 2013) and mass-spectrometry (Rubakhin et al., 2011; Budnik et al., 2017), have resulted in increasing
challenges and opportunities for using unlabeled data and unsupervised learning. For example, a single cell
RNA-seq (scRNA-seq) technology enables gene expression measurements of thousands of blood cells in order
to elucidate molecular subtypes. Unsupervised assignments of unlabeled single cells to K clusters according
to their gene expression profiles provide cluster-based cell identities. Despite diverse clustering techniques
available, it has not been possible to re-use data-driven clusters and test their membership in downstream
statistical analyses without incurring artificially inflated significance. We have developed a novel and general
method to statistically test the assignment of a data feature to a particular cluster, aiding in feature selection,
dimension reduction, and visualization.

Clustering has been one of the most popular analysis methods for high-dimensional genomic data. In
the absence of external and accurate labels, clustering can identify and approximate co-regulated subsets
of genomic variables (e.g., genes, loci) or subtypes of related observations (e.g., patients, single cells). For
example, a conventional microarray study measures gene expression of samples from either control or disease
groups. Since the molecular functions of genes might not be known, the unsupervised classification of genomic
variables can help identify co-varying subsets that form molecular processes (Alon et al., 1999; Golub et al.,
1999; Sørlie et al., 2001). These clusters and membership assignments of genes have been extensively used
in the visualization of systematic patterns and outliers (Spellman et al., 1998; Eisen et al., 1998). Recently,
there have been many studies where mRNA abundances from thousands of single cells are measured en
masse using scRNA-seq (Jaitin et al., 2014; Macosko et al., 2015; Zheng et al., 2017). Then, gene expression
profiles of unlabeled single cells are clustered to obtain cell identities. These cell identities, which may be
related to subtypes, lineage, or other molecular factors, are often used in downstream differential expression
and other analyses. Note that a data feature refers to either a variable or an observation, since clustering
can be applied on either dimension.

After automatically assigning observed features to K clusters that are summarized by K centers, we are
interested in testing the membership assignments of individual features. This will improve the data-driven cell
identities in scRNA-seq experiments, as well as the clustering of genomic variables to help elucidate molecular
processes. To this end, we have developed an innovative data resampling and testing scheme for unsupervised
classification that rigorously evaluates whether observed features are truly members of corresponding clusters.
By estimating p-values and posterior inclusion probabilities (PIPs), the proposed methods can identify
and visualize features that have been accurately and reliably assigned to the clusters. This bridges direct
estimation of latent variables from large-scale data and fundamental hypothesis framework, which readily
provides p-values, false discovery rates, and posterior probabilities crucial for data exploration and inference.

By utilizing a newly developed resampling technique called the jackstraw (Chung and Storey, 2015), the
proposed methods learn overfitting inherent in using cluster centers that are estimated from the data. In other
words, the proposed methods enable the accurate statistical testing of cluster membership while taking into
account uncertainty in the clustering algorithms. Simulation studies demonstrate accurate and favorable
operating characteristics. The joint behavior of p-values are scrutinized by conducting 100 independent
simulations that satisfy the joint null criterion (Leek and Storey, 2011). Two applications are presented
using two different dimensions (genomic variables and samples) available for unsupervised classification.
Yeast cell cycle microarray data (Spellman et al., 1998) are used to cluster 5981 genes into K = 6 clusters,
whose statistically significant members are identified. We also consider the scRNA-seq data from a mixture
of two different cell lines (Zheng et al., 2017). By applying the proposed methods on unlabeled single cells, we
show improved classification and visualization of cell identities. These proposed methods are implemented
in a R package called jackstraw (https://github.com/ncchung/jackstraw), that will be available on the
Comprehensive R Archive Network (CRAN).
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Methods and Algorithms
The observed data Y(m,n) contains m rows and n columns. Because either a set of variables (e.g., genes) or
a set of observations (e.g., cells) may be clustered, we refer to m rows as m observed features for simplicity1.
Then, m1, ...,mK features are assigned into corresponding 1, ...,K clusters, where

∑K
k=1(mk) = m. The

center ck for k = 1, ...K summarizes that kth cluster. For example, in K-means clustering, the nearest
means are used to assign observed features to the clusters. If yi is assigned to kth cluster with ck, its
membership indicator βi,k is 1. By definition, the subset of features yi with βi,k = 1 make up ck.

