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Abstract

DNA methylation aberrations are common in many
cancer types. A major challenge hindering compari-
son of patient-derived samples is that they comprise
of heterogeneous collection of cancer and microenvi-
ronment cells. We present a computational method
that allows comparing cancer methylomes in two or
more heterogeneous tumor samples featuring differ-
ing, unknown fraction of cancer cells. The method
is unique in that it allows comparison also in the
absence of normal cell control samples and without
prior tumor purity estimates, as these are often un-
available or unreliable in clinical samples. We use
simulations and next-generation methylome, RNA,
and whole-genome sequencing data from two can-
cer types to demonstrate that the method is accu-
rate and outperforms alternatives. The results show
that our method adapts well to various cancer types
and to a wide range of tumor content, and works
robustly without a control or with controls derived
from various sources. The method is freely available
at https://bitbucket.org/anthakki/dmml.

1 Introduction

Aberrant DNA methylation is a hallmark of all
cancer types (Hanahan and Weinberg, 2011; Witte
et al., 2014; Shen and Laird, 2013; Timp and Fein-
berg, 2013). Compared to genomic alterations, DNA
methylation offers a more flexible yet a persistent

mechanism to exert changes on the phenotype, which
manifests in silencing tumor suppressor genes, acti-
vating proto-oncogenes, or causing chromosomal in-
stability (Witte et al., 2014; Shen and Laird, 2013;
Timp and Feinberg, 2013; Yang et al., 2015). While
some patterns have been identified, the role of DNA
methylation alterations in cancer development, tu-
mor pathogenesis, and treatment response varies be-
tween cancer types (Witte et al., 2014; Yang et al.,
2015; Ciriello et al., 2013). Advances in next-
generation sequencing (NGS) in combination with
classical bisulfite conversion (Frommer et al., 1992;
Harris et al., 2010) have allowed profiling methylomes
at a single nucleotide resolution at an unprecedented
scale (Shen and Laird, 2013; Ciriello et al., 2013).
These developments have surged an interest to de-
velop personalized clinical applications that employ
DNA methylation alterations as diagnostic and prog-
nostic biomarkers and as therapeutic targets (Wei
et al., 2006; Altman et al., 2013). A major challenge
in this is that the surgically removed samples com-
prise of heterogeneous mixture of cancer cells and the
microenvironment. As the exact tumor content (tu-
mor cell fraction, tumor purity) and cell composition
varies considerably between the samples, direct com-
parison of samples even from the same patient with-
out correcting for the tumor cell content can lead to
spurious results (Carter et al., 2012; Aran et al., 2015;
Zheng et al., 2017).

Immunohistochemical staining has been the most
used technique to determine cell composition in tissue
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sections and to select high purity samples for further
experiments. More recently, high-throughput mea-
surement technologies have enable cost-efficient and
rapid production of patient-derived molecular data,
but also allow estimating the sample tumor content.
Computational tools have been developed for purity
estimation using somatic copy-number data (Carter
et al., 2012; Oesper et al., 2013; Van Loo et al., 2010),
single-nucleotide polymorphisms (Van Loo et al.,
2010), variant allele frequency of somatic mutations
(Carter et al., 2012), or RNA expression (Yoshihara
et al., 2013). Evidence suggests that these meth-
ods outperform manual analysis and allow analysis of
large-scale datasets (Carter et al., 2012; Zheng et al.,
2017). While the tools allow fast and reproducible tu-
mor purity analysis, most differential DNA methyla-
tion analysis methods i) do not account for the sample
heterogeneity or adjust the analysis for low tumor pu-
rity or differences between samples (Hebestreit et al.,
2013; Hansen et al., 2012; Feng et al., 2014; Sun et al.,
2014; Sun and Yu, 2016; Wang et al., 2016), ii) re-
quire a library of control samples (Houseman et al.,
2012), or iii) do not account for co-methylation of
closely located sites, cannot correct for this at single-
nucleotide level (Hebestreit et al., 2013; Hansen et al.,
2012; Feng et al., 2014), or model co-methylation uni-
formly (Sun and Yu, 2016; Wang et al., 2016; Zheng
et al., 2014). All the shortcomings lead to biased find-
ings and false biological interpretation. The require-
ment for a controls is problematic, as in many cases
appropriate controls are not available or are incompa-
rable, and the purities predicted using matched blood
controls show poor correlation with the estimates de-
rived with universal normal controls in various cancer
types (Zheng et al., 2017).

