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ABSTRACT	
Modern	medicine	and	an	increasingly	complex	environment	contribute	to	exposure	of	humans	to	

a	 large	 number	 of	 chemical	 compounds,	 that	 can	 potentially	 be	 toxic.	 Although	 widely	 used,	

compound	 testing	 in	 animals	 has	 important	 limitations.	 In	 vitro	 testing	 provides	 a	 promising	

alternative.	However,	because	of	the	relative	inaccessibility	and	fragmentation	of	available	data,	

the	in	vitro	approach	largely	underperforms	its	potential.	The	aim	of	this	study	is	to	investigate	

how	available	public	online	resources	(tools	and	databases)	support	accessing	and	distribution	of	

in	 vitro	 compound	 data.	We	 examined	 19	 public	 online	 resources,	mapped	 their	 features,	 and	

evaluated	their	usability	with	a	set	of	four	model	compounds	(aspirin,	rosiglitazone,	valproic	acid,	

and	 tamoxifen).	 By	 investigating	 compound	 names	 and	 identifiers,	 we	 observed	 extensive	

variation	and	 inconsistencies	 in	 available	 resources:	 the	 synonyms	were	different,	 compounds’	

structural	identifiers	(InChI,	InChIKey,	SMILES	and	IUPAC	systematic	name)	underperformed	in	

omics	 databases,	 identification	 of	 compound	 related	metadata	 (e.g.	 concentrations	 used	 in	 the	

experiments)	 from	omics	experiments	was	complex	and	none	of	the	available	resources	clearly	

distinguished	between	in	vivo	and	in	vitro	data.	In	addition,	we	estimated	accessibility	of	selected	

public	 resources	 using	 computational	 queries.	 Only	 a	 few	 public	 resources	 provided	 access	 to	

compound-related	 data	 using	 semantic	 web	 technology.	 The	 general	 quality	 of	 experiment	

annotations	 created	 further	 difficulties	 in	 identifying	 data	 of	 interest.	 Therefore,	we	 identified	

several	standardized	ontologies	with	potential	to	provide	an	increased	accuracy	for	extensive	data	
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retrieval	of	in	vitro	compound	data.	Furthermore,	using	the	examples	of	our	model	compounds,	we	

provide	 recommendations	 on	 the	 use	 of	 ontologies	 by	 suggesting	 specific	 ontology	 terms	 to	

annotate	in	vitro	experimental	data	when	being	published.	

Introduction	
The	 number	 of	 chemical	 compounds	 in	 public	 databases	 is	 growing	 and	 experimental	 data	

concerning	 these	 compounds	 are	 accumulating.	 As	 of	 today,	 both	 the	 CAS	 RegistrySM	 and	

PubChem1	contain	more	than	90	million	compounds	with	many	new	compounds	being	added	each	

day.	Among	these	compounds	are	drugs,	chemicals,	environmental	contaminants	and	toxins,	all	of	

which	 potentially	 could	 elicit	 effects	 that	 could	 have	 implications	 on	 human	 health	 and/or	

environment.	Most	of	these	compounds	have	not	been	characterized	from	a	toxicological	point	of	

view.	Indeed,	the	US	based	ToxNet	database	Hazardous	Substances	Data	Bank	(HSDB)2	where	an	

expert	panel	reviews	individual	compounds,	contains	less	than	6000	records	(as	of	12.12.2017).	

Alternatively,	 ChEMBL3,	 which	 predominantly	 consists	 of	 literature	 extracted	 bioactivity	 data,	

contains	around	1.73	million	distinct	compounds	(as	of	12.12.2017).	The	difference	in	the	number	

of	compounds	registered	and	the	number	of	compounds	whose	toxic	effect	is	well	characterized,	

demonstrates	the	limited	capacity	of	current	methods	to	assess	a	compound’s	bioactivity	in	a	living	

system.	In	vitro	 test	systems	with	high-throughput	performance	and	potential	scalability	aim	to	

bridge	 that	 gap.	 It	 will	 further	 increase	 the	 amount	 of	 data	 and	 provide	 new	 knowledge	 of	

compound’s	biological	properties.	

Animal	testing	of	compound	toxicity	and	efficacy	is	requested	for	drug	development,	but	it	is	slow,	

expensive	 and	 raise	 concerns	 about	 animal	 welfare4.	 Alternatives	 to	 animal	 experiments	 is	

strongly	 encouraged	 according	 to	 the	 3R	 (replacement,	 reduction	 and	 refinement)	 principles.	

Therefore,	large-scale	initiatives	have	been	launched	to	investigate	compound’s	toxicity	in	rapid,	

quantitative	 and	 scalable	 in	 vitro	 systems	 (e.g.	 Tox215	 and	 EU-ToxRisk6).	 These	 bioassays	 can	

measure	endocrine	disruption7,	 the	generation	of	 reactive	oxygen	species	 (ROS)8	or	changes	 in	

gene	 expression	 of	 biomarkers	 in	 developing	 and	 mature	 neurons9.	 These	 assays	 represent	

different	aspects	of	the	human	biology	where	an	aberration	of	homeostasis	can	suggest	adverse	

consequences	to	the	human	health.	Compared	to	animal	models,	in	vitro	bioassays	allow	studying	

concentration-response	 relationships	 over	 a	 large	 concentration	 range,	 including	 those	

representative	 of	 human	 exposure4.	 By	 combining	 compound’s	 structural	 information,	 known	

molecular	 properties	 and	 data	 from	 bioassays	 and	 omics	 experiments,	 researchers	 can	 better	

describe	compound	effect	pathways	for	a	systematic	understanding.	

Presently	there	is	no	simple	way	to	access	in	vitro	compound	data	in	a	quick	and	synoptic	manner.	

Instead,	data	is	fragmented	across	many	different	resources10	and	interested	parties	need	to	invest	

invaluable	time	and	effort	to	develop	an	expertise	in	order	to	navigate	these	systems	efficiently11.	

The	diversity	of	compound	synonyms	and	its	identifiers,	lack	of	precise	metadata	and	annotations,	

can	lead	to	false	conclusions	and	to	difficulties	identifying	the	compound	correctly	after	it	has	been	

published12.	To	improve	the	reproducibility	of	experimental	results	and	to	test	new	hypotheses	
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(e.g.	development	of	predictive	computational	models),	availability	and	accessibility	of	raw	data	is	

crucial.	

In	this	study,	we	analyzed	19	public	resources	that	potentially	allow	a	researcher	to	investigate	

compound-specific	 in	 vitro	 data.	 We	 demonstrate	 that	 modest	 adoption	 of	 semantic	 web	

technologies	 and	 poor	 annotations	 of	 experimental	 metadata,	 in	 particular	 when	 describing	

experimental	 conditions,	 represent	 a	 major	 obstacle	 for	 high	 quality	 data	 integration	 and	 its	

reusability.	Lastly,	we	provide	insight	how	standardized	ontologies	could	improve	the	annotation	

of	compound	related	experimental	data.	

Materials	and	methods	
Choice	of	model	compounds	for	resource	analysis	

In	order	to	search	the	resources	and	to	identify	their	potentials	and	pitfalls,	we	chose	four	model	

compounds	 that	 were	 used	 to	 evaluate	 public	 resources	 throughout	 this	 study	 (Table	 1):	

rosiglitazone,	valproic	acid,	aspirin	(acetylsalicylic	acid),	and	tamoxifen.	Below	the	motives	to	why	

these	were	chosen	as	model	compounds	are	listed:	

Tamoxifen	is	a	commonly	used	drug	to	treat	hormone-dependent	breast	cancers.	Tamoxifen	was	

included	 in	 the	 study	 because	 of	 the	 several	 known	 side-effects13	 and	 its	 relatively	 complex	

structure.	

Valproic	acid	 is	an	antiepileptic	drug	which	has	been	in	clinical	use	for	about	half	a	century.	 Its	

mechanisms	of	action	are	multiple	and	include	inhibition	of	histone	deacetylases14.	Its	therapeutic	

use	 is	 well	 accepted	 but	 it	 has	 been	 found	 to	 cause	 severe	 developmental	 toxicity	 if	 given	 to	

pregnant	women15.	The	history	of	the	drug	made	it	interesting	for	us	to	study	if	later	discoveries	

of	 toxic	 effects	 were	 translated	 to	 better	 data	 representation	 and	 to	 additional	 experiments	

performed	with	the	compound.	

