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1 Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick,

Coventry, CV4 7AL, UK.
2 Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
† Correspondence to d.bates@warwick.ac.uk

Abstract

The use of orthogonal ribosomes in combination with dynamic resource allocation controllers

is a promising approach for relieving the negative effects of cellular resource limitations on the

modularity of synthetic gene circuits. Here, we develop a detailed mechanistic model of gene

expression and resource allocation, which when simplified to a tractable level of complexity,

allows the rational design of translational resource allocation controllers. Analysis of this model

reveals a fundamental design trade-off; that reducing coupling acts to decrease gene expression.

Through a sensitivity analysis of the experimentally tuneable controller parameters, we identify

how each controller design parameter affects the overall closed-loop behaviour of the system,

leading to a detailed set of design guidelines for optimally managing this trade-off. Based on

our designs, we evaluated a number of alternative potential experimental implementations of the

proposed system using commonly available biological components. Finally, we show that the

controller is capable of dynamically allocating ribosomes as needed to restore modularity in a

number of more complex synthetic circuits, such as the repressilator, and activation cascades

composed of multiple interacting modules.
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1 Introduction

Ensuring circuit modularity, i.e the independent and predictable functioning of different circuit

processes, remains a key goal in synthetic biology. If modules are independent then they can be

recombined to produce novel functions which can be predicted from previous characterisation. This

approach is commonly used in electronics and computer science where complex functions are broken

down into independent modules, which can be assembled to form new systems.

However, in synthetic circuits, there is often a failure of modularity, with gene circuits based on pur-

portedly well characterised components needing iterative rounds of redesign and re-experimentation

to obtain functional implementations. Modularity fails for a variety of reasons: (i) unexpected cross

talk between modules due to component re-use [1], (ii) subtle changes in gene regulation due to

unforeseen effects of combining DNA sequences [2], (iii) retroactivity effects where the titration of

a transcription factor to a downstream module affects the behaviour of the upstream module [3],

and, (iv) the use of a common limited pool of resources for gene expression [4]. Careful selection

of components can ameliorate the effects of (i) by ensuring modules do not have off target effects

[5]. The introduction of ‘insulator elements’ such as ribozymes can reduce the effects of (ii) [6] and

the development of buffer circuits allows loading fracture due to retroactivity (iii) to be reduced

[7]. The question of how to optimally manage the effects of cellular resource limitations on circuit

modularity, however, remains an open problem.

During exponential growth, the number of RNA polymerases (RNAP) and ribosomes in the cell

remains constant. This results in a fixed pool of gene expression resources. Whilst both resources

are finite, numerous experimental studies have shown it is the number of free ribosomes in system

which is the main limitation on gene expression [8, 9, 10, 11, 12]. The sharing of this fixed resource

across genes leads to a phenomenon known as gene-coupling. This results in the emergence of

non-regulatory interactions between co-expressed genes [4], since each synthetic circuit module will

utilise as many ribosomes as possible at any one moment, as determined by parameters such as

mRNA levels or RBS strength.

To illustrate the problem mathematically, consider the number of free ribosomes as a function of

the ribosome supply and demand as

R(φ1) =
Rtotal
1 + φ1

(1)

where RTotal is the total number of ribosomes available and φ is the demand, [10, 4]. Upon the

addition of another demand φ2, the free ribosome number becomes:

R(φ1, φ2) =
Rtotal

1 + φ1 + φ2
(2)

As φ > 0 in all cases, by definition R(φ1, φ2) < R(φ1). This decrease in free ribosome number

reduces the rate of downstream processes, such as mRNA-ribosome binding, as a consequence of

the law of mass action. This leads to a decrease in other modules as a new module is induced
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(this is often termed coupling [13, 14]): activation of one circuit module effectively inhibits other

modules. In this case the supply of ribosomes (the numerator) is determined by the cell and supply

is constant regardless of the demand (the denominator) - i.e. there is no control of RTotal.