Here, we present a method based on a la-
tent stochastic model which allows comparing DNA
methylomes at a single-nucleotide resolution between
two or more tumor samples with different, unknown
tumor purities. The method performs accurately
without a normal cell control sample or prior tu-
mor purity estimates, and accounts for spatially co-
methylated cytosines, improving accuracy at lower
coverage sites. We demonstrate the superior perfor-
mance using simulations and two sets of NGS can-
cer data — targeted sequencing data from high-grade
serous ovarian cancer patients and genome-wide re-
duced representation bisulfite sequencing data from
diffuse large B-cell lymphoma patients.

2 Models and methods

Patient-derived samples are composed of different cell
types, such as various types of stromal and immune
cells in addition to cancer cells, that are present in
different, unknown proportions. The number of cell
types that can be identified is limited by the setting,
e.g. a pairwise comparison of two tumors can be cor-
rected for a single common nuisance. We use sequenc-
ing data to estimate the underlying DNA methylome
of each cell type and the composition of each sample
simultaneously. These estimates allow testing cancer
cell specific differences between the samples and ob-
taining purity-corrected estimates of the methylomes
of each cell type. An overview is shown in Figure 1,
and full details are given in Supplementary material.

2.1 Modeling latent methylation pat-
terns

We assume that there are n (pure) cell types, j:th of
which has an unknown methylation pattern (Zi,j)

m
i=1

defined at m sites. In a typical case comparing two
tumor samples, three hypothesized cell types exist:
a single normal cell type, common in both samples,
and two cancer cell types, (potentially) unique in each
tumor sample (cf. Figure 1).
The m sites at which the methylation is mod-

eled can represent either adjacent or distant genomic
sites, making the method applicable to whole-genome
bisulfite sequencing (WGBS), targeted bisulfite se-
quencing (TBS), reduced representation bisulfite se-
quencing (RRBS) (Harris et al., 2010; Lee et al.,
2013), or other sequencing-based platforms. For
methylation, the latent state variables Zi,j are binary,
but could be e.g. quaternary for detecting DNA mu-
tations.

2.2 Modeling observed methylation
patterns

A typical tumor sample consists of few major cell
types, such as stromal and immune cells in addition to
the actual cancer cells of interest (Carter et al., 2012;
Aran et al., 2015). Due to this, there is a distinction
between the methylation patterns that are measured
in the impure samples and those of the underlying
pure cell types (which are not directly measured).
Each sample is assumed to be a mixture of the n

cell types and be further corrupted by random noise
(cf. Figure 1). We useXi,j to denote the random vari-
able corresponding to the methylation read at site i
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Figure 1: Overview of the proposed methodology. The objective is to identify features of the true methylation
patterns of n cell types at m sites. We assume a generative model where each of the n′ sample types is
a mixture of the n cell types, with unknown proportions and unmodeled additional variations (errors).
Sequencing reads from each of the n′ sample types are pooled and grouped into w site runs for local intersite
modeling. These data are used to estimate the most likely model, which can be used to test if a pair of cell
types feature differential methylation.

of the j:th sample type, αk,j :s to denote the mixing
parameters and ϵk,j to denote the per-site error rate
(cf. Figure 1). The mixing parameter αk,j determines
the fraction of cells of type k in the sample j, which
will be determined by the unknown sample composi-
tion. The error rates depend on various factors such
as unmodeled variations for the cell type k and se-
quencing and postprocessing errors of the sample j,
which makes their direct measurement cumbersome,
but this is not a problem as the parameters can be
estimated from the data. Here, the errors are consid-
ered to be independent random bit-flips, but a more
complex error model is possible (see Supplementary
material).

In the simple case of comparing two tumor samples,
we use a single common error parameter ϵk,j = ϵ,
three cell types (n = 3) as described in the previous
section, and three sample types (n′ = 3): a normal
cell sample (control) and two kinds of tumor sam-
ples. The mixing is determined by the two mixing
parameters α1,1 = α1 and α1,2 = α2, the tumor puri-
ties of each two tumor samples, and the other mixing
parameters are implicit: α0,0 = 1, αk,1 = 0 (control
is pure), α0,j = 1 − αj,j (the impurities in the tu-
mor samples are normal cells) and α2−j+1,j = 0 (no
crosstalk between the two cancer cell types).

An arbitrary number of cell types and sample types

are supported, provided that the problem is identi-
fiable (e.g. it is not possible to decompose a single
sample into multiple cell types without further con-
straints). For example, an arbitrary number of tumor
samples can be compared simultaneously, provided
that the normal cells feature a similar methylation
pattern in each tumor sample. Alternatively, mul-
tiple normal cells can be present, provided that an
appropriate number of controls are supplied. The
identifiability problems arising from low sample size
are locally mitigated by the co-methylation modeling
(see next section).