Cluster centers and membership assignments may be viewed as approximating latent variables L and
membership indicators B (i.e., dichotomous coefficients). Latent variables lk for k = 1, ...,K may assume a
wide range of patterns including continuous or categorical structures (Linda M. Collins, 2010; Bartholomew
et al., 2011). Clustering algorithms simultaneously identify the data features that contribute to the estimates
of Lk:

Y(m,n) = B(m,K)L(K,n) + E(m,n)

If a particular ith feature is truly associated with a kth latent variable, its coefficient bi,k is 1. Otherwise, 0.
Feature-specific noise ei is defined as identically and independently distributed. Row-wise means are handled
by centering the data, whereas row-wise variances are preserved by our proposed resampling scheme.

There have been important developments in clustering that consider mixture or latent variable models
that improve our understanding and interpretation of data (Yeung et al., 2001; McLachlan and Peel, 2004;
Fraley and Raftery, 2007). However, even model-based clustering approaches or regularization do not provide
cluster centers and membership assignments that can be used again against the observed features, resulting
in so-called “double dipping.” Our proposed approach learns and incorporates inevitable uncertainty in
assigning features to clusters, that are directly derived from the same set of features. This mirrors the
jackstraw test when latent variables are estimated using principal component analysis (PCA) (Chung and
Storey, 2015).

Jackstraw Data and Strategy
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Figure 1: Illustration of the jackstraw data Y∗ consisted of s synthetic null features (y∗) and m−s
observed features. By re-clustering Y∗, y∗ that have been independently resampled are assigned
into clusters. The jackstraw methods leverage this information to learn overfitting characteristics
in clustering and to construct an empirical distribution of null statistics.

1This convention is also followed in the software package where the rows of input data are clustered and
tested.

4

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/248633doi: bioRxiv preprint 

https://doi.org/10.1101/248633
http://creativecommons.org/licenses/by-nd/4.0/


We apply the jackstraw strategy to clustering unlabeled features of observed data Y. Generally, we
would like to create a relatively small number s (� m or n) of synthetic null features without disturbing
the overall patterns of systematic variation. The jackstraw data Y∗ refers to this revised data, where m− s
observed features are intact and s synthetic null features have been resampled with replacement (Figure 1).
Applying the clustering algorithm on Y∗ produces cluster centers c∗k that are almost identical to the original
cluster centers ck (for k = 1, ...,K).

Because of the nature of clustering algorithms, all features in Y∗, including s synthetic nulls, will be
assigned to one of K clusters. When a synthetic null feature y∗

i is assigned to kth cluster, an association
statistics between y∗

i and c∗k is under the null model that assumes independence since y∗
i is i.i.d. by definition.

Yet, because y∗
i does indeed contribute to c∗k, we effectively learn the overfitting characteristics of the

clustering algorithms. Over a large number of iterations b = 1, ..., B, we can form the empirical distribution
of null statistics as in Algorithm 1.

Algorithm 1: Jackstraw Strategy for Unsupervised Classification
1 Apply the clustering algorithm to Y, to obtain C and β
2 Compute the observed statistics, relating Y and C
3 Create Y∗ with a small number of synthetic null features y∗

4 Apply the clustering algorithm to Y∗, to obtain C∗ and β∗

5 Compute the null statistics, relating y∗ and C∗

6 Repeat the above three steps to form an empirical distribution of null statistics

Feature-level evaluation of cluster membership requires a pre-defined number of clusters K. There is
a vast amount of literature on the choice of K, which is beyond the scope of this study. In practice, a
data analyst must explore the observed data, often utilizing prior knowledge, visualization, and heuristics.
Methods have been proposed in the last five decades in this area of research including cluster stability
or reliability statistics (Akaike, 1974; Schwarz et al., 1978; Bock, 1985; Fraley and Raftery, 1998; Pelleg
et al., 2000; Tibshirani et al., 2001; Hamerly and Elkan, 2004; Liu et al., 2008; Huang et al., 2015). We
recognize that data normalization, cluster stability, and other pre-classification steps are essential to sensible
unsupervised learning. Through re-analysis of microarray and scRAN-seq data, we showcase the jackstraw
tests in a context of broader unsupervised learning pipelines.