Aspirin	(acetylsalicylic	acid)	is	one	of	the	oldest	synthetic	drugs.	Its	mechanism	of	action,	inhibition	

of	 prostaglandin	 synthesis	 through	 acetylation	 of	 platelet	 cyclooxygenase	 (COX)16,	makes	 it	 an	

anti-inflammatory,	analgesic	and	antipyretic	drug.	Aspirin	was	interesting	for	our	study	since	for	

a	long	time	it	has	been	widely	used	as	a	readily	available	painkiller,	thus	potentially	having	many	

historical	synonyms	and	experimental	data.	Of	note,	the	name	aspirin	itself	derives	from	a	trade	

name.	

Rosiglitazone	 is	 an	 antidiabetic	 drug	 of	 Peroxisome	 Proliferator-Activated	 Receptors	 (PPAR)	

agonists	 family,	 introduced	 into	 the	 market	 in	 1999.	 It	 was	 included	 in	 the	 analysis	 because	

compared	to	other	model	compounds	it	is	relatively	new.	Also,	similar	to	tamoxifen,	the	complex	

chemical	structure	of	rosiglitazone	enabled	us	to	study	the	structural	identifiers	of	more	intricate	

molecule.	

Overview	of	databases	containing	compound	information	

To	get	an	overview	of	public	resources	containing	compound	information,	both	compound	specific	

resources	 (e.g.	 databases	 containing	 physicochemical	 properties	 such	 as	 structure)	 and	 omics	

databases	were	investigated	using	our	model	compounds.	Primarily,	we	focused	on	resources	that	

could	potentially	accommodate	or	link	to	in	vitro	compound	data.	Downstream	information	such	
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as	target	interactions	and	pharmacological	inference	were	also	considered	as	they	can	be	derived	

from	in	vitro	experiments	and	hence	raw	data	could	potentially	be	backtracked.	Resource	features	

included	 in	 our	 analysis	 involved	 the	 scope	 of	 supported	 compound	 identifiers	 and	 search	

functionalities,	accessibility	of	raw	data,	support	for	ontologies	and	programmatic	data	access.	

Table	1.	Table	of	model	compounds	used	in	the	study	and	their	identifiers.	

	 	

Aspirin	

ChEBI	ID	 CHEBI:15365 

PubChem	CID	 CID2244 

InChIKey	 BSYNRYMUTXBXSQ-UHFFFAOYSA-N 

InChI	 InChI=1S/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-
5H,1H3,(H,11,12) 

	 SMILES	 CC(=O)Oc1ccccc1C(O)=O 

Rosiglitazone	

ChEBI	ID	 CHEBI:50122 

PubChem	CID	 CID77999 

InChIKey	 YASAKCUCGLMORW-UHFFFAOYSA-N 

InChI	
InChI=1S/C18H19N3O3S/c1-21(16-4-2-3-9-19-16)10-11-24-
14-7-5-13(6-8-14)12-15-17(22)20-18(23)25-15/h2-
9,15H,10-12H2,1H3,(H,20,22,23) 

	 SMILES	 CN(CCOc1ccc(CC2SC(=O)NC2=O)cc1)c1ccccn1 

Valproic	acid	

ChEBI	ID	 CHEBI:39867 

PubChem	CID	 CID3121 

InChIKey	 NIJJYAXOARWZEE-UHFFFAOYSA-N 

InChI	 InChI=1S/C8H16O2/c1-3-5-7(6-4-2)8(9)10/h7H,3-6H2,1-
2H3,(H,9,10) 

	 SMILES	 CCCC(CCC)C(O)=O 

Tamoxifen	 ChEBI	ID	 CHEBI:41774 

	 PubChem	CID	 CID2733526 

	 InChIKey	 NKANXQFJJICGDU-QPLCGJKRSA-N 

	 InChI	
InChI=1S/C26H29NO/c1-4-25(21-11-7-5-8-12-21)26(22-13-
9-6-10-14-22)23-15-17-24(18-16-23)28-20-19-27(2)3/h5-
18H,4,19-20H2,1-3H3/b26-25- 

	 SMILES	 CC\C(c1ccccc1)=C(/c1ccccc1)c1ccc(OCCN(C)C)cc1 
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The	 public	 resources	 we	 used	 in	 our	 study	 were	 PubChem1,	 ChEMBL3,	 ChEBI17,	 Chemistry	

Dashboard	(CompTox)18,	ChemSpider19,	BioSamples20,	ArrayExpress21,	ExpressionAtlas22,	PRIDE	

PRoteomics	 IDEntifications	 (PRIDE)23,	Human	metabolome	database	 (HMDB)24,	 The	Toxin	 and	

Toxin	 Target	 Database	 (T3DB)25,	 Gene	 Expression	 Omnibus	 (GEO)26,	 UniProt27,	 BindingDB28,	

DrugBank29,	ZINC30	and	three	of	 the	Toxicology	Data	Network	(TOXNET)	databases:	Hazardous	

Substance	Data	Bank	(HSDB)2,	ChemIDPlus31,	and	Comparative	Toxicogenomics	Database	(CTD)32	

(Table	2).	

Table	 2.	 A	 list	 of	 resources	 used	 in	 the	 study,	 their	 categorization	 and	 the	 number	 of	 estimated	
compounds	in	these	resources	at	the	time	of	the	study.	

	

Database	 No.	of	compounds	 Checked	at	 Data	type	

ArrayExpress	 -	 -	 Raw	

BindingDB	 635	301	 December-2017	 Curated	

BioSamples	 -	 -	 Raw	

ChEBI	 53	495	 December-2017	 Curated	

ChEMBL	 1	735	442	 December-2017	 Curated	

ChemIDPlus	 418	376	 December-2017	 Curated	

ChemSpider	 ~	62	million	 December-2017	 Curated	

CompTox	 ~	760	000	 December-2017	 Raw/	Curated	

CTD	 15	381	 December-2017	 Curated	

DrugBank	 10	562	 December-2017	 Curated	

ExpressionAtlas	 -	 -	 Raw/Curated	

GEO	 -	 -	 Raw	

HMDB	 114	100	 December-2017	 Curated	

HSDB	 5929	 December-2017	 Curated	

PRIDE	 -	 -	 Raw	

PubChem	 >	94	500	000	 December-2017	 Raw/Curated	

T3DB	 3	673	 December-2017	 Curated	

UniProt	 -	 -	 Curated	

ZINC15	 >	100	000	000	 December-2017	 Curated	
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Model	compounds,	compound	naming	and	identifiers	

To	 demonstrate	 the	 nomenclature	 and	 data	 retrieval	 complexity	 of	 public	 resources,	 we	 used	

ChEBI	as	our	reference	database	since	it	is	extensively	curated	and	ChEBI	ontology17	was	used	in	

several	 other	 resources	 (eg.	PubChem	and	ChEMBL).	 In	 addition,	ChEBI	 contained	an	ontology	

term	 for	 all	 of	 our	 four	 model	 compounds	 (Table	 1).	 For	 an	 overview	 of	 compound	 names,	

synonyms	and	identifiers,	we	examined	the	public	resources	in	Table	2.	Our	scope	of	identifiers	

and	 registry	 numbers	 included	 Simplified	 Molecular	 Input	 Line	 Entry	 System	 (SMILES),	

International	 Chemical	 Identifier	 (InChI),	 International	 Chemical	 Identifier	Key	 (InChIKey)	 and	

International	 Union	 of	 Pure	 and	 Applied	 Chemistry	 (IUPAC)	 name.	 SMiles	 ARbitrary	 Target	

Specification	(SMARTS)	were	not	included	in	our	analysis	since	they	are	not	shown	in	ChEBI.	Also,	

we	excluded	Chemical	Abstract	Service	Registry	Number	(CASRN)	because	the	accuracy	of	CASRN	

in	 the	 public	 domain	 are	 not	 absolute	 and	 reliable	 information	 can	 only	 be	 accessed	 by	 paid	

services	provided	by	Chemical	Abstract	Service	(CAS)10.	