2.3 Co-methylation modeling

In general, even for RRBS, a single sequencing read
will contain multiple adjacent sites (in CpG islands,
we expect about 3 to 4 CpG sites per a 100 basepair
read (Illingworth and Bird, 2009)), which introduces
correlations in the mixing. This, and the fact that
alterations in methylation patterns (Eckhardt et al.,
2006) tend to span larger regions, introduces correla-
tions in the adjacent sites Xi,j and Xi′,j , which result
in incorrect statistical significance and wrong calls.
Note that while the latter type of correlations are
amplified in RRBS and using WGBS instead would
dilute such correlations, the former type of correla-
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tions would be amplified.

To capture these correlations, we model w-wise
joint distributions of the methylation patterns. We
found this approach to be the most appropriate, as
sufficiently distant sites are expected to be uncor-
related, while the correlation between adjacent sites
varies e.g. depending on distance (for RRBS and tar-
geted sequencing) and boundaries of genetic elements
(Eckhardt et al., 2006; Lister et al., 2009), calling for
local modeling in each neighborhood. Using a larger
window size w increases computational effort but has
no other disadvantages: if the data lacks dependence,
the results are equal to those using a smaller window
size.

2.4 Model estimation and differential
methylation testing

Given the above model, our objective is to use the se-
quencing data to estimate the underlying methylation
pattern of each (pure) cell type and the composition
of each tumor sample type simultaneously.

The estimation is performed in maximum likeli-
hood sense (ML; i.e. select parameters that most
likely generate the data), which is implemented
through a numerical expectation maximization al-
gorithm (see Supplementary material). Direct op-
timization is infeasible even for moderate number of
sites as the complexity is O(|Σ|mn) where m and n
are the number of sites and cell types, respectively,
and |Σ| = 2 is the alphabet size. Meanwhile, our
method is exponential time and space in wn, where
w is the window size, but takes linear time (per it-
eration) and constant memory in m, which allows
genome-scale analysis. Prior information about the
parameters can be included by modifying the ML ob-
jective. For example, if estimates of the tumor pu-
rities are available from other sources, the estimator
can be persuaded to use this information.

The estimates allow testing if specifically the can-
cer cells in the different sample types feature a dif-
ferential methylation: we derive a p-value through
a likelihood ratio test (see Supplementary material).
Alternatively, the estimated distribution of the cell
type methylation patterns can be used to derive max-
imum posterior estimates of the cell type methylation
patterns, yielding “purified” methylation counts.

3 Results and discussion

3.1 Monte Carlo simulations

The use of sequencing data from cancer patients allow
estimation of sensitivity to some degree but not speci-
ficity. Therefore, a simulation where ground truth is
known is important. Here, we employed Monte Carlo
simulations based on publicly available WGBS data
and compared differential DNA methylation calling
under varying tumor purity.

3.1.1 Simulation settings

We obtained sequences of a length m, for three cell
types (one normal and two cancer cells; the simplest
setting where multiple tumor samples are compared)
by sampling publicly available whole-genome bisulfite
sequencing (WGBS) data of immortalized cell lines
from The ENCODE Project Consortium (2012) (see
Supplementary material). Afterwards, bisulfite reads
were generated by sampling the reads of the corre-
sponding WGBS dataset, extracting the methylation
signal, and adding random errors (independent bit
flips). The control sample was generated from the
GM12878 cell line, while two tumor samples were
generated by mixing the K562 and HepG2 cancer cell
lines with the GM12878 line.
Methylation calls were made at a significance level

0.05 after adjusting for false discovery rate (FDR)
using the Benjamini-Hochberg procedure (Benjamini
and Hochberg, 1995), following the procedure of Lis-
ter et al. (2009). An FDR adjustment and the se-
lected significance level strongly influence the num-
ber of true versus false calls, but we did not find it to
affect our conclusions (not shown).

3.1.2 Performance under varying tumor pu-
rity

First, we studied how varying sample purities affects
the performance of detecting differentially methy-
lated sites in two tumor samples. We compared our
approach with several existing methods: Fisher’s ex-
act test (Lister et al., 2009; Pan et al., 2015; As-
senov et al., 2016), MOABS (Sun et al., 2014), a
mixture-adjusted Fisher’s exact test (see Supplemen-
tary material), InfiniumPurify (Zheng et al., 2017),
and DSS (Feng et al., 2014). In the comparisons, we
used our method with and without a control sam-
ple and using various window sizes w for the co-
methylation modeling. Unlike our method, none of
the alternatives can perform control-free differential
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methylation calling on two tumor samples without
known purities, which is a severe limitation, and in
the comparisons, they are used with additional in-
formation. Most of the alternative methods for de-
tecting differential methylation are unsuitable for a
setting comparing two or more heterogeneous tumor
samples, as they assume that the samples are pure or
feature similar purity (Hebestreit et al., 2013; Hansen
et al., 2012; Sun and Yu, 2016; Wang et al., 2016),
or cannot compare multiple tumor samples (e.g. but
only tumor versus normal) (Zheng et al., 2014).