To mitigate this decrease in free ribosomes upon the addition of new genes, consider a system

where the supply of total ribosomes can be matched to the circuit’s demand for ribosomes. Let this

malleable ribosome pool be R′:

R(φ1) =
R′φ1

1 + φ1
(3)

Upon the addition of another gene the demand (the denominator) increases as before:

R(φ1, φ2) =
R′φ1, φ2

1 + φ1 + φ2
(4)

However, in this ideal system we can now increase the supply of R′ (i.e. increase the numerator)

to make R(φ1) = R(φ1, φ2). This maintains the free ribosome pool available to the circuit and so

removes ribosome-mediated gene coupling.

In a previous work, we have experimentally realised a prototype of a feedback controller that can

dynamically allocate more ribosomes to the circuit when required [14] (Figure 1a). Increasing total

ribosome number is not biologically feasible, so our controller acts to dynamically allocate the

translational capacity between host and circuit genes in response to circuit demand, thus relieving

the effects of resource limitations on the circuit [14]. This is achieved by regulating the production

of a pool of quasi-orthogonal ribosomes. These specialised circuit-specific ribosomes can be created

by expressing an orthogonal 16S rRNA and replacement of the natural ribosome binding site in

circuit genes, or other genes of interest, with complimentary synthetic ribosome binding sites. The

o-16S rRNA replaces the endogenous host 16S rRNA in a fraction of the host ribosomes creating

a separate translational resource which is targeted to circuit genes by binding the complimentary

synthetic RBS sequence. By placing the production of the o-16S rRNA under the control of a

constitutively expressed repressive transcription factor which itself uses the orthogonal ribosome

pool for its own translation, we created a feedback controller which produces o-16S rRNA, and

hence orthogonal ribosomes, in response to circuit demand. As circuit genes are induced, they

sequester o-ribosomes for their own expression resulting in a fall in the expression of the regulator.

This relieves the repression of the o-16S rRNA, resulting in increased o-16S rRNA production

and increased o-ribosome co-option. Thus the controller implements a negative feedback loop.

See Figure S1 for a schematic of the biological implementation of this feedback loop. Of course,

the controller cannot mitigate intrinsic limitations arising from the fact that the total number of

ribosomes in the cell is finite. Rather, the controller acts to dynamically manage the allocation of

translational activity between host and circuit genes in the most efficient way, by increasing circuit

capacity as circuit demand requires it.

In this paper, we develop detailed mechanistic models of the orthogonal translation system that can
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be used for the purposes of designing optimal resource allocation controllers. Using such models,

we demonstrate how improved resource allocation controllers can be rationally designed to decouple

the expression of different genes, and develop design rules for how the tuning of different controller

design parameters can act to separately specify either the dynamic response time or overall protein

output (i.e. gain) of the circuit. Based on these design rules, we identify and evaluate a number

of alternative potential experimental implementations of the proposed translational controllers.

Finally, we demonstrate the potential of resource allocation controllers to improve the modularity

of a variety of complex gene circuits.

2 Results and discussion

2.1 A mechanistic model of the resource allocation controller

We initially develop a complete mechanistic model of gene expression and the action of the controller,

before investigating how this model can be simplified for use as a design tool. We assume that each

circuit promoter (gi) can be bound by a multimeric transcription factor (ui) to form a promoter

complex (κi) capable of recruiting a free RNA polymerase (σ) to form a translation complex. When

transcription occurs, an mRNA (mi) is produced, and the original RNAP polymerase and promoter

complex are released. The above interactions are described by the following chemical reactions:

gi + ηi · ui
αfi−−−⇀↽−−−
αri

κi κi + σ
ξfi−−−⇀↽−−−
ξri

xi xi
τi−−→ mi + σ + κi

The mRNA is bound by a free [orthogonal] ribosome, R, to form a translation complex (ci). Upon

translation, a protein (pi) is produced and the mRNA and R are released:

mi +R
βfi−−−⇀↽−−−
βri

ci ci
γi−−→ mi +R+ pi

Additionally, both mRNAs and proteins degrade at rates δmi and δpi , respectively. The numbers of

promoters for each gene i are conserved such that:

gi,T = gi + κi + xi (5)