Data	access	and	integrative	initiatives	

The	ability	of	a	resource	to	integrate	data	and	compound	information	was	evaluated	by	searching	

cross-references	between	resources	using	the	selected	model	compounds.	To	assess	data	sharing	

and	 access	 to	 public	 data	 collections	 of	 the	 selected	 resources,	 we	 studied	 the	 use	 of	

representational	state	transfer	(REST	or	RESTful)	application	programming	interface	(API)	and	

resource	description	framework	(RDF)	technologies.	

Analysis	of	ontology	usage	

To	support	the	use	of	data	cross-referencing	from	individual	experiments	we	evaluated	if	and	to	

what	extent,	 the	public	resources	utilized	ontologies	 in	 their	data	annotation	and	presentation.	

With	 the	 exception	 of	 Cellosaurus33,	 the	 rest	 of	 the	 ontologies	we	 considered	 important	 were	

included	 either	 in	 the	 OBO	 Foundry34,	 NCBI	 BioPortal35	 or	 Ontology	 Lookup	 Service	 by	 EBI36.	

Although	there	might	be	other	ontologies	not	included	in	these	collections,	they	were	considered	

less	visible	and	therefore	less	likely	to	be	taken	up	by	the	research	community.	

Results	
Description	and	interconnectivity	of	public	resources	containing	compound	data	

Here,	our	aim	was	to	study	what	are	the	public	resources	containing	compound	information	and	if	

one	 resource	 could	 be	 used	 to	 identify	 a	 compound	 in	 another	 resource.	 Broadly,	 compound	

related	information	can	be	separated	into	two	categories:	1)	knowledge	that	has	been	manually	or	

automatically	curated	from	publications,	which	often	result	from	published	or	unpublished	raw	

data	(e.g.	half	maximal	effect	concentration	(IC50)	values	or	compound	interactions	with	targets),	

and	 2)	 the	 raw	 data	 itself,	 either	 from	 omics	 experiments	 that	 interrogate	 many	 potential	

interactions	simultaneously	or	from	dedicated	bioassays	that	measure	a	specific	endpoint	over	a	

range	of	concentrations.	Therefore,	 the	resources	can	be	classified	as	either	containing	curated	

information	 from	 scientific	 publications	 or	 some	 other	 reliable	 documents	 (examples	 include	

Hazardous	Substance	Data	Bank	(HSDB),	ChEMBL),	or	databases	that	contain	raw	numerical	data	

dedicated	to	certain	data	types	(examples	include	ArrayExpress,	PRIDE).	In	the	case	of	PubChem,	
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it	 supports	 both	 curated	 information	 and	 raw	 data	 of	 bioassays	 as	 uploaded	 by	 its	 users.	 An	

overview	of	databases	with	the	type	of	information	they	contain	can	be	found	in	Table	2.	

We	observed,	that	often	a	resource	is	actually	reusing	data	from	other	databases,	thus	combining	

information	 from	several	 resources,	or	providing	cross-references	 to	 them.	As	such,	DrugBank,	

PubChem,	and	ChEBI	had	the	highest	number	of	incoming	connections	from	other	resources	and	

PubChem,	 ChEMBL,	 ChEBI	 and	 ChemSpider	 had	 the	 highest	 number	 of	 outgoing	 connections,	

connecting	roughly	to	half	of	the	public	resources	in	our	study	list	(Figure	1).	Most	of	the	resources	

had	 cross-references	 to	 another	 resource,	 especially	 when	 they	 contained	 data	 curated	 from	

scientific	documents.	However,	with	the	exceptions	of	UniProt,	ChEBI	and	ChEMBL,	no	compound-

specific	resources	had	cross-references	to	databases	containing	data	from	omics	experiments.	At	

the	 time	 of	 the	 study	 we	 were	 able	 to	 identify	 references	 in	 ChEBI	 to	 in	 vitro	 raw	 data	 in

	
Figure	1.	Representation	of	cross-references	(representing	either	direct	 links	to	other	resource	or	
sampled	data	 from	the	other	resource)	between	resources	 in	a	chord	diagram.	Grey	resources	are	
depicting	 compound-specific	 resources	 whereas,	 the	 red	 ones	 depict	 omics	 resources.	 UniProt	 is	
neither	compound-specific	or	omics	resource	and	is	therefore	colored	blue.	Outgoing	connections	are	
closer	to	the	circumference	whereas	incoming	connections	are	further	from	the	circumference.	The	
numbers	on	the	scale	represent	the	combined	number	of	both	incoming	and	outgoing	connections	for	
every	resource.	
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ArrayExpress	for	three	out	of	four	model	compounds	(rosiglitazone:	E-GEOD-5509,	E-GEOD-5679,	

E-GEOD-30147;	 valproic	 acid:	 E-GEOD-1615,	 E-GEOD-14973,	 E-GEOD-23909,	 E-TABM-903,	 E-

TABM-1205,	tamoxifen:	E-GEOD-2225,	E-GEOD-12665,	E-MTAB-5319,	E-TABM-562).	For	aspirin,	

we	 were	 able	 to	 find	 73	 datasets	 in	 ArrayExpress,	 representing	 both	 in	 vivo	 and	 in	 vitro	

experiments	that	have	until	now	not	been	cross-referenced	in	ChEBI.	

Identification	of	data	in	compound-specific	public	resources	

Here,	 our	aim	was	 to	 study	different	ways	a	 chemical	 compound	 is	 identified	between	various	

public	resources.	Indeed,	a	chemical	compound	can	be	associated	with	many	identifiers,	such	as	a	

trade	name,	a	generic	name,	a	registry	number,	a	unique	database	identifier	(e.g.	PubChem	CID	or	

ChEMBL	 ID)	 and	 its	 structure-derived	 representations,	 referred	 here	 as	 structural	 identifiers	

(SMILES,	 InChI,	 InChIKey	 –	 different	 types	 of	 compound	 identifiers	 are	 shown	 in	 Table	 3).	

Potentially	 any	 of	 these	 can	 be	 used	 to	 search	 a	 compound	 from	 an	 online	 public	 resource.	

However,	we	observed	that	not	all	compound	synonyms	and	identifiers	are	identical	in	different	

resources.	As	an	example,	the	compound	rosiglitazone	contains	151	depositor-supplied	synonyms	

in	 the	 PubChem37,	 whereas	 in	 ChEBI	 only	 two	 synonyms	 were	 provided38.	 Consequently,	 the	

PubChem	 depositor-supplied	 synonym	 for	 rosiglitazone	 termed	 Gaudil	 failed	 to	 recognize	 the	

compound	in	ChEBI.	

Table	3.	A	table	of	compound	identifiers,	their	features	and	examples.	A	better	overview	of	
compound	identifiers	is	provided	by	Warr,	201139.	Of	note,	there	are	several	structure-based	
identifiers	and	not	all	of	them	allow	for	substructure	searches.	In	addition,	some	structure-based	
identifiers	(e.g.	InChIKeys)	are	better	suited	for	cross-referencing	purposes.	
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Examples	

Compound	
name	 	 	 	 ✓	 	 	 Rosiglitazone	

Trade	name	 	 	 	 ✓	 	 	 Avandia	

Compound	
database	
identifier	

	 ✓	 	 	 	 	 CHEMBL121	

Registry	number	 	 ✓	 	 ✓	 	 	 122320-73-4	
(CAS	number)	

Chemical	
structure	
drawing	

✓	 ✓	 	 	 ✓	 	 	

Structure-based	
identifier	 ✓	 ✓	 ✓	 	 ✓	 ✓	

SMILES,	InChI,	
InChIKey,	IUPAC	
name	
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To	 further	 illustrate	 the	 complications	 in	 searching	 information	 for	 a	 compound	 from	 several	

distinct	 databases,	 we	 first	 used	 compound	 names	 of	 four	 model	 compounds	 to	 investigate	

compound	specific	resources	(BindingDB,	ChEBI,	ChEMBL,	ChemIDPlus,	ChemSpider,	CompTox,	

CTD,	DrugBank,	HMDB,	HSDB,	PubChem,	T3DB	and	ZINC15)	using	free-text	based	search.	We	were	

able	to	find	records	for	all	four	model	compounds	in	all	of	the	resources	(with	one	exception	of	

rosiglitazone	 that	 was	 not	 found	 in	 T3DB)	 and	we	 recorded	 their	 structural	 identifiers	where	

available	(Supplementary	Table	1-4).	Interestingly,	we	observed	that	not	all	structural	identifiers	

were	identical	between	the	resources.	That	was	especially	true	for	SMILES	where	from	the	eleven	

resources	that	reported	SMILES,	we	found	8	different	SMILES	for	rosiglitazone	and	tamoxifen,	5	for	

aspirin	and	3	for	valproic	acid	(Supplementary	Table	1-4).	The	results	were	better	for	InChIKeys	