Figure S1 exemplifies a typical setting with 30×
average coverage with m = 1,000 CpG sites (chro-
mosome 6, 22,333,542–22,469,062 in GRCh38) and
sample purities of α1 = 0.25 and α2 = 0.75 and
an error rate of 0.05. As expected, Fisher’s exact
test performs poorly — not much better than a ran-
dom guess — due to the different sample purities,
while the mixture-adjusted variant can reach an accu-
racy of about 90%. MOABS performs comparably to
the Fisher’s exact test, and InfiniumPurify and DSS
comparably to the mixture-adjusted Fisher’s exact
test, which is expected as the latter set of methods
properly model the tumor composition while MOABS
does not. Meanwhile, our method provides higher
accuracy than the alternatives over a wide range of
thresholds, and generally ranks higher in either (or
both) specificity or sensitivity. Using a matched con-
trol and higher order co-methylation modeling results
in further improvements in the performance, which
are unavailable to the alternatives.

For a more thorough analysis, we simulated data
with varying sample purities in each sample. The re-
sults were obtained with 30× average coverage, and
the average false call rates of 500 simulations with
m = 1,000 CpG sites each as a function of the sample
purities are visualized in Figure 2. The lower triangle
of each heatmap shows the fraction of false negatives,
and the upper triangle the total fraction of false calls
(false negatives plus false positives; the fraction of
false positives ought to be small as they are being
controlled for). All methods perform poorly (equal
to random) at purities a1 = 0 or a2 = 0. This is ex-
pected, as the samples do not contain any information
about the methylation patterns of the cancer cells in
one (or both) of the samples. Compared to the al-
ternatives, our methods develop these false calls at a
later stage. Meanwhile, when the purities are dissim-
ilar, Fisher’s exact test and MOABS generate a large
amount of false positives, which is the major reason
for their unsuitability for these data. Our method,

when used without a control, is susceptible to gener-
ating false negatives when one of the samples is pure
and the other is not (i.e. a1∼ 1, a2∼ 0.5 or a1∼ 0.5,
a2∼1), which is due to the fact that it is not possible
to identify which of the patterns in the impure sam-
ple are from normal and which are from cancer cells,
as the pure sample lacks the normal cells. When a
control is provided, there is no such ambiguity, which
is also why this issue does not appear with the other
methods. Results with higher coverage qualitatively
similar, but the accurate range of purities (e.g. 95%
accuracy) is increased for each method.
In Figure S2, we show how the performance varies

across the simulations. This figure shows the distri-
bution of false calls in the 500 simulations for each
method along the curve α1 = 1−α2. The results
indicate that our methods perform competitively for
various degrees of tumor purity, and that providing
the control or prior information about the purities of-
fers further advantages. In general, providing a prior
results in more consistent performance (lower vari-
ance), while providing the control mainly enhances
the average performance.

3.1.3 Advantages of co-methylation model-
ing

Next, we show that our method offers even better
performance, provided that the sequencing reads are
of sufficient length. This feature allows our method
to have good performance even in low coverage set-
tings provided that the reads span over multiple CpG
sites, which is advantageous especially with targeted
sequencing data. The alternatives do not exploit this
information. Similarly, our method with a window
size of w = 1 lacks correlation modeling, rendering
this information unexploited.
An example with 30× average coverage in a 1,000

site experiment, with α = 0.25, α2 = 0.75, and an
error rate of 0.05, collected from 500 simulations is
summarized in Figure S3. For a read length of ex-
actly 1 CpG site, the results with w > 1 are equal
to that with w = 1. However, when a single read
covers multiple CpG sites, the co-methylation mod-
eling allows for a greater accuracy. Further increases
in the window size offer additional improvements in
the accuracy. The data that were used as a basis of
the simulation features about 4 CpG sites per read
on average, so we are unable to show the advantages
beyond this read length, but fully synthetic simula-
tions (not shown) suggest that further improvements
are possible for larger read lengths as well.
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Figure 2: False negatives/false calls with simulated data with varying sample purities. The axes represent
tumor purity of the two samples to be compared and the heatmap intensity represents the average false
negative rate (FN; lower triangle) and total false calls rate (FN+FP; upper triangle) in 500 simulations.
Different panels represent different methods: Fisher’s exact test (Fisher), MOABS, mixture-adjusted Fisher’s
exact test (mix-Fisher), InfiniumPurify, DSS, our maximum likelihood method (ML) with a window size
w = 1. Methods with a use a matched control sample, and methods with b the true purities.