There are idiosyncratic outcomes of clustering that require our attention. Some clustering algorithms
may generate an empty cluster or a singleton (a cluster with one feature). An empty cluster can be ignored
in our methods as it does not contain any observed feature as a member. We consider the only feature of
a singleton as its true member. It is possible that synthetic null features are rarely clustered into a certain
cluster, such that there is a limited amount of empirical null statistics for that cluster. This likely occurs
when that cluster is substantially smaller than others or has very distinct centers such that its members are
tightly (and accurately) grouped in n dimensions. An increase of B would alleviate this, in tandem with
examining the overall p-value distribution.

Jackstraw Tests for K-means Clustering
We now present a detailed algorithm using K-means clustering (MacQueen et al., 1967; Hartigan and Wong,
1979; Lloyd, 1982). K-means clustering is one of the most popular and well-studied algorithms that has
been applied to a wide range of genomic studies. In this Algorithm 2, we use F-statistics where the full
models include appropriate cluster centers. The use of F-statistics allows us to flexibly specify the full and
null models, which may incorporate other covariates in more complex settings.

The choices of s and B controls the speed of computation, while the total number of null statistics
(s×B) determines the overall p-value resolution. For B iterations we need to cluster the jackstraw data B
times, and for each iteration b = 1, ..., B, we can obtain s null statistics. Assuming s × B is hold constant,
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Algorithm 2: Jackstraw Test for Membership Assignments in K-means Clustering
1 Apply K-means clustering to the observed data Y, resulting in cluster centers ck for
k = 1, ..., K and membership assignments bi,K for i = 1, ...,m and K = 1, ..., k

2 Compute the observed statistics F1, ..., Fm, where the full models include
corresponding cluster centers ck

3 Create s synthetic nulls by resampling a small proportion of features s� m with
replacement, resulting in a jackstraw data Y∗, with m− s observed features and s
synthetic features

4 Apply the clustering algorithm to the jackstraw data Y∗, resulting in cluster centers
c∗k and membership assignments b∗i,K

5 Compute the null statistics F ∗
1 , ..., F

∗
s , where the full models include corresponding

cluster centers c∗k
6 Repeat the above three steps b = 1, ..., B times to obtain a total s ∗B of null statistics
7 Compute the p-values by empirically ranking the observed statistics among the null
statistics, stratified by cluster assignments

a smaller s provides more accurate p-values, while increasing computational burdens. Therefore, we want
to ensure the original clusters are preserved as much as possible, permitting the computational power. As
we increase the number of synthetic null features s in Y∗, the overall systematic variation captured by K
cluster centers may be substantially disrupted (seen as an increasing proportion of y∗ in Figure 1). While
we recommend s < .1 × m for genomic data, although the number of clusters (K) and the proportion of
features assigned to them (m1, . . . ,mk) must be considered. A higher value of K for a given m would need
a smaller s, so that the clusters with limited members are represented in the jackstraw data.

The overwhelming disruption would further inflate null F-statistics, since a larger number of synthetic
null features would make up c∗k. In extreme scenarios where all features have been resampled, the new cluster
centers are completely dominated by independent synthetic null features. This operating characteristic allows
us to guard against artificially inflated significance and to guide the input parameters for the proposed
algorithm. In practice, we input C as the initial centers for K clusters when clustering the jackstraw data
for efficient convergence. Furthermore, when a computational cost is a concern, one may correlate C and
C∗ to ensure comparability. We demonstrate this operating characteristics using the yeast gene expression
under cell cycle, by applying the jackstraw tests with a wide range of s.