(established	by	International	Union	of	Pure	and	Applied	Chemistry	(IUPAC)),	where	we	observed	

a	single	identifier	for	both	aspirin,	valproic	acid	and	tamoxifen	but	three	different	InChIKeys	for	

rosiglitazone.	 Things	 were	 more	 complicated	 with	 IUPAC	 systematic	 names	 since	 in	 several	

resources	it	was	unclear	if	the	reported	name	was	actually	a	IUPAC	systematic	name	and	therefore	

these	resources	were	discarded	from	the	analysis.	Consequently,	IUPAC	name	was	recorded	only	

from	ChEBI,	 ChemSpider,	 CompTox,	 DrugBank,	 HMDB,	 PubChem	 and	 T3DB.	 	 Even	 though	 few	

resources	 reported	 IUPAC	 systematic	 names,	we	 observed	 large	 variability	 among	 them.	More	

specifically,	we	found	3	different	names	for	aspirin,	4	for	rosiglitazone,	1	for	valproic	acid	and	5	for	

tamoxifen	(Supplementary	Table	1-4).	

These	 results	highlight	 that	 InChIKeys	among	various	databases	are	more	unique	compared	 to	

SMILES	or	IUPAC	systematic	names.	To	that	end,	a	global	resource	UniChem	has	provided	a	cross-

referencing	 service	 that	 connects	 38	 individual	 database	 identifiers	 of	 various	 resources	 using	

InChIKeys40.	 However,	 this	 service	 is	 only	 useful	 when	 one	 already	 knows	 the	 compound’s	

database	identifier	or	the	InChIKey.	Currently,	it	cannot	be	used	with	other	structural	identifiers	

or	with	compound	names.	

Identification	of	compound	data	from	omics	databases	

The	identity	of	the	chemical	compounds	can	be	ambiguous,	since	compounds	are	often	mentioned	

by	name	without	the	accompanying	structure	representations12.	This	is	especially	true	for	omics	

resources	where	data	uploaded	by	the	researchers	can	be	annotated	with	different	synonyms	of	

the	same	compound.	To	investigate	this	issue,	we	utilized	a	web-based	free-text	search	to	research	

omics	 data	 from	 ArrayExpress,	 ExpressionAtlas,	 BioSamples,	 GEO	 and	 PRIDE	 resources	 using	

compounds’	structural	identifiers	(SMILES,	InChI	and	InChIKey)	as	reported	in	ChEBI.	From	all	the	

resources,	we	were	able	to	retrieve	data	at	least	for	two	model	compounds	using	compound	names	

(Supplementary	Table	5).	 In	addition,	 the	 IUPAC	systematic	names	of	aspirin,	rosiglitazone	 and	

valproic	 acid	 retrieved	 datasets	 from	 ArrayExpress,	 BioSamples	 and	 GEO.	 Interestingly,	 in	

BioSamples,	we	were	able	to	retrieve	datasets	for	valproic	acid	also	with	SMILES.	However,	these	

datasets	 actually	 corresponded	 to	 the	 sodium	 salt	 of	valproic	 acid,	 that	 has	 a	 slightly	 different	

SMILES	 representation	 in	ChEBI	 compared	 to	valproic	 acid.	Moreover,	 these	 samples	were	not	

retrieved	when	the	compound	name	was	used	instead.	
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The	latter	highlights	that	the	best	way	to	identify	compound	related	data	from	omics	resources	is	

to	use	 compound	names,	which	would	 require	 the	 researcher	 to	 consider	 all	 of	 the	 compound	

synonyms.	 Therefore,	 to	 estimate	 the	 variability	 of	 compound	 annotation	 in	 sample	 labels,	we	

retrieved	the	name,	synonyms	and	structural	 identifiers	 for	each	of	 the	 four	model	compounds	

from	the	ChEMBL	public	SPARQL	endpoint	(the	code	is	available	at	https://github.com/whetlake/	

ivcdp).	These	were	then	used	to	identify	samples	and	sample	labels	in	the	BioSamples	database	

using	BioSamples	public	SPARQL	endpoint.	For	rosiglitazone	and	tamoxifen	only	the	samples	with	

the	respective	name	was	found	in	any	of	the	sample	labels.	For	aspirin,	samples	were	found	using	

both	aspirin,	asparin,	asprin,	levius	and	measurin	(Supplementary	Table	6-9).	The	term	measurin	

can	 also	 be	 derived	 from	 sample	 labels	 that	 contain	 the	 word	 measuring,	 making	 it	 highly	

susceptible	to	retrieving	 false	samples,	not	associated	with	aspirin.	Surprisingly,	 the	compound	

name	acetylsalicylic	acid	highlighted	in	ChEBI	was	not	found	in	any	of	the	sample	labels.	Valproic	

acid	retrieved	results	also	for	valproate,	depakote	and	44089.	The	latter	is	a	synonym	of	valproic	

acid	 in	 ChEMBL	 but	 none	 of	 the	 associated	 samples	were	 actually	 associated	 to	 valproic	 acid.	

Similar	to	web-based	free-text	search,	in	our	analysis,	no	samples	contained	structural	identifiers	

of	the	model	compounds	within	the	sample	labels.	Also,	all	the	samples	retrieved	were	unique	i.e.	

alternative	compound	labels	were	not	used	to	annotate	the	same	sample.	In	addition,	care	must	be	

taken	 when	 using	 free-text	 based	 approach	 to	 programmatically	 search	 for	 compound	 data.	

Indeed,	 we	 were	 able	 to	 retrieve	 samples	 where	 sample	 labels	 indicated	 a	 negation	 of	 the	

compound,	such	as	“No	rosiglitazone	present”	(SAMEA86299841).	

Identification	of	in	vitro	compound	data	from	public	resources	

With	 the	 exception	 of	 ZINC15,	 none	 of	 the	 public	 resources	 clearly	 distinguished	 compounds	

whose	effect	has	been	measured	in	in	vitro	experiments.	In	contrast,	ZINC15	reports	a	subsets	of	

compounds	that	have	been	reported	or	inferred	active	in	in	vitro	direct	binding	assays42.	Another	

approach	 to	 identify	 in	 vitro	 data	 in	 public	 resources	 is	 to	 browse	 the	 study	 description	 for	

references	of	 in	vitro	experiment	related	keywords	 like	“in	vitro”,	 “cell-line”	or	specific	cell-line	

names	(e.g.	“HeLa”).	For	example,	PubChem,	ChEMBL,	ChEBI,	ArrayExpress,	ExpressionAtlas,	GEO,	

BioSamples	and	PRIDE	can	be	used	to	map	these	keywords	with	sample	descriptions	using	free-

text	search.	As	such,	we	were	able	to	retrieve	a	bioassay	record	from	PubChem	with	the	title	“In	

Vitro	Cytotoxicity	Against	Ovarian	Carcinoma	Cell	Line	CH1”43	which	clearly	represents	an	in	vitro	

experiment.	ChEMBL	provides	a	more	precise	search,	which	allows	to	retrieve	data	on	compounds	

associated	with	specific	cell-lines	or	in	vitro	assays.	

In	addition,	we	can	identify	in	vitro	data	by	using	concentration	units	associated	with	molarity	or	

molality.	 For	 example,	 we	 used	 previously	 identified	 microarray	 samples	 from	 ArrayExpress	

experiment	E-GEOD-5679	where	dendritic	cells	were	treated	with	rosiglitazone44.	From	the	full	

experiment	description,	we	identified	that	rosiglitazone	was	used	at	2.5	µM	concentration	level,	

indicating	 that	 this	 was	 indeed	 an	 in	 vitro	 experiment.	 However,	 samples	 themselves	 had	 no	

attribution	of	concentration	unit	in	neither	ArrayExpress44	or	BioSamples	(SAMEG1922645).	Since	

the	 actual	 concentration	 could	 only	 be	 retrieved	 from	 the	 experiment	 description	 or	 from	 the	
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original	publication,	this	approach	is	currently	not	scalable	to	large-scale	automatic	identification	

of	in	vitro	data,	thus	limiting	its	use.	