3.2 Ovarian cancer dataset

Next, we applied the various methods to detect
differential methylation between samples surgically
removed from patients diagnosed with high-grade
serous ovarian cancer (HGSOC). HGSOC is respon-
sible for more than 40,000 deaths annually in Europe
alone and more than 50% of the patients die within
five years of diagnosis (Berns and Bowtell, 2012).

3.2.1 Sample description

We used a total of five ovarian cancer tumor sam-
ples from three patients, in three comparison set-
tings. Two treatment naive tumors (from initial la-
paroscopy prior to chemotherapy) were obtained from
the peritoneum of patient EOC60 (EOC60-per) and
EOC1133 (EOC1133-per), whereas the other three
are from interval debulking surgery after three cycles
of chemotherapy: one from bowel mesentery of pa-
tient EOC60 (EOC60i-meso), and the others from the
omentum and ovary of patient EOC868 (EOC868i-
ome and EOC868i-ov, respectively). We compared
the methylation between EOC60i-meso and EOC60-

per (same patient, treatment naive versus interval,
different anatomical site), EOC60-per and EOC1133-
per (different patient, treatment naive, same anatom-
ical site), and EOC868i-ome and EOC868i-ov (same
patient, interval, different anatomical site). A blood
sample from patient EOC868 (EOC868-WBC) was
used as a normal control where applicable.

The DNA methylomes were profiled using Agilent
SureSelectXT Human Methyl-Seq kit (Agilent Tech-
nologies, CA, USA) covering 3.7 M CpGs in 84 Mb
target followed by paired-end sequencing with Illu-
mina HiSeq 2500 (Illumina Inc., CA, USA). After se-
quencing, the methylation patterns at the spanned
CpG sites were used for further analysis. There were
about 8.64 M such sites, and about 3.07 M of the
sites where both compared samples featured cover-
age of 5× or more. The 5× coverage filtering was
performed to prune out low-quality regions, as con-
trolling the number of false positives is sensitive to
these. The average per-site read coverage before (af-
ter) the filtering was about 11.4× (30.4×). Further
details are given in Supplementary material.
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3.2.2 Comparing differential methylation
calls

The differential methylation calls within each sam-
ple pair were obtained as follows. The acquired
p-values for sitewise comparisons were adjusted for
false discovery rate using the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995) and calls
were made at significance level 0.05, following Lister
et al. (2009). We used Fisher’s exact test (Fisher)
and MOABS (Sun et al., 2014), which cannot use a
control sample; mixture-adjusted Fisher’s exact test
(mix-F; see Supplementary material), InfiniumPurify
(Zheng et al., 2017), and DSS (Feng et al., 2014),
which require a control sample; and our method
(ML) with a window size of w = 1, which oper-
ates either with or without a control sample. Fur-
ther, the mixture-adjusted Fisher’s test and DSS re-
quire external tumor purity estimates, which we de-
rived from the corresponding whole-genome sequenc-
ing data (WGS) using ASCAT (Van Loo et al., 2010).

The heatmaps in Figure 3 display the number of
mismatches of either type between any two methods.
In more than 91% of the calls, any two methods agree.
The results indicate that in all cases, the Fisher’s ex-
act test based methods share most common calls be-
tween themselves rather than with the other meth-
ods and vice versa, suggesting that the presence or
absence of control is not as important as the choice
of the method. Typically, a variant lacking a control
makes fewer calls than a variant with one, which is ex-
pected as the former lacks statistical power as shown
in our simulations. A problem characteristic to our
samples is that Fisher, MOABS, mix-F lack confi-
dence to make calls between the samples extracted
from a single patient, highlighting the importance of
tumor purity adjustment. For mix-F and DSS, an ap-
propriate control enables to avoid this problem, which
is available in the EOC868i-ome versus EOC868i-ov
comparison. Meanwhile, as InfiniumPurify was de-
signed for microarray data, it does not model the
heteroscedasticity resulting from read depth differ-
ences, so the calls likely correlate with large effect
sizes rather than with overall statistical evidence and
thus occur at different sites, which would explain why
it differs from all the other methods in most cases. In
all comparisons, the ML methods produce novel puta-
tive differentially methylated sites regardless whether
a control is provided or not. In some instances, pu-
tative false positives called by especially the methods
lacking tumor purity adjustment are pruned. Our hy-
pothesis is that the tumor purity is so low that the

accuracy of the Fisher-based methods starts to dete-
riorate significantly (cf. Figure 2). Finally, in the
EOC868i-ome versus EOC868i-ov comparison, the
ML based methods result in similar results, suggest-
ing that in the case lacking a control, the methylome
of the non-cancer cells is accurately estimated. As
the other comparisons do not exhibit such property,
the blood sample of patient EOC868 is likely an in-
accurate representative of the normal cell methylome
for these comparisons and the control-free compari-
son should be preferred. Findings in known ovarian
cancer related genes are summarized in Supplemen-
tary material.
The computational resources used for the analysis

are summarized in Table S1, which indicate that our
ML method has a competitive runtime and memory
usage when compared to the alternatives. We note
that our method has runtime and memory usage that
scales linearly with number of CpG sites (see Mod-
els and methods), suggesting that even much larger
analyses can be done using modest resources.