Applying the law of mass action we derive the following ODEs describing the time evolution of the
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circuit components:

κ̇i = αfigiui
ηi − αriκi − ξfiκiσ + ξrixi + τixi (6)

ẋi = ξfiκiσ − ξrixi − τixi (7)

ṁi = τixi − βfimiR+ βrici + γici − δmimi (8)

ċi = βfimiR− βrici − γici (9)

ṗi = γici − δpipi (10)

This represents a simple single-input-single-output (SISO) motif and forms the basis of our model.

Complex circuits can be constructed by letting the output from one module form the input to

another.

To implement our controller we first consider the conversion of host ribosomes (Rhost) into circuit-

specific orthogonal ribosomes (R). The orthogonal 16S rRNA gene promoter (gr) recruits σ to form

a translation complex (xr) which produces the orthogonal rRNA (r):

gr + σ
ξfr−−−⇀↽−−−
ξrr

xr xr
τr−−→ r + σ + gr

The orthogonal 16S rRNA binds host ribosomes, RH , and so recruits ribosomes to the circuit-only

orthogonal pool, R:

RH + r
%r−−⇀↽−−
%f

R

In the presence of the controller the orthogonal rRNA gene is regulated by the repressor pf . The

repressor binds the free gr promoter and prevents the binding of RNA polymerase and associated

factors (σ in our model):

gr + ηf · pf
αrr−−−⇀↽−−−
αff

κf

We model expression of the regulator protein by considering the constitutive expression of its mRNA

from an unregulated promoter, gf :

gf + σ
ξrf−−−⇀↽−−−
ξff

xf

We model the transcription and translation of the repressor’s mRNA and protein in the same

manner as the circuit genes, as described above.
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The concentration of each promoter is conserved such that:

gr,T = gr + xr + κr gf,T = gf + xf (11)

Applying the law of mass action results in the following ODEs describing the production of the

repressor and intermediate complexes:

ġf = −ξff gfσ + ξrfxf + τfxf (12)

ẋf = ξffκfσ − ξrfxf − τfxf (13)

ṁf = τfxf − βffmfR+ βrf cf + γfcf − δmf
mf (14)

ċf = βffmfR− βrf cf − γfcf (15)

ṗf = γfcf − δpf pf − ηfαfrgrpf
ηf + ηfαrrκr (16)

Applying the law of mass action to the o-rRNA promoters and ribosome species yields:

ġr = −ξfrgrσ + ξrrxr + τr − αfrgrpf ηf + αrrκr (17)

ẋr = ξfrgrσ − ξrrxr − τrxr (18)

κ̇r = αfrgrpf
ηf + αrrκr (19)

ṙ = τrxr − δrr − %frRH + %rR (20)

ṘH = −%frRH + %rR (21)

This model is highly complex and contains many forward and reverse reaction rates. Individual

binding and unbinding rates for genetic components and proteins are rarely reported in the lit-

erature, due to the difficulty in determining their values experimentally because of the effects of

confounding factors (such as additional fluxes along the reaction pathway). However, by considering

the time-scale separation of the reactions involved, we are able to reduce our model and formulate

the forward and reverse reactions in terms of ‘lumped’ dissociation constants. By defining the model

in terms of dissociation constants, we are then able to determine suitable genetic components with

the desired dynamics from a search of previously published data. The dissociation constants of the

RNAP polymerase for the promoter (kX), of the ribosome for the RBS (kL) and of the protein for

its binding site (µ) are defined as follows:

kX =
ξr + τ

ξf
kL =

βr + γ

βf
µ =

αr
αf

(22)

To reduce our model we consider the effect of time-scale separation; different biological processes

occur over a range of different time spans with binding/unbinding reactions occurring on the order

of milliseconds, transcription and translation taking minutes and protein degradation/dilution oc-

curring over tens of minutes or hours [15]. This effectively separates reactions in time and allows
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us to apply the assumption that ‘fast’ species, such as RNAs, reach (quasi)-steady state (QSS)

instantaneously. By calculating the QSS concentrations of intermediate species and substituting as

appropriate we are able to the remove the majority of intermediate gene expression species from

our model. We denote the QSS complex of species y as ȳ.