In	summary,	this	analysis	demonstrates	that	presently	no	concrete	way	to	specifically	identify	in	

vitro	data	using	free-text	based	searches	exists	in	any	of	the	studied	resources.	Although	ChEMBL	

provides	identification	of	compound	information	related	to	cell-lines	and	in	vitro	assays,	one	would	

have	to	cover	all	available	cell-lines	and	assays	in	order	to	get	a	complete	overview	of	the	available	

in	vitro	data.	

Accessing	in	vitro	compound	data	from	public	resources	programmatically	

To	reuse	already	published	data,	relevant	data	need	to	be	identified	correctly	and	made	available	

to	 the	 researcher.	 Therefore,	 most	 public	 resources	 provide	 access	 to	 data	 through	 a	 bulk	

download	(Table	4),	which	can	be	very	large	(e.g.	the	PubChem	compound	database	in	compressed	

ASN	format	is	about	60GB,	as	of	March	2017).	Alternatively,	several	public	resources	also	provide	

online	 programmatic	 data	 access.	 Here,	 we	 researched	 the	 utilization	 of	 RESTful	 API	

(Representational	 state	 transfer	 application	 programming	 interface)	 and	Resource	Description	

Framework	(RDF)	technologies	by	the	selected	public	resources.	

Table	4.	A	list	of	resources	used	in	the	study	and	their	support	for	different	data	access.	

	

Bulk	
download	

RESTful	
API	

RDF	
support	

SPARQL	
endpoint	

Substructure	
and/or	similarity	

search	

ArrayExpress	 ✓	 ✓	 	 	 	

BindingDB	 ✓	 ✓	 	 	 ✓	

BioSamples	 	 ✓	 ✓	 ✓	 	

ChEBI	 ✓	 	 ✓	 	 ✓	

ChEMBL	 ✓	 ✓	 ✓	 ✓	 ✓	

ChemIDPlus	 ✓	 ✓	 	 	 ✓	

ChemSpider	 	 ✓	 ✓	 	 ✓	

CompTox	 ✓	 ✓	 	 	 	

CTD	 ✓	 	 	 	 	

DrugBank	 ✓	 ✓	 	 	 	

ExpressionAtlas	 ✓	 ✓	 ✓	 ✓	 	

GEO	 ✓	 	 	 	 	

HMDB	 ✓	 	 	 	 ✓	

HSDB	 ✓	 ✓	 	 	 	

PRIDE	 ✓	 ✓	 	 	 	

PubChem	 ✓	 ✓	 ✓	 	 ✓	

T3DB	 	 	 	 	 ✓	

UniProt	 ✓	 ✓	 ✓	 ✓	 	

ZINC15	 ✓	 	 	 	 ✓	
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In	 a	RESTful	query,	 the	data	 request	 is	 constructed	 into	 a	 single	URL.	This	makes	RESTful	API	

simple	to	use	and	platform	independent.	Out	of	the	19	resources	in	our	study,	10	provided	free	

access	 to	 their	RESTful	API	 (Table	4),	whereas	access	 to	DrugBank	API	was	provided	 for	a	 fee.	

Contrary	to	RESTful	API	where	no	data	is	stored	locally,	the	data	in	RDF	compatible	format	can	be	

used	for	bulk	download	and	subsequent	 introduction	into	a	 local	database	for	query	execution.	

However,	 a	 preferred	 way	 of	 data	 acquisition	 is	 through	 a	 public	 SPARQL	 endpoint,	 which	

facilitates	querying	the	service	provider	directly,	thus	always	retrieving	the	most	up-to-date	data.	

Here	we	observed	that	only	BioSamples,	ChEMBL,	ExpressionAtlas	and	UniProt	provide	a	public	

SPARQL	endpoint	(Table	4).	Acquiring	data	using	a	SPARQL	endpoint	can	be	slower	compared	to	

RESTful	 data	 access,	 since	 the	 latter	 is	 better	 optimized	 for	 specific,	 recurrent	 query	 requests.	

However,	SPARQL	queries	have	 the	benefit	of	being	highly	customizable	by	 the	researcher	and	

therefore	they	provide	the	flexibility	that	will	cater	to	the	researchers’	unique	needs.	Also,	since	

RDF	is	an	inherent	part	of	the	“linked	data”	concept,	it	can	be	used	to	find	relationships	between	

datasets	 in	different	 resources	and	 is	 therefore	extremely	useful	 for	data	 integration	purposes,	

such	as	connecting	compounds	effect	in	one	resource	to	its	physicochemical	properties	in	another.	

Identification	of	relevant	ontologies	to	annotate	in	vitro	compound	data	

Ontology	 is	a	collection	of	specifically	defined	and	controlled	vocabulary	consisting	of	ontology	

terms.	 	 Ontologies	 allow	 to	 formally	 describe	 concepts	 and	 to	 define	 the	 relationship	 between	

them46.	 Individual	 ontologies	 can	 consist	 from	 few	 to	many	 thousands	 of	 ontology	 terms.	 For	

example,	 ChEBI	 ontology	 is	 made	 up	 over	 100	 000	 ontology	 terms.	 By	 using	 ontologies,	 the	

researcher	can	create	better	targeted	and	more	precise	queries	within	the	public	resources.	This	

necessitates	that	the	researcher	is	able	to	identify	and	apply	relevant	ontology	terms	for	their	data.	

For	 this	 purpose,	 we	 identified	 three	 resources	 that	 allow	 to	 browse	 and	 search	 for	 specific	

ontologies	 and	 ontology	 terms:	 i)	 OntoBee47	 is	 the	 default	 service	 containing	 a	 collection	 of	

ontologies	as	provided	by	the	Open	Biological	Ontology	(OBO)	foundry34,	as	well	as	ii)	BioPortal35	

and	 iii)	Ontology	Lookup	Service	 (OLS)36	which	are	ontology	browsers	developed	by	NCBI	 and	

EMBL-EBI,	 respectively.	 These	 services	 can	 be	 used	 to	 browse	 through	 a	 number	 of	 different	

ontologies,	 to	view	relations	between	terms	and	retrieve	definitions	for	biomedical	vocabulary.	

Currently	 (as	 of	 20.12.2017),	 OLS	 contains	 204,	 OntoBee	 193	 and	 BioPortal	 678	 ontologies.	

Important	 to	 our	 study,	 we	 identified	 10	 ontologies	 that	 are	 useful	 in	 relation	 to	 chemical	

compounds	 and	 can	 be	 used	 for	 annotating	 as	 well	 as	 programmatically	 accessing	 in	 vitro	

compound	 data	 (Table	 5).	 As	 such,	 CHEMical	 INFormation	 ontology	 (CHEMINF)48	 provides	

ontology	terms	for	resource	and	structure	identifiers.	For	example,	InChIKey	can	be	identified	with	

a	 specific	 Universal	 Resource	 Identifier	 (URI)	 (http://semanticscience.org/resource/CHEMINF	

_000059)	in	CHEMINF	ontology.	 	
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Table	5.	Overview	of	ontologies	that	can	be	used	to	annotated	or	identify	in	vitro	data.	

ChEBI	 Chemical	Entities	of	Biologcal	Interest17	

	 Highly	curated	controlled	vocabulary	that	has	become	the	“gold	standard”	
for	annotation	of	the	small	molecular	entities.	

CHEMINF	 CHEMical	INFormation	ontology48	

	
Can	be	used	to	annotate	chemical	information,	including	chemical	structure	
and	chemical	properties.	Importantly,	it	includes	many	of	the	database	and	
structure	identifiers	such	ChEMBL	ID	or	InChIKey,	respectively.	

OBI	 • Ontology	for	Biomedical	Investigations49	

	

Can	be	used	to	describe	a	biomedical	investigation,	such	as	protocols,	
instruments	and	experimental	design.	Importantly,	it	allows	to	annotate	data	
points	of	specific	doses	used	in	the	experiment	(http://purl.obolibrary.org/	
obo/OBI_0000984)	that	examine	dose-response	(http://purl.obolibrary.org/	
obo/OBI_0001418)	relationships.	Furthermore,	it	can	be	used	explicitly	to	
annotate	an	in	vitro	(http://purl.obolibrary.org/obo/OBI_0001285)	
experiment.	