3.2.3 Comparing purity estimates

To validate the accuracy of our purity estimates, we
compared our method with ASCAT (Van Loo et al.,
2010) and ABSOLUTE (Carter et al., 2012), which
estimate the tumor purities from whole-genome se-
quencing (WGS) data. In addition, we used In-
finiumPurify to estimate the purities from the same
methylation data that was analyzed by our method.
The purities estimated using ASCAT and ABSO-
LUTE from the WGS data and InfiniumPurify from
the TBS data of our HGSOC samples are shown in
Table S2 with the mean and standard deviation in
each comparison. The numbers suggest that the sam-
ples vary both in tumor purity and in the degree that
the purities differ between the two samples, which
explains the varying degree of agreement in the dif-
ferential methylation calls between our ML method
and the alternatives.
Next, we compared the above tumor purity esti-

mates to those obtained using our method. The esti-
mates obtained from the methylation data using our
method are shown in Table S2, and they tend to fol-
low the other estimates. To test the reliability of our
estimates and if they agree with those reported by
the other methods, we estimated the parameters from
random substrings of the data. For this, 1,000 uni-
form random 1,000-site regions of consecutive CpG
sites were selected for independent parameter esti-
mation. Figure 4 shows the distribution of estimated
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Figure 3: Number/fraction of differential methylation calls in the ovarian cancer samples where the methods
differ. Methods: Fisher’s exact test (Fisher), MOABS, mixture-adjusted Fisher’s exact test (mix-F), Infini-
umPurify (IP), DSS, and our maximum likelihood method with window size of w = 1. Methods with a use
a matched control sample, c use an unmatched control, and d use ASCAT purity estimates from WGS data.
The upper triangle shows number of false positives, while the lower triangle shows true negatives.

parameters for the random substrings of each tumor
sample using the methylation data and our method.
To test the agreement between the estimates pro-
duced by ASCAT, ABSOLUTE, or InfiniumPurify
and the estimate by our method, we computed the
p-value of obtaining each estimate under the null hy-
pothesis that they follow the distribution of distances
from our estimate specified by the random substring
estimates, as shown in Table S2. To conclude, we
found no evidence that the estimates produced by
our method are in disagreement with any of the AS-
CAT or InfiniumPurify estimates. However, we found
some evidence that the ABSOLUTE estimates for the
EOC868i-ome and EOC868i-ov samples might differ
from those produced by the other methods (p-values
∼0.03 when compared with the ML method), which
might suggest ABSOLUTE performs better than AS-
CAT, InfiniumPurify, and our method in low (<20%)
tumor purity settings. In addition, the results indi-
cate that the estimated error parameter is small (less
than 0.10 in 77% of the cases) in each case (with no
constraints), suggesting that the mixture model ex-
plains majority of the data well.

3.2.4 Differential methylation as a predictor
of differential gene expression

To test whether the differential methylation calls pro-
duced by our method are more accurate than those of
the reference methods, we tested whether our method
better predicts gene expression data. For more accu-
rate DNA methylome quantification, we expect to see
a stronger correlation between the predicted differen-
tial methylation in promoter regions and the corre-
sponding difference in gene expression.

For this analysis, we quantified the Spearman’s
rank correlation between the RNA expression ratio
and the estimate difference in the DNA methyla-
tion in the compared samples. For each method,
the difference in the average methylation corrected
using the ASCAT purity estimate and the average
methylation of the control were used (i.e. solving
y = (1 − αj) y0 + αj m for m where y0, y are the
observed average methylation of the control and the
tumor sample, respectively, α is the purity, and m is
the “purified” average methylation), setting the pre-
diction to zero where no call was made. Similarly,
the expression values were corrected using the AS-
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Figure 4: Parameter estimates and an estimate of their variability. Parameter estimates from 1,000 pieces of
1,000 neighboring sites (violins), the estimates from the whole genome (white crosses), and the tumor purity
estimates from WGS data using ASCAT, ABSOLUTE, and from methylation data using InfiniumPurify.
Darker and lighter violins correspond to the purities of the compared samples, and the intermediate the
(common) error rate.

CAT purity estimate and a control pooled from all
the samples (median). The usage of rank correlation
ensures that batch effects and nonlinear relationships
between the covariates do not affect the results. The
expression data were obtained by analyzing the cor-
responding RNA-seq data extracted from the tumor
samples.