In contrast, the conventional resampling methods can be applied to the cluster centers, resulting in a
“naive” significance test. After all m features are resampled with replacement, their F-statistics with respect
to ck are used to form an empirical distribution of null statistics. Observed F-statistics are compared to this
empirical distribution to obtain naive p-values. This circular analysis inflates statistical significance, since
the observed features are used twice to compute the cluster centers and to again test against the cluster
centers. Essentially, this represents how the bootstrap or the permutation approaches would be applied to
cluster membership assignments. We apply the conventional methods in simulation studies to demonstrate
how the jackstraw approach overcomes this type of circular analysis.

Posterior Inclusion Probabilities
After the membership assignments for kth cluster are tested using the jackstraw, we investigated how to
harness their mk p-values (or, the distribution of null statistics) to filter, de-noise, and visualize the clusters.
When considering high-dimensional features typical in large-scale genomic studies, it is advantageous to
consider a family of multiple hypotheses simultaneously (Efron, 2012). Particularly, from mk jackstraw
p-values, we propose to calculate posterior probabilities that features are included in a given cluster. A
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discussion of posterior inclusion probabilities (PIPs) that are used for shrinkage and improvement of latent
variable estimates is available in Chapter 3 of (Chung, 2014).

Consider that the mk jackstraw p-values pk = p1,k, . . . , pmk,k are obtained for mk features that have
been assigned to kth cluster. We are interested in estimating a posterior probability that bi,k 6= 0, since
non-zero coefficients imply their bona fide inclusion in the cluster:

ρik = Pr(bik 6= 0|pmk
) = 1− Pr(bik = 0|pmk

).

PIP can be readily obtained by estimating Pr(bik = 0|pmk
) through an empirical Bayes approach (Efron

et al., 2001; Efron, 2007). In multiple hypothesis testing, Pr(bik = 0|pmk
) is called a local false discovery

rate (FDR). There also exist related Bayesian methods that could be explored for specific applications and
prior knowledge (Barbieri and Berger, 2004; Scott and Berger, 2005; Ghosh et al., 2006). These results in m
PIPs for K families of multiple hypothesis tests corresponding to K clusters, that can be used for:

1. Retaining a subset of features yi with ρi > αρ, where αρ is a user-defined threshold,
2. Visualizing features in reduced dimensions (e.g., PCA, t-SNE) where transparency ∼ ρi,
3. Improving the cluster centers by weighting the corresponding features with ρi.

Local FDRs and PIPs from K families of multiple hypothesis tests can be flexibly combined for down-
stream analyses, as to aid feature selection and dimension reduction. When applying the proposed methods
on microarray and scRNA-seq data, we incorporate PIPs to hard-threshold and soft-threshold the observed
features. Furthermore, this approach may improve a wide range of clustering, by providing probabilistic
measures and/or translating into fuzzy clustering algorithms.

Results
Unsupervised classification allows us to non-parametrically cluster large-scale data in absence of accurate
external labels for data features. Because one may cluster genomic variables (such as genes) or observations
(such as single cell samples), we refers to either set of data vectors to be clustered as features. Given the
set of features are assigned into K clusters, we are interested in evaluating whether individual features
have been correctly assigned. Based on the jackstraw approach (Figure 1), the proposed methods test their
cluster membership assignments. To demonstrate its operating characteristics, we conducted simulation
studies, which enabled a critical assessment using the underlying truth (Oracle Groups). We then applied
the proposed methods on a microarray study of Saccharomyces cerevisiae that examines the cell cycle and
another scRNA-seq data from a mixture of Jurkat and 293T cell lines whose cell identities are of interest.

Simulation Studies
In the simulation studies, we follow the latent variable model described in Methods and Algorithms. Latent
variables L are drawn from the Normal(µ = 0, σ2 = 1) distribution. Relationships between lk and features
are given by dichotomous coefficients B where bi,k indicates whether yi is a member of lk for k = 1, ...,K and
i = 1, ...,m. The noise B is drawn i.i.d. from Normal(0, σ2

b ), where its variance governs the noise level. A
total of m = 1000 features (rows) are simulated over n = 100 dimensions (columns). Forming Oracle Group
A, 500 rows are true members of the signal cluster arisen from l1 with bi,1 = 1 for i = 1, ..., 500. Other 500
rows are purely noise, in Oracle Group B, which can be viewed as being centered around the n-dimensional
origin. Therefore, a true proportion of null features is π0 = .50.