Since current experimental evidence suggests that competition for RNA polymerases does not sig-

nificantly limit gene expression, we remove RNAP mediated competition by considering each gene

to have access to its own small pool of RNA polymerase (e.g. [8, 10]). Additionally, we assume

that the dissociation constant for RNA polymerase is much higher than the concentration of free

polymerase, consistent with experimental observations [16]. This allows us to reduce the complexity

of the expressions by assuming that σ + kX ≈ kX . By applying these assumptions we can simplify

Equations 5 to 10 as follows:

The QSS of the activated circuit gene (x̄i) which gives rise to mRNAs is solely a function of the

input (ui):

x̄i =
σTotal

1 + (1/x̂i)
(23)

where x̂i can be considered as a measure of demand for RNAP by gene i and is defined as follows:

x̂i =
gi,T
kXi

ui
ηi

µ+ uiηi
(24)

The ODE describing the time-evolution of the protein species is:

ṗi = γi

(
τi
δmi

R

kLi

x̄i

)
− δpipi (25)

We can also define the constant ĉ which is a measure of demand for ribosomes by gene i:

ĉi =
1

kLi

τi
δmi

x̄i (26)

If a single unregulated pool of ribosomes is used for circuit expression then the number of free

(host/orthogonal) ribosomes, R, available for circuit translation is given by

R =
RTotal

1 +
∑N

i=1

(
ĉi
) (27)

Therefore the response of p1 depends not only on the input u1 but also the demand for ribosomes

by other genes ĉi, i6=1. This forms the basis of our circuit SISO ‘process’ model (Figure 1b).

Applying the same assumptions to the equations describing the production of the regulator pf we
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can reduce equations 11 to 16 to:

ṗf = γf

(
τf
δmf

R

kLf

x̄f

)
− ηf ḡrpf ηf + ηfµf κ̄r − δpf pf (28)

where x̄f follows the same form as Eq. 23 and x̂f = gf,T /kXf
(f0 block of Figure 1b). For simplicity

we assume that αff = 1 and αfr is equal to the dissociation constant µf . This forms the basis of

the ‘controller module’ shown in Figure 1b, with the action of the controller represented by the F

block.

The QSS of the three o-16S rRNA promoter states are: (i) the open free promoter (ḡr), (ii) the

promoter when bound by σ being actively transcribed (x̄r, calculated using x̂r), or (iii) the promoter

bound by the regulator and therefore inhibited (κ̄r):

ḡr = gr,T − x̄r − κ̄r x̂r =
gr,T
kXr

( µf
µf + pf

ηf

)
κ̄r = (gr,T − x̄r)

( pf
ηf

µf + pf
ηf

)
(29)

x̄r determines the rate of host ribosome co-option, via the o-16S rRNA (r, see Equation 20) with

gr,T /kXr determining the maximal rate (r0 block, Figure 1b) and µf/(µf + pf
ηf ) representing the

inhibitory action of the controller pf (A block, Figure 1b).

The rate of change of the orthogonal 16S rRNA is as described in Equation 20 and co-option of the

host ribosomes is described in Equation 27.

Finally, the number of free orthogonal ribosomes is given by:

R =
RTotal −Rhost

1 + ĉf +
∑N

i=1

(
ĉi

) (30)

Note that this follows the same form as Equation 27, with the total number of o-ribosomes available

to the circuit being the total number of all ribosomes (RTotal) minus the number of host ribosomes

(Rhost).