CLO	 Cell-line	Ontology50	

	

CLO	is	useful	for	describing	a	cell-line.	It	aims	to	bring	together	available	cell-
line	data	from	multiple	sources	into	a	common	format50.	Importantly,	it	can	
be	used	to	specify	a	cell-line	that	was	maintained	in	an	in	vitro	environment	
(http://purl.obolibrary.org/obo/CL_0001034),	thus	allowing	identification	of	
in	vitro	investigation.	

Cellosaurus	 The	Cellosaurus:	a	cell	line	knowledge	resource33	

	

Cellosaurus	is	used	for	referencing	cell-lines.	As	of	version	24	(November	
2017)	it	contained	99	021	cell-lines	with	references	to	original	publications	
and	cross-references	to	many	cell-line	catalogues.	They	also	provide	
references	to	resources,	where	samples	(BioSamples,	ChEMBL,	etc.)	could	be	
annotated	with	the	cell-lines	contained	in	Cellosaurus.	Similarly,	it	allows	
search	of	in	vitro	studies	through	the	identification	of	specific	cell-lines.	

BAO	 BioAssay	Ontology51	

	

BAO	was	developed	to	describe	and	model	diverse	and	complex	assays	51.	
Importantly,	BAO	provides	definitions	for	absolute	or	relative	IC50	
(http://www.bioassayontology.org/bao#BAO_0000197,	http://www.	
bioassayontology.org/bao#BAO_0000198,	respectively)	values	and	for	
several	other	endpoints	based	on	bioassay	measurements.	

UO	 Units	of	Measurement52	

	

UO	provides	units	of	measurement.	Importantly	one	can	use	units	of	molarity	
(http://purl.obolibrary.org/obo/UO_0000061)	such	as	micromolar	
(http://purl.obolibrary.org/obo/UO_0000064)	to	define	concentrations	in	in	
vitro	experiments,	thus	allowing	identification	of	in	vitro	data.	

UBERON	 Uberon,	an	integrative	multi-species	anatomy	ontology53	

	

UBERON	is	an	integrated	cross-species	ontology	that	facilitates	reasoning	
from	higher-order	anatomical	levels	to	more	specific	sublevels.	For	example,	
CLO	uses	UBERON	to	add	organ-specific	annotations	to	cell-lines50.	Therefore,	
UBERON	can	be	used	to	translate	knowledge	from	cell-lines	to	organs	or	vice	
versa.	
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Using	ontologies	to	retrieve	in	vitro	compound	data	

Since	 the	 information	 stored	 in	 an	 RDF	 triplet	 is	 formulated	 as	 subject-predicate-object,	 each	

element	 can	 be	 a	 term	 defined	 in	 an	 existing	 ontology.	 Therefore,	 we	 investigated	 if	 using	

ontologies	 enabled	 us	 to	 retrieve	 samples	 directly	 related	 to	 in	 vitro	 ontology	 terms.	We	 used	

BioSamples	public	SPARQL	endpoint	as	our	target	database	since	it	combines	sample	annotations	

from	 ArrayExpress,	 PRIDE	 Archive	 and	 European	 Nucleotide	 Archive	 (ENA)	 and	 as	 shown	

previously,	we	were	able	to	retrieve	data	from	BioSamples	for	all	our	model	compounds	using	both	

compound	and	IUPAC	systematic	names.	To	our	surprise,	none	of	the	samples	in	BioSamples	were	

annotated	 with	 the	 in	 vitro	 ontology	 term	 (http://purl.obolibrary.org/obo/OBI	

_0001285)	 found	 in	 Ontology	 for	 Biomedical	 Investigation	 (OBI)	 ontology	 or	 with	 structural	

identifier	 ontology	 terms	 (InChI,	 InChIKey,	 SMILES)	 from	 either	 ChEBI	 (Chemical	 Entities	 of	

Biological	Interest),	CHEMINF	or	EDAM	(Bioinformatics	operations,	data	types,	formats,	identifiers	

and	topics)	ontologies.	However,	we	did	find	samples	for	all	our	model	compounds	using	ChEBI	

ontology	 terms	 (rosiglitazone:	 http://purl.obolibrary.org/obo/CHEBI_50122,	 aspirin:	

http://purl.obolibrary.org/obo/CHEBI_15365,	 valproic	 acid:	 http://purl.obolibrary.org/obo/	

CHEBI_39867,	tamoxifen:	http://purl.obolibrary.org/obo/CHEBI_41774).	

Next,	we	investigated	if	samples	of	our	model	compounds	retrieved	using	ChEBI	ontology	terms	

were	associated	with	a	molarity	unit	(http://purl.obolibrary.org/obo/UO_0000061)	using	the	UO	

(Units	of	measurement)	ontology.	Indeed,	such	samples	existed	for	rosiglitazone	and	tamoxifen	but	

not	for	aspirin	and	valproic	acid.	Alternatively,	we	were	interested	if	any	of	the	samples	associated	

with	 the	 model	 compounds	 were	 also	 associated	 with	 a	 cell-line	 ontology	 term	

(http://www.ebi.ac.uk/efo/EFO_0000322)	from	Experimental	Factor	Ontology	(EFO).	No	samples	

were	found	for	aspirin	but	we	were	able	to	find	several	samples	for	rosiglitazone	and	tamoxifen	

and	a	single	sample	for	valproic	acid	(Supplementary	Tables	10-12),	effectively	identifying	in	vitro	

compound	data.	

In	 summary,	despite	 the	 fact	 that	we	were	able	 to	 retrieve	 some	samples	 representing	 in	 vitro	

experiments	related	to	our	model	compounds,	they	are	of	limited	use	for	the	search	of	presently	

EDAM	 EDAM:	an	ontology	of	bioinformatics	operations,	types	of	data	and	identifiers,	
topics	and	formats54	

	

EDAM	can	be	used	to	describe	an	in	vitro	scientific	experiment,	such	as	the	
output	and	computational	procedures	related	to	the	data	and	data	formats.	
Similar	to	CHEMINF	it	provides	vocabulary	for	compound	structure	
identifiers/format	such	as	InChIKey	(http://edamontology.org/format	
_1199),	however	it	is	more	useful	in	annotating	the	down-stream	data	
analysis	and	less	practical	in	describing	the	experimental	design.	

EFO	 Experimental	Factor	Ontology55	

	

EFO	was	developed	to	annotate	the	large	quantity	of	domain-independent	
gene	expression	data55	stored	in	ArrayExpress.	Although	not	specifically	
developed	for	use	with	chemical	compounds,	it	contains	specific	classes	
describing	chemical	entities	(e.g.	chemical	compounds	and	drugs).	EFO	
ontology	can	be	used	to	identify	gene	expression	data	that	is	related	to	
chemical	compounds.	
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available	compound	data,	as	these	data	are	mostly	deposited	without	associated	ontology	terms.	

However,	the	use	of	ontologies	could	be	a	powerful	tool	for	search	strategies	once	annotations	of	

experimental	metadata	improves.	

Discussion	
In	this	study,	we	used	four	model	compounds	(aspirin,	rosiglitazone,	valproic	acid	and	tamoxifen)	

to	 investigate	 19	 public	 resources	 potentially	 suited	 for	 identification	 and	 access	 to	 in	 vitro	

compound	 data.	 Fragmentation	 and	 problematic	 accessibility	 of	 in	 vitro	 data	 poses	 a	 major	

obstacle	for	their	optimal	use	and	hence	reduces	their	scientific	and	practical	impact.	Quick	and	

precise	identification	and	information	retrieval	is	necessary	for	efficient	use	of	published	data,	to	

save	researcher	and	regulators	alike	valuable	time	and	to	allow	quick	and	easy	identification	of	

relevant	datasets56.	

Fragmentation	of	public	resources	and	integration	efforts	

There	are	many	resources	that	provide	compound-specific	data.	There	are	also	several	databases	

that	contain	omics	data.	A	general	consensus	is	that	raw	data	from	experiments	should	be	publicly	

accessible,	and	it	is	the	policy	of	high	quality	scientific	journals	and	of	several	granting	agencies	to	

require	publicly	accessible	deposition	of	research	data.	In	theory,	this	is	an	excellent	opportunity	

for	both	in	vitro	and	in	silico	toxicology	since	it	would	allow	to	compare	data	produced	by	different	

research	 laboratories	 and	 help	 to	 estimate	 the	 impact	 of	 different	 experimental	 conditions.	