We simulated three scenarios using σ2
b = 5, 10, 15 as an increasing noise level brings these two groups

closer and makes the clustering task more difficult. PCA was applied on the dataset realized from each
configuration to visualize the top 2 PCs (Figure S1). Being blind to Oracle Groups, the K-means clustering
and the jackstraw tests were applied. Theoretically, the null p-values from the features that are not related
to the latent variables (corresponding to Oracle Group B) should form the Uniform(0,1) distribution, which
can be evaluated by the Kolmogorov-Smirnov (KS) test. We repeated a given simulation configuration 100
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Figure 2: Evaluation of the jackstraw tests for clustering using the main simulation study with σ =

10. Oracle Group A contains 500 features that are derived from a latent variable l i.i.d∼ Normal(0,1),
whereas 500 features in Oracle Group B are noise. (a) Histograms of p-values stratified by methods.
The jackstraw tests (s = 100, B = 5000) and the naive tests (at the same resolution) were applied
without using any prior information. (b) This simulation study was repeated 100 times, where null
p-values corresponding to Oracle Group B were evaluated against Uniform(0,1) distribution using
Kolmogorov-Smirnov (KS) tests. QQ plot of KS p-values from the jackstraw and naive methods are
shown, where valid p-values follow a diagonal line. The double KS test p-values for the proposed
jackstraw and naive methods are = 0.79 and < 2.2× 10−16, respectively.

times independently and investigated how 100 KS test p-values from 100 independent simulations meet the
joint null criterion (Leek and Storey, 2011).

We describe one simulation from the main scenario involving a moderate amount of noise σ2
b = 10.

While 1000 features were split equally between Cluster 1 and 2, 30 and 470 null features were members of
Cluster 1 and 2, respectively. Because Cluster 1 contained 470 features related to the latent variable l1,
its center and l1 were highly correlated with a Pearson correlation of 0.99. The jackstraw test was then
applied on the simulated data with s = 100 synthetic null features over B = 5000 iterations, while being
blind to simulation parameters. Figure 2(a) shows histograms of p-values stratified by Oracle Groups as
parametrized by dichotomous coefficients in B. In Oracle Group B, the jackstraw p-values corresponding
to 500 null features are uniformly distributed between 0 and 1. In contrast, the naive significance tests are
highly anti-conservative, pushing towards 0. In Oracle Group A, the jackstraw p-values are greater than
the naive p-values because the jackstraw approach learns the overfitting characteristics and fixes an anti-
conservative bias (Figure 2(a)). Utilizing all m p-values, the proportion of null features are estimated to be
π̂0 = 0.55 for the jackstraw and π̂0 = 0.29 for the naive methods.

We repeated this configuration to ensure accuracy and robustness across 100 independent simulations.
In each simulation, we examined the joint behavior of 500 null p-values from Oracle Group B using a double-
sided KS test. When the joint behavior of those KS test p-values follows the i.i.d. Uniform(0,1) distribution
(where the double KS test p-value > αjnc), the subsequent multiple hypothesis testing procedures, including
false discovery rates, hold true (Leek and Storey, 2011). In other words, meeting the stringent standard of the
joint null criterion demonstrates that the proposed methods overcome “double-dipping” inherent in utilizing
cluster centers and membership assignments and that the p-values are jointly and marginally accurate (Leek
and Storey, 2011). A set of 100 KS test p-values, estimated from both the jackstraw and naive methods,
are visualized against the Uniform(0,1) distribution (Figure 2(b)). The jackstraw tests satisfy the joint null
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criterion, where 100 KS test p-values are uniformly distributed (double KS test p-value = 0.79). In contrast,
the naive methods are strongly anti-conservative, where 100 KS test p-values are strongly skewed towards 0
(double KS test p-values < 2.2× 10−16).