The correlation was quantified for the calls found
in the [−1500,+500) region (i.e. the promoter and
the first exon area) about the transcription start
sites (TSS) of known genes (annotations extracted
Jan 2017 from Ensembl (Yates et al., 2016)). Hy-
permethylation in these areas often results in sup-
pressing expression (Witte et al., 2014). Outside of
this region, no significant correlation was detected
in a genome-wide scale. Coincidentally, the effects
of global hypomethylation and more focal alterations
are expected to be less visible in a genome-wide cor-
relation.

To compare two methods, we quantified the corre-
lation for CpG sites called by either of the two meth-
ods. A t-test was used to determine the presence
of significant correlation (i.e. if the correlations are

nonzero), and Fisher’s transform and a z-test to de-
termine if there is a significant difference between two
correlation values (i.e. if two potentially non-zero cor-
relation values differ significantly). The results com-
paring Fisher’s exact test, MOABS, InfiniumPurify,
and DSS to our ML method with a control are shown
in Table 1. In each comparison, our ML predictor re-
sults in a significant anticorrelation (∼−8 to −12%)
between differential promoter methylation and the ra-
tio of the expression levels in each sample pair. The
results for DSS suggest a similar pattern. For oth-
ers, significant correlation only exist in some sam-
ples. More importantly, our ML predictor results in
a stronger correlation, which was found to be signif-
icant except against DSS (at significance level 0.05),
suggesting that our method results in a more accurate
recovery of the methylome.

The correlation as a function of the distance from
the TSS for the two methods in each of the three cases
are shown in Figure S4. The ML method indicates
overall stronger correlation than most of the alterna-
tives in the promoter region, which is in agreement
with Table 1. The regions outside of [−1500,+500)
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Table 1: Rank correlation between the predicted differential methylation and the differential expression ratio
The blocks contain comparison between the reference method and our maximum-likelihood (ML) method.
The correlations were computed from the sites where one (or both) of the compared methods make a call.
The table lists the correlation for the reference method (Corr -) and the ML method (Corr ML), p-values
for the hypotheses that these correlations are zero (P-,0, PML,0), and p-values for the hypotheses that these
correlations are equal (P-,ML).

Sample A/B Method Corr - P-,0 Corr ML PML,0 P-,ML

60-per /60i-meso F −3.6% 0.04 −8.6% 8.4×
−7
10 0.04

60-per /1133-per F −6.6% 9.7×
−27
10 −10.5% 1.5×

−64
10 9.2×

−6
10

868i-ome/868i-ov F −1.9% 0.21 −12.0% 4.7×
−16
10 1.2×

−6
10

60-per /60i-meso MOABS −2.6% 0.14 −8.5% 8.5×
−7
10 0.02

60-per /1133-per MOABS −6.8% 1.6×
−38
10 −8.9% 8.1×

−65
10 4.4×

−3
10

868i-ome/868i-ov MOABS −0.6% 0.69 −11.5% 4.3×
−16
10 4.4×

−8
10

60-per /60i-meso IP −3.2% 0.04 −7.7% 7.1×
−7
10 0.04

60-per /1133-per IP −5.8% 1.7×
−17
10 −11.5% 4.4×

−65
10 1.6×

−9
10

868i-ome/868i-ov IP −3.5% 5.3×
−4
10 −8.4% 1.5×

−16
10 7.0×

−4
10

60-per /60i-meso DSS −4.6% 7.5×
−3
10 −8.5% 8.4×

−7
10 0.11

60-per /1133-per DSS −10.3% 1.7×
−63
10 −10.4% 3.4×

−64
10 0.95

868i-ome/868i-ov DSS −9.3% 9.8×
−26
10 −7.3% 1.9×

−16
10 0.11

tend to be poorly correlated with the expression data
in a genome-wide level and/or lack data to sufficiently
detect one. Our method reveals that changes in the
promoter methylation in regions in the vicinity of the
TSS and a region at about −800 are strongly reflected
in the differential expression of the genes in a genome-
wide level.

3.3 Lymphoma dataset

In addition to the ovarian cancer data, we applied the
methods on samples collected from diffuse large B-
cell lymphoma (DLBCL) patients. DLBCL is a can-
cer of B-cells, a type of white blood cell responsible
for antibody production, and most commonly derives
from mature B-cells (Kuppers et al., 1999). DLBCL
is the most common type of non-Hodgkin lymphoma
in adults, with ∼7 reported cases per 100,000 people
annually.
We used these data in addition to the ovarian can-

cer data for the following reasons. First, DLBCL is
a different type of cancer, so the prevalence and pat-
terns of methylation aberrations likely differs (Witte
et al., 2014). Second, the methylomes of these sam-
ples were profiled using reduced representation bisul-
fite sequencing (RRBS), which is a different target-
ing method than used for our ovarian cancer samples.
Third, these samples feature a widely different tumor
cell fraction (about 84.5% on average versus 42.2%

of the ovarian cancer samples according to ASCAT).
The analysis is described in detail in Supplementary
material.