However,	at	present,	this	theoretical	opportunity	does	not	live	up	to	its	full	potential.	

Efforts	have	been	made	to	integrate	compound	information	or	omics	data	from	several	resources.	

Indeed,	 in	 our	 analysis	 we	 observed	 that	 many	 curated	 resources	 dedicated	 to	 chemical	

compounds	 contain	 cross-references	 to	 each	 other.	 Some	 of	 them	 also	 include	 data	 from	 one	

another.	 This	 can	 lead	 to	 databases	 overlapping	 in	 their	 content57.	 As	 an	 example	 of	 cross-

references,	ChemSpider	reports	to	have	links	to	more	than	500	resources	but	none	representing	

an	omics	data	resource.	On	the	other	side,	BioSamples	database	integrates	metadata	from	omics	

resources	 such	 as	 ArrayExpress,	 European	Nucleotide	 Archive	 (ENA)	 and	 PRIDE	 but	 does	 not	

readily	 associate	 this	 metadata	 with	 compound-specific	 resources	 or	 compound	 identifiers.	

Although	 resources	 such	 as	 UniProt,	 ChEMBL	 and	 ChEBI	 included	 links	 to	 ArrayExpress,	

ExpressionAtlas	 or	 PRIDE,	we	 observed	 that	 these	were	 not	 exhaustive,	with	 several	 potential	

links	to	omics	datasets	missing.	

In	addition	to	BioSamples,	there	are	other	public	and	private	initiatives	aiming	at	bridging	the	gap	

between	 the	 discrepancies	 of	 field-specific	 databases.	 OmicsDI	 (Omics	 Discovery	 Index)58	 and	

Repositive	 IO	 (https://repositive.io)	 aim	 to	 integrate	 metadata	 from	 many	 different	 domains,	

including	 genomics,	 transcriptomics	 and	metabolomics.	 Although	 they	 lack	 cross-references	 to	

compound-specific	resources,	they	can	still	be	used	to	identify	compound-related	 in	vitro	omics	

data.	Furthermore,	Repositive	 IO	allows	 its	community	driven	search	platform	to	be	populated	

with	 annotation	 tags.	 This	 makes	 data	 identification	 a	 crowd-sourcing	 task,	 which	 may	

substantially	improve	the	annotation	of	the	metadata.	However,	currently	these	annotations	suffer	

from	 the	 lack	 of	 a	 common	 vocabulary	 and	 may	 lead	 to	 confusion	 when	 different	 terms	 that	
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correspond	to	the	same	meaning	are	used.	Instead,	a	system	using	standardized	ontologies	should	

be	favored.	In	that	case	compound	samples	could	be	directly	related	to	the	compound’s	InChIKeys	

as	an	annotation	tag	describing	the	metadata.	Similar	additions	could	be	made	with	concentration	

units	and	cell-lines.	

Variability	of	compound	names	and	identifiers	

It	 is	well	known	that	 free-text	search	of	systematic	chemical	names	has	 low	precision	and	high	

error	 rate12,	 especially	 considering	 the	 variability	 in	 synonyms	 between	 resources	 as	

demonstrated	for	our	model	compounds.	Therefore,	searching	a	compound	name	or	its	synonym	

from	one	resource	might	fail	to	retrieve	results	from	another	resource.	Also,	covering	the	whole	

scope	of	 compound	 identifiers	will	 take	 substantial	 amount	of	 researcher’s	 time,	 since	a	 single	

compound	can	 contain	hundreds	of	 synonyms	and	 several	 identifiers.	 Furthermore,	 compound	

names	themselves	are	ambiguous,	especially	in	omics	resources	that	are	not	specifically	designed	

to	store	compound	information	where	associated	metadata	fails	to	incorporate	unique	compound	

identifiers.	 For	 example,	 as	 identified	 in	 our	 study,	measurin,	which	 according	 to	 ChEMBL	 is	 a	

synonym	of	aspirin	 (Compound	 ID:	CHEMBL25),	 can	potentially	be	misled	with	samples	where	

labels	include	the	term	measuring.	Indeed,	two	out	of	four	model	compounds	in	our	study	were	

annotated	using	alternative	labels	that	were	associated	with	different	samples.	

Ideally,	only	a	single	unique	structure	representation	exists	for	each	unique	compound.	We	tested	

this	 by	 using	 the	 name	 of	 the	model	 compound	 as	 search	 input	 and	 recorded	 four	 structural	

identifiers:	InChI,	InChIKey,	SMILES	and	IUPAC	name.	Most	variability	was	observed	for	SMILES	

and	IUPAC	names	where	more	complex	molecule,	such	as	rosiglitazone	and	tamoxifen	had	multiple	

structural	 identifier	 representations	between	 resources.	 In	 the	 case	of	 InChI	and	 InChIKey,	 the	

variation,	was	considerably	lower,	albeit	not	absent.	Therefore	care	must	be	taken	not	to	attribute	

bioassay	results	to	alternative	stereochemical	structures57.	

The	observed	variability	in	structural	identifiers	is	not	surprising,	since	often	molecular	formulas	

are	not	unequivocally	unique	representations	of	a	chemical	compound39.	Nevertheless,	although	

several	InChIKeys	can	be	derived	from	a	single	InChI,	they	are	still	considered	sufficiently	unique	

at	providing	an	adequate	collision	resistance	i.e.	 it	 is	unlikely	that	two	different	compounds	are	

associated	 with	 one	 InChIKey59.	 However,	 including	 all	 omics	 resources,	 there	 are	 some	

compound-specific	resources	that	don’t	allow	data	identification	based	on	compound’s	structural	

identifiers.	This	can	cause	problems	for	data	 integration	tasks	which	is	why	compounds	should	

always	be	supplemented	with	unique	structural	identifiers,	such	as	InChIKeys,	that	would	enhance	

their	downstream	identification.	

Using	ontologies	to	integrate	and	search	for	in	vitro	compound	data	

One	way	to	increase	annotation	quality	is	to	use	existing	ontologies	that	enhance	the	quality	and	

consequently	the	precision	of	identifying	data	correctly.	In	addition,	since	ontologies	are	a	part	of	

the	 “linked	data”	concept,	 they	can	be	used	 to	 integrate	 information	 from	several	 resources	by	

using	federated	queries.	To	this	end,	ontology	browsers,	such	as	Ontology	Lookup	Service	(OLS)36	

are	 excellent	 tools	 for	 finding	 terms	 relevant	 for	 your	 data,	 thus	 also	 promoting	 the	 reuse	 of	

existing	ontology	content35.	
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In	 this	 study,	 we	 focused	 on	 resources	 that	 provided	 Resource	 Description	 Framework	 (RDF)	

compliant	data	or	a	public	SPARQL	endpoint	for	data	queries	since	they	inherently	take	advantage	

of	ontologies.	We	 failed	 to	 retrieve	a	 single	 sample	 in	BioSamples	 resource	 that	would	directly	

relate	to	in	vitro	design	ontology	term	from	Ontology	for	Biomedical	Investigation	(OBI)	ontology.		

In	addition,	we	searched	BioSamples	for	datasets	characterized	with	molar	concentration	unit	or	

cell-line	ontology	terms.	Similarly,	 the	results	were	 far	 from	comprehensive.	We	think	that	 this	

approach	 can	 be	 further	 improved	 once	 better	 ontology	 mappings	 of	 the	 metadata	 become	

available.	Prospectively,	there	is	a	clear	potential,	provided	a	better	annotation	of	data,	for	example	

by	utilizing	the	Cellosaurus	ontology	33	that	contains	a	controlled	vocabulary	for	around	100	000	

cell	lines.	

Using	SPARQL	and	other	semantic	web	technologies,	we	showed	that	associations	between	raw	

data	samples	and	ontology	terms	do	exist	and	hence	the	ambiguity	of	identifying	and	retrieving	in	

vitro	data,	can	be	reduced.	Nevertheless,	despite	the	current	state	of	data	annotation,	in	order	to	

integrate	 data	 from	 different	 public	 resources,	 the	 compound	 formatting	 needs	 to	 be	 further	

harmonized	and	the	domain	vocabulary	standardized56.	More	importantly,	the	new	and	existing	

resources	need	to	adjust	themselves	to	take	full	advantage	of	existing	standardized	ontologies.	So	

far,	they	have	only	been	implemented	by	the	selected	few.	