Results from two other simulation configurations, that are also independently repeated 100 times, are
shown in Figure S2 and Figure S3. Simulated data with a relatively small noise σ2

b = 5 can be almost perfectly
clustered. Nonetheless, the naive methods exhibit substantial overfitting where the double KS test p-value
is < 2.2×10−16. The double KS test p-value for the jackstraw tests in this configuration is 0.81 (Figure S2).
On the other hand, a greater noise with σ2

b = 15 represents a situation whose members of different clusters
are substantially overlapping (Figure S1). The jackstraw tests indeed satisfy the joint null criterion with the
double KS test p-value of 0.67 (Figure S3). Additional simulation studies further confirm that unlike the
naive methods that overfit and produce an anti-conservative bias (downward deviations from the diagonal
line), the proposed methods take account for uncertainty in clustering and result in valid p-values that enable
rigorous error control.

Genomic Applications
Microarray Data from Yeast Cell Cycle Experiments
Cell cycle in Saccharomyces cerevisiae and other organisms are traditionally known to progress through
discrete stages, such as M, G1, S, and so on (Alberts, 2017). With the advent of the microarray, gene
expression levels from synchronized S. cerevisiae samples had been measured and analyzed in order to
identify comprehensive sets of genes under cell cycle (Spellman et al., 1998; Cho et al., 1998; Tu et al., 2005;
Rowicka et al., 2007). However, in these conventional studies, experimentally verified genes under cell cycle
are used to identify related genes that follow similar patterns. In contrast, we re-analyzed the expression
data of 5981 genes from (Spellman et al., 1998) in an unsupervised manner.

Genome-wide mRNA levels of elutriation-synchronized yeast cells were measured at 30 min intervals
for 390 min (approximately 1 cell cycle) (Spellman et al., 1998). We processed and normalized this gene
expression data according to (Alter et al., 2000; Chung and Storey, 2015). The number of clusters K = 6
was determined by the prior knowledge that there exist 6 stages of cell cycle (Alberts, 2017). While there
are on-going debates on how to characterize and categorize cell cycle progression, K = 6 seems to be a
reasonable choice. After having gotten K = 6 clusters from applying K-means clustering, we conducted the
proposed jackstraw tests with s = 300 and B = 10000 to identify canonical genes within those clusters.

Histograms of p-values are shown in Figure 3(a), where the proportions of null features π0 for 6 clusters
are estimated to be .143, .149, .116, .178, .170, .175, .087, respectively. Note that the numeric values identifying
those clusters are arbitrary without a meaningful order, but consistent within this manuscript. From a set of
p-values, we calculated posterior probabilities that those genes are truly members of their assigned clusters.
For example, among 709 genes that are originally assigned to the cluster 4, 45.1% (320) have posterior
inclusion probabilities (PIPs) > 0.9. Repeating this analysis for all 6 clusters, a total of 3826 genes are found
to be significant at the same PIP threshold (Figure 3(c)). In other words, these are the canonical genes that
drive the clusters of cell cycle.

Using this gene expression data, we investigated the operating characteristics of synthetic null features y∗

in the jackstraw test for clustering. Particularly, we applied the jackstraw tests with an increasing number
of synthetic null features s = 10, 100, 250, 500, 1000, 2500, 5000. To obtain the same number of total null
statistics s × B = 5 × 106, the number of iterations were set to B = 5 × 105, 5 × 104, 2 × 104, 1 × 104, 5 ×
103, 2 × 103, 1 × 103 correspondingly. We found that an increase in s results in slightly more conservative
behavior (Figure S4). This trade-off between computational speed and accuracy of p-values is beneficial in
practice since even limited computation with a big s would not incur artificially significant results.
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Figure 3: The jackstraw clustering analysis of microarray data of yeast cell cycle experiments. K-
means clustering is applied on 5981 genes from (Spellman et al., 1998) with K = 6. (a) Histograms
of p-values from the yeast cell cycle gene expression profiles. The jackstraw tests for these 6 clusters
are conducted with s = 300 and B = 10000. (b) The top 2 PC projection using the original data
with 5981 genes. (b) The top 2 PC projection using 3826 genes with PIP > .9 from the proposed
methods.