Using the specific binding and unbinding rates of cellular components reported in [17], and calcu-

lating their respective dissociation constants as needed, we can compare the behaviour of the full

mechanistic model and reduced model. Simulations demonstrate that the reduced model accurately

captures the transient and steady-state behaviour of the full model, for both simple circuits based on

activation of multiple genes and more complex circuits including oscillatory inputs (Figure 1). Cru-

cially, the model reduction process preserves the rapidly changing closed-loop dynamics produced

by the non-linear controller (Figure 1c) The model could potentially be simplified further by making

the additional assumption that the equations describing the dynamics of the o-16S rRNA (Equation

20) and host ribosomes (Equation 21) are at steady state, producing a model which tracks only the

protein dynamics - whose control is the main subject of this paper. However, this model no longer

captures the transient dynamics of the system, although it does still successfully recapitulate the
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steady state behaviour of the full model to static inputs (Figure S1). In the presence of oscillatory

inputs, this additional reduction acts to hide the induction of oscillations in other genes due to the

sharing of cellular resources. Analysis of the parameters shows that o-ribosome assembly is slow

(%f = 0.9 (nM·h)−1) violating the assumption that these species are at quasi-steady state.

2.2 Model analysis reveals a trade off between gene expression and level of

decoupling

Using our model as a design tool, we carried out a multiobjective optimisation of the experimentally

tunable controller parameters aiming to produce both high protein levels and low gene coupling (see

Methods). We assess the impact on one gene p1 as a second gene p2 is induced by a new input u2

(as described in Figure 3). The difference in expression of p1 due to the u2 disturbance is termed

‘coupling’. We assess the impact on protein levels by comparing final protein outputs to those of

the same circuit where translation is uncontrolled and mediated by the host ribosome pool. This

identified a hard trade-off between these two objectives, with the range of equally optimal solutions

(the Pareto-optimal front) showing an inverted concave shape, i.e. decreases in gene coupling are

achieved at the expense of decreases in gene expression. Our simulations suggest that coupling can

be halved for only a 20% reduction in gene expression, while coupling can be reduced to between

5-10% for a 50% reduction in gene expression (Figure 2).

To determine the robustness of the Pareto front to parameter selection, we varied the optimised

parameters by up to 50% for each point on the front. None of these designs result in controller

failure where expression is lost but coupling is not abolished - i.e. no designs fall into the lower left

quadrant. This suggests that potential parameter variations when selecting biological components

to implement the controller can act to move the controller along the front, but should not result

in failure. We did find that a small number of these perturbed designs show slower responses and

we discount these from further analysis. We carried out an additional robustness analysis allowing

all parameters governing the controller behaviour to vary. This includes parameters which are

either difficult to design (e.g. controller translation rate γf ) or intrinsic properties which cannot

be designed (e.g. o-rRNA association rate, µr). We find that all of these controllers also fall upon

the same front demonstrating that uncertainty in these values does not preclude controller design

(Figure S2).

To determine how each parameter contributes to the gene expression and coupling trade off, we anal-

ysed how each changes across the front. This highlights the need for high ηf values. This parameter

represents the level of co-operativity in the system brought about for example by transcription

factor dimerisation or the presents of multiple operator sites. The true Pareto front coincides with

a value of ηf = 4 (Figure 2b). For this reason we discount controllers where ηf = 1 from further

analysis in this section as these controllers perform most poorly. We also find that small µf values

are most often associated with controllers which act to nearly completely decouple genes but at a
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significant cost to gene expression (Figure 2f). Similarly, small kLf
values, corresponding to strong

ribosomes binding sites (low ribosome-mRNA dissociation constant), are associated with large levels

of decoupling at a high cost to gene expression (Figure 2e). Simulations suggest kLf
> 105 nM and

µf > 0.1nM in all cases, for the simple two gene circuit example used here. (Note that for many

natural transcription factors co-opted into synthetic gene networks µf < 0.1 nM and ηf may be lim-

ited. We demonstrate how this can be compensated for in controller design in Section 2.5). A high

gf,T /kXf
ratio (gf,T /kXf

> 1, produced by expressing the regulator from a strong promoter carried

on a high copy number plasmid) results in complete decoupling and abolition of gene expression

(Figure 2d). We therefore suggest keeping gf,T /kXf
< 1 in all instances. We find that the gr,T /kXr

ratio governing maximal o-rRNA transcription rate varies significantly across all behaviours making

general guidelines difficult to establish (Figure 2c).