To	a	certain	extent,	there	are	initiatives	that	utilize	semantic	web	technologies	to	solve	problems	

with	compound	data	integration.	As	such,	the	Open	PHACTS	project,	encourages	data	resources	to	

publish	their	data	as	RDF,	 in	order	 to	build	an	“open	pharmaceutical	space”	where	data	can	be	

accessed	through	a	user-friendly	software	interface10.	As	of	today,	it	is	not	clear	how	the	software	

can	be	used	by	researchers	who	do	not	have	explicit	knowledge	in	API	programming.	Nevertheless,	

it	 can	 potentially	 be	 used	 to	 build	 new,	 researcher	 friendly	 applications	 on	 Open	 PHACTS	

interoperable	data.	In	parallel,	OpenTox	aims	to	provide	a	single	access	to	both	in	vivo	and	in	vitro	

toxicity	 data	 and	 a	 framework	 for	 storing	 and	 executing	 predictive	 computational	 models60.	

Similar	to	Open	PHACTS,	this	initiative	is	not	applicable	to	non-expert	researcher,	who	is	looking	

for	compound	associated	raw	omics	data,	thus	a	gap	connecting	compounds	to	their	raw	in	vitro	

data	still	persists.	

In	vitro	toxicology:	the	magnitude	of	the	challenge	ahead	(conclusion	and	out-look)	

Tens	 of	 thousands	 of	 compounds	 need	 to	 be	 tested	 in	 order	 to	 correctly	 evaluate	 the	

pharmaceutical	chemical	space61.	Realizing	this	task	using	 in	vivo	models	 is	expensive	and	time	

consuming.	Instead,	alternative	test	methods	such	as	high-throughput	in	vitro	assays	provide	the	

capability	to	test	thousands	of	compounds	across	a	wide	range	of	concentrations.	Together	with	

predictive	 in	 silico	 applications,	 such	 as	 Toxtree62,	 which	 is	 an	 open-source	 application	

commissioned	by	the	European	Commission	Joint	Research	Center’s	European	Chemical	Bureau,	

they	have	the	potential	to	improve	risk	assessment	of	chemicals	for	the	benefit	of	human	health	

and	environment.	
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Figure	2.	A	graphics	illustrating	the	problems	of	integrating	knowledge	between	compound	of	interest	
and	different	types	of	data	resources.	The	problems	can	be	solved	with	integrated	approaches	using	
ontologies,	semantic-web	technologies	and	better	annotation	of	the	data.	

There	 already	 exists	 a	 substantial	 corpus	 of	 resources	 that	 contain	 data	 on	 a	 large	 number	 of	

chemical	compounds.	These	data	and	their	sources	are	diverse	and	they	need	to	be	integrated	in	

Compound data is generated by researchers, screening facilities and assay developers

Data for compound of interest is (A) curated from publications into compound-specific
databases or (B) raw data is stored in high-throughput omics databases.

A SINGLE COMPOUND DATA ACCESS POINT WOULD RESOLVE COMPOUND IDENTIFICATION
ISSUES BETWEEN RESOURCES AND ACCELERATE DATA RETRIEVAL AND ANALYSIS

Curation of dataOntologies Semantic-web technologies

+ +AZ

There is little communication between compound-specific (A) and high-throughput omics (B) data
resources.

Identification of compound data in compound-specific resources (A) can be done easily but attention
must be given to compound naming and identifiers that can differ between resources.
Due to compound naming and identifier ambinguity the identification of compound data in
high-throughput omics resources (B) is complicated and time consuming.
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knowledge in different 
resources based on shared 
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A unifying resources that takes advantage of ontologies, semantic web technologies and clean data annotation 
will provide an invaluable service to researchers globally, improve metadata quality, researcher’s efficiency and 
save considerable amount of time and money. 

Curation of existing and new 
data with ontology terms will 
improve data annotation. This 
will reduce ambiquity in 
accessing relevant compound 
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fit experimental description.
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order	 to	 answer	 the	 systemic	 effects	 of	 compounds	 (Figure	 2).	 Accessing	 published	 data	with	

correct	compound	information	is	essential.	The	problems	encountered	in	accessing	data	on	our	

model	compounds,	demonstrate	that	using	the	results	from	publications	stored	in	public	resources	

and	cross-referencing	them	with	omcis	data	still	requires	substantial	 investigative	capacity.	We	

recognize,	that	there	are	two	solutions	for	the	problems	of	accessing	in	vitro	activity	data:	curation	

of	already	existing	data	and	improved	annotations	by	the	experimenters.	Curation	could	transform	

poorly	and	hard	to	reach	compound	information	into	a	rich	and	relevant	resource.	Without	new	

experimental	 efforts,	 it	 could	 right	 away	 enhance	 our	 knowledge	 of	 toxicology	 and	 decrease	

unnecessary	additional	experimentation,	including	animal	testing.	The	problem	of	the	curation	is	

unfortunately	in	large	parts	insurmountable:	the	manpower	and	expertise	required	to	transform	

the	present	“data	graveyard”	into	a	living	resource	would	necessitate	financial	means	which	simply	

do	not	exist.	Thus,	we	fully	support	the	concept	of	a	curation	effort	but	we	are	also	perfectly	aware	

of	 its	 limitations.	 However,	 efforts	 similar	 to	 SourceData63,	 that	 allows	 to	 annotated	 already	

published	figures	in	publication,	could	provide	a	potential	cure.	Alternative	to	curation	is	improved	

annotation	by	 the	experimenter	 themselves.	Obviously,	 this	 is	a	prospective	effort	 that	will	not	

apply	to	existing	data.	 It	 is	also	 limited	by	the	willingness	and	expertise	of	 the	experimenter	to	

standardize	 data	 presentation.	 For	 example,	 the	 use	 of	 proper	 compound	 identifiers	 (e.g.	

InChIKeys)	and	ontology	terms	is	not	part	of	 the	present	scientific	culture.	However,	the	use	of	

ontology	browsers	could	alleviate	this	transition.	Nevertheless,	currently	researchers	receive	little	

to	 no	 reward	 for	 the	 broad	 accessibility	 and	 perennity	 of	 their	 data.	 Thus,	 while	 improved	

annotation	by	the	experimenter	is	a	noble	goal	for	the	future,	this	will	not	happen	automatically.	

Novel	approaches	 for	scientific	publishing	such	as	 the	use	of	proper	annotations	with	ontology	

terms	and	attribution	of	credit	to	scientists	for	their	data	will	be	needed	to	really	make	an	impact.	

Would	the	efforts	necessary	for	general	accession	to	in	vitro	compound	data	be	worth	the	money	

and	 time?	 Considering	 the	 success	 of	 UniProt	 which	 incorporates	 extensively	 curated	 and	

trustworthy	protein	data,	the	answer	is	yes.	Indeed	a	careful	analysis	published	in	the	EMBL-EBI	

value	report64	estimated	46%	increase	in	research	efficiency	for	scientists	accessing	information	

relevant	to	their	research	question.	With	around	400	000	unique	visitors	per	month,	the	reported	

estimation	shows	an	enormous	cost-effect	benefit	for	the	researcher	community.	The	interest	in	

chemical	 compounds	 is	even	bigger:	PubChem	alone	receives	about	1	million	unique	users	per	

month65.	 However,	 omics	 resources	 do	 not	 readily	 link	 to	 PubChem	 (or	 other	 compound	

databases)	and	often	ambiguous	compound	names	are	used	to	annotate	the	data.	Thus,	the	time	

lost	by	the	community	to	assemble	compound	information	is	considerable.	This	highlights	the	need	

for	 an	 improved	 resource	 that	 would	 enhance	 the	 efficiency	 and	 speed	 of	 accessing	 raw	 and	

analyzed	compound	data	in	a	reliable,	simplified	and	intuitive	manner.	It	would	allow	researchers	

to	focus	on	data	analysis	and	its	interpretation	instead	of	collection	and	curation.	And	finally,	such	

a	resource	could	contribute	to	public	health	by	allowing	a	better	identification	and	management	

of	potentially	hazardous	compounds.	
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