Single Cell RNA-Seq Data from Jurkat and 293T Cells
Whereas conventional microarray and RNA-seq experiments obtain “bulk” gene expression from a sample
that contains multiple cells, scRNA-seq enable more precise and accurate quantification from single cell
samples. Recent studies using high-throughput and efficient scRNA-seq often measure gene expression from
unlabeled single cells, in order to elucidate detailed molecular landscapes and identify cell identities (e.g.,
blood sub-types, sub-classifications of a disease) (Jaitin et al., 2014; Macosko et al., 2015; Zheng et al., 2017).
Commonly, the cell identities are determined by applying the clustering algorithms to their gene expression
profiles.

We analyzed the scRNA-seq data from (Zheng et al., 2017) that used a mixture of Jurkat and 293T
cells (50:50). Note that while the mixture proportion is known, the identities of individual cells that have
been sequenced are unknown. Because Jurkat (male and expressing CD3D) and 293T (female and expressing
XIST ) cell lines are highly distinct, we observed intelligible two groups separated along the 1st PC from their
gene expression profiles (Zheng et al., 2017). However, massively parallel scRNA-seq regrettably generates
multiplets (doublets, triplets, etc). The rate of multiplets increases linearly with the recovered cell number,
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Figure 4: The jackstraw clustering analysis of scRNA-seq data of Jurkat and 293T cells (Zheng
et al., 2017). (a) Clustering membership p-values are plotted against the 1st PC, which largely
separates two cell lines. (b) Posterior inclusion probabilities (PIPs) are computed from p-values.
At a PIP threshold of 0.80, 3.3% of 3381 single cells would be discharged from corresponding
clusters. (c) PIPs are visualized as alpha levels on the scatterplot of the top 2 PCs. Essentially, this
is identical to Figure 2(e) in (Zheng et al., 2017), except transparencies are set to PIPs from the
proposed methods. Note that when PIP=0, as appeared in Figure 4(b), the data point is completely
transparent.

and through single nucleotide variant (SNV) detection, they inferred a 3.1% multiplet rate for this mixture
experiment (Zheng et al., 2017). For ∼ 10000 single cells, (Zheng et al., 2017) reports > 8% multiplet rates.
The ambiguous identities of singe cells would become increasingly challenging as scRNA-seq becomes more
affordable and widespread.

Following the original analysis pipeline, we applied the K-means clustering on the top 10 PCs based on
unique molecular identifier (UMI) counts. The jackstraw tests for those K = 2 clusters were conducted with
s = 100 and B = 10000. We found that the jackstraw p-values capture deviation away from two centers, along
the 1st PC axis (Figure 4(a)). Using the q-value methodology (Storey and Tibshirani, 2003), the proportion
of null features (that are not members of the clusters) is estimated to be π̂0 = 0.05. Then, we computed
the proposed PIPs from p-values (Figure 4(b)). At PIP < 0.80 (equivalent to 20% local FDRs), 3.3%
of 3381 single cells would be removed from corresponding clusters, effectively and automatically removing
the majority of suspected multiplets. Instead of hard-thresholding the single cell samples at an arbitrary
threshold, we can also visualize posterior probabilities as levels of transparency in a conventional PCA
projection, where the top 2 PCs are plotted (Figure 4(c)). Please note that because dimension reduction
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does not fully capture local and global structures in the original high dimensions, distances in reduced
dimensions (PCA, t-SNE, and alike) should be considered with caution.

Discussion
The explosion of biological data has increased the importance of unsupervised learning. Without the external
and accurate labels for the observed data, unsupervised learning aims to estimate latent structure, reduce
dimensions, and classify data features. In particular, clustering of high-dimensional genomic data has led
to better understanding of and informative hypotheses for biological functions (Spellman et al., 1998; Jang
et al., 2017), molecular subtypes (Sørlie et al., 2001; Wang and Gu, 2016), and cell identities (Wagner et al.,
2016). However, data-dependent classification cannot be used in downstream analyses without incurring
spurious statistical significance. Our proposed methods solve this challenge by learning the uncertainty
inherent in deriving clusters from the data and conducting a statistical test using the jackstraw strategy.