To provide specific quantitative design rules, we select five points across the front and assess the pa-

rameter space around these points which give rise to these controller behaviours (Table 1). Assessing

how parameters correlate in these local clusters shows that kLF
is a key regulator of behaviour. kLf

is inversely correlated with gr,T /kXr , indicating that as the o-ribosome production rate increases,

a stronger RBS is needed for controller function (i.e. a smaller value of kLf
). We also identify an

inverse correlation between kLf
and µf in the cluster around (-0.01, -0.9), i.e. the most decoupled

parameter set, such that decreases in repression by the transcription factor (µf ) can be compen-

sated for by increasing the RBS strength (decreasing kLf
). We also find that changes in kLf

and

gf,T /kXf
have some compensatory effects such that increases in kLF

(i.e. weakening the RBS) can

be mitigated by increasing gf,T /kXf
(e.g. by increasing copy number).

We demonstrate the functioning of the controller using the design with the lowest level of gene cou-

pling, point 47 on the Pareto-optimal front (Table S1). The equivalent analysis for the intermediate

point 9 is shown in Figure S3). The controller successfully insulates one gene from the induction of

another (Figure 3), bar a short transient disturbance (<12 h) . Tracking the concentrations of the

intermediate species reveals the operation of the controller; with translation of pf falling (Figure 3b)

and the number of o-rRNA genes being transcribed increasing as the second gene is induced (Figure

3b). This results in a net increase in the number of orthogonal ribosomes (Figure 3b) which means

that in the long term the translation complexes producing each protein do not change (Figure 3a).

2.3 Designing system response times by tuning controller parameters

Analysis of the controllers tested so far has focused on how they are able to correct steady state

errors brought about by gene coupling and so we have largely ignored the system dynamics, bar

excluding excessively slow controllers (e.g. penalising simulations which only reach steady state

after > 24 h). However, a controller which decouples genes well but has a slow response time will

not be suitable for many applications in synthetic biology. Therefore we took the previous candidate

controllers and conducted a local sensitivity analysis around each design point to assess the impact
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of each parameter on the system’s speed of response. In addition to the controller parameters varied

so far we also varied δρ, δmf
and δpf , which represent the decay of the o-rRNA, controller mRNA

and controller protein respectively. These parameters were kept constant in the previous design

evaluations to minimise the number of parameters in the optimisation, but since decay parameters

often have significant affects on speed of response we explicitly assess their impact here.

Beginning with the four controllers which show intermediate behaviours (i.e. do not show complete

decoupling), changing the parameters has significant impact on coupling and expression levels,

as discussed above. For controllers which have strong decoupling ability we find that there are

individual parameters which when varied do not significantly affect the decoupling ability (e.g.

gr,T /kXr , µf ) although these do still affect the expression levels (i.e. the controller gain).

In all five cases, the o-rRNA decay constant (δr) and protein controller decay constant (δpf ) are key

to determining the speed of the system response. Increasing both parameters acts to increase the

speed of response, at an expense of decoupling ability (Figure 4). In the regions tested, varying δr is

less likely to introduce significant overshoots into the system (as seen at low δpf values). However,

a greater range of speed-up is achievable by varying the protein decay constant. The latter is also

a more experimentally tractable parameter. Increasing both parameters acts antagonistically, with

increases in δr decreasing gene coupling and increases in δpf increasing it, meaning tuning both

parameters may be advantageous. We see very little impact from varying the mRNA decay rate

(δmf
).