Again, the results obtained on these data largely
agree between the methods (for more than 83% of the
calls, any two methods agree; Figure S7, Figure S9–
Figure S11). However, provided that our methods are
more accurate — as suggested by our simulations and
the analysis of the ovarian cancer data — our meth-
ods allow ruling out a sizable fraction of false positive
calls, and, when used with a control sample, suggest
novel findings which the previous methods were un-
able to identify. Interestingly, with the DLBCL sam-
ples the nature of the control sample does not seem
to drastically affect identifying the false positives, so
even an unmatched control derived from a different
tissue, other patients, or from a public database is
suitable for these data to gain some of the improve-
ments. The purity estimates produced by our method
are consistent with the ones produced by ASCAT and
ABSOLUTE fromWGS data, or InfiniumPurify from
the methylation data (Figure S8).

4 Conclusion

We introduced a method that estimates differential
methylation between multiple cancer samples featur-
ing varying, unknown tumor purity. The method
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does not require a prior estimate of the sample puri-
ties, nor the methylome of a normal sample, but can
estimate these in the process. However, if these in-
formation are available, they can be communicated
to the estimator in order to improve its accuracy.

The developed method is expected to be of
paramount value toward personalized medicine ap-
plications, where prognosis, treatment decisions, and
response follow-up need to be done using multiple
samples, harvested from multiple locations and time
points at the individual patient level. Such approach
is fundamental for studying heterogeneous diseases,
where the comparison can only be done at the pa-
tient or small, stratified subgroup level. Our method
is the first that allows comparison between tumor and
healthy tissue or blood samples, between primary and
metastatic tumor samples, or between samples of dif-
ferent patients under the condition where the sample
purities vary and a reliable control is absent.

We used Monte Carlo simulations to demonstrate
that the method can operate for a wide range of pu-
rities, unlike Fisher’s exact test, MOABS, or other
methods which do not model the sample composi-
tion. Fisher’s exact test and few other methods like
DSS can be adjusted for tumor purities but, unlike
our method, the adjustment requires prior knowledge
of the purities and a reliable control sample. Our
method can also exploit such information, but also of
the co-methylation of closely located sites, which is a
recognized phenomenon (Lister et al., 2009; Eckhardt
et al., 2006) but is neglected by a sitewise Fisher’s
exact test and most alternatives. In general, regard-
less of the setting, our method outperforms all the
compared alternatives for a wide range of sensitivity
versus specificity.

We applied the method on targeted bisulfite se-
quencing data from ovarian cancer patients. The re-
sults data largely agree between the methods. How-
ever, our method suggested up to 5% novel differ-
entially methylated sites, which the previous meth-
ods were unable to identify, and allowed ruling out
a fraction of false positives. The superior accuracy
of our method was confirmed by predicting RNA ex-
pression data analyzed with independent methods,
and the tumor purity estimates were validated us-
ing independent methods using both whole-genome
sequencing data (ASCAT and ABSOLUTE) and the
methylation data (InfiniumPurify). Thus, we expect
that the performance of our method for tumor purity
estimation is comparable to the WGS-based methods
as well.

The methods were also applied on DLBCL patient
data, demonstrating that our methods adapt well to
different cancer types and a wide range of tumor pu-
rities, and that our method can work robustly with
controls derived from various sources. The analyses
also demonstrate that our methods can be deployed
in genome scale (up to ∼ 450 M samples per com-
parison) and work robustly both with and without a
normal cell control.
As profiling DNA methylation in a genome-wide

scale has been enabled only recently, computational
methods are being developed in order to analyze these
data in a meaningful sense. Our method is a signif-
icant contribution to this effort for several reasons:
First, as the method can estimate all model param-
eters simultaneously, it requires no additional mea-
surements to supply any configuration parameters.
Second, the method can operate either with or with-
out a control sample, which is critical as a control is
often unavailable, unreliable, or of suspect. Third,
more accurate methods are necessary to elucidate
less prominent differences; alternatively, fewer data
are needed for equivalent power. Due to these and
the important role of DNA methylation, we expect
our method to greatly benefit research on cancer and
other complex diseases.
The proposed methodology generalizes for estimat-

ing differences in any type of sequences, such as mu-
tations in unconverted DNA or DNA copy-number
variations. Meanwhile, our methods readily support
comparison of multiple samples and more complex
sample compositions than used here, provided that
the problem is identifiable. Taken together, we be-
lieve that our methods enjoy wide applicability in an-
alyzing and comparing measurement data from vari-
ous sequencing-based platforms.
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