There exists a wide range of clustering algorithms to automatically assign the m observed features
into K clusters. The proposed methods test whether the observed features are correctly assigned to the
corresponding clusters. Our key ingredient is to generate and re-cluster the jackstraw data, which include a
very small number s of synthetic null features. Because of s� m, the majority of observed features are intact,
resulting in cluster centers that are almost identical to the original cluster centers. Subsequently, eventual
assignments of s synthetic null features into K clusters are used to derive the empirical null distribution. We
have demonstrated favorable operating characteristics using simulated and real genomic data. The proposed
PIP methods open new possibilities for selecting canonical cluster members, shrinking cluster centers and
improving cluster algorithms. Furthermore, the proposed methods may adaptively guide the choice of stable
clusters.

Our proposed strategy enables rigorous application of unsupervised learning, such that the estimated
latent structure can be re-used in downstream analyses. The jackstraw test for PCA and related methods
(Chung and Storey, 2015) have been used in many specialized areas of genomic studies (Macosko et al.,
2015; Satija et al., 2015; Chung et al., 2017; Farré et al., 2015; Jang et al., 2017; Zheng et al., 2017).
Complementing this successful approach, we have developed the jackstraw test for clustering. It may be
useful to integrate both variants of the jackstraw tests, from selecting highly informative genes to deriving cell
identities. Differential expression analyses based on cluster-based cell identities may become more robust by
incorporating the jackstraw tests. Because the proposed methods are not limited to genomics, we anticipate
its adaptation in other fields of data-intensive science.
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Data Access
The proposed methods are implemented in an open source R package, https://github.com/ncchung/
jackstraw.
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Figure S1: Scatterplots of the top 2 principal components (PCs) from the simulated data. Oracle
Groups are shown in colors. An increasing level of noise, σ2 = 5, 10, 15 brings data features from
two different underlying structures closer together.
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Figure S2: Simulation studies using σ2 = 5. The jackstraw tests (s = 100 and B = 5000) or
the naive tests are applied without using any information from simulation. (a) P-values are shown
stratified by Oracle Groups, where the naive tests result in an anti-conservative bias. The uniformity
of null p-values corresponding to Oracle Group B is examined by KS tests, which are independently
repeated 100 times. (b) The total of 100 independent simulation studies are conducted, and 100
KS-test p-values are plotted against the Uniform(0,1) distribution. The proposed jackstraw tests
meet the joint null criterion with a double KS test p-value of 0.81, whereas the naive tests are highly
anti-conservative with a double KS test p-value of < 2.2× 10−16.
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Figure S3: Simulation studies using σ2 = 15. The jackstraw tests (s = 100 and B = 5000) or
the naive tests are applied without using any information from simulation. (a) P-values are shown
stratified by Oracle Groups, where the naive tests result in an anti-conservative bias. The uniformity
of null p-values corresponding to Oracle Group B is examined by KS tests, which are independently
repeated 100 times. (b) The total of 100 independent simulation studies are conducted, and 100
KS-test p-values are plotted against the Uniform(0,1) distribution. The proposed jackstraw tests
meet the joint null criterion with a double KS test p-value of 0.67, whereas the naive tests are highly
anti-conservative with a double KS test p-value of < 2.2× 10−16.
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Figure S4: Comparison of the jackstraw p-values for an increasing choice of s. For the cell cycle
gene expression data, the jackstraw tests are carried out with the number of synthetic null features
s varying from 10 to 5000 while keeping the same number of total null statistics s × B = 5 × 106.
On the left panel, all different sets of p-values are compared against Uniform(0,1), where as on the
right panel, p-values from the jackstraw tests with s = 10 are used as a base line. Increasing s
results in an increase in conservative behavior.
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