As previously discussed the value of the controller co-operativity (ηf ) is a key determinant of

controller decoupling ability (Figure 4). This analysis replicates this result and also highlights that,

at least in this parameter regime, increasing co-operativity also acts to significantly increase the

speed of response.

2.4 Potential biological implementations of the controller designs

We carried out a detailed literature review to identify potentially suitable repressors with which

to implement our system, focusing our analysis on (i) the ability of the repressor to be expressed

in bacterial hosts (i.e. repressors from bacteria or bacteriophage), (ii) orthogonality (i.e. repressors

which are not used in fundamental host processes), (iii) the presence of a known promoter archi-

tecture (which could be used to infer the dissociation constant of the RNA polymerase, see Section

S2) and (iv) detailed characterisation of binding kinetics (ideally dissociation constants measured

in a biochemical assay, rather than a constant inferred from device function such as by fitting a Hill

function to induction-fluorescence curves, as is often the case). We identified six repressors from

this literature search, including the commonly used LacI [18], TetR [19] and cI [20] repressors. We

also identified putative controller candidates Cro and RstR from bacteriophages PY54 [21], CTXϕ

[22] and LmrR, a global regulator of antibiotic resistance from Gram positive Lactococcus lactis

[23].
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Using the results of our sensitivity analysis and additional biological constraints we identified a num-

ber of feasible biological implementations; (i) the o-rRNA and regulator having the same medium

copy number (mimicking placement in the same plasmid, such as ColE1), (ii) a high copy number

regulator, carried on for example a pUC vector, and a chromosomally integrated regulator and

(iii) the effect of a protein degradation motif on designs of type (ii). Note that we did not assess

the potential designs requiring the o-rRNA and regulator to be carried on different copy number

plasmids, as these would result in high burden on the cells and significantly decreased growth rate

as these cells would need to carry at least three plasmids, one containing circuit genes and one each

for the o-rRNA gene and regulator. All of these prototype controllers fall along the Pareto front

(Figure 5a).

We carried forward designs representing a range of trade-offs between gene expression and decoupling

for further analysis (Table S4). The putative controllers based on tetramers (LacI and RstR) show

the fastest dynamics and best decoupling with minimal p1 settling times and p2 rise time upon

induction of the second gene (Figure 5b). Designs based on the phage repressor Cro with degradation

motifs show the highest gene expression with an acceptable p2 rise time of < 3 hours but coupling

is far from fully abolished (Figure 5b).

2.5 A dynamic resource allocation controller restores modularity in a range of

more complex gene circuits

Having successfully demonstrated the ability of the proposed approach to decouple two independent

modules, we analyse the ability of the controller to remove resource dependent failure in a variety

of more complex gene circuits (Figure 6).

We initially simulate multiple SISO modules with new modules being activated at different intervals.

In the absence of the controller, activation of each additional module has an impact on the previously

activated modules. For example, the expression of the first module p1 falls by over 50% as three

additional genes are induced. As shown in Figure 6a, the controller successfully eliminates this

coupling, making p1 relatively insensitive to the induction of over 10 additional genes (although

note that the rise time and settling time increase slightly with the induction of each additional

gene).

A key aim of synthetic biology is that previously characterised components or devices can be in-

troduced into the same cell to form a complex circuit. Here we assess the effect of introducing

two separately characterised devices into one complex circuit, i.e. we want to investigate what is

the effect of introducing an additional resource consumer on a previously characterised device. As

the production of robust genetic oscillators to create clocks for temporal processes functions is of

fundamental importance in synthetic circuit design, we consider designs for the repressilator clock

and an additional SISO module. These modules are first simulated separately, as shown in (Figure

6b, upper panel). Upon linking these separate devices through a common pool of resources, i.e.
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coupled through their competition for ribosomes, we see that p4 induction destroys the oscillations

of the repressilator (Figure 6b, upper right panel). If, however, we consider the design of these two

devices in the presence of the controller and then introduce them into the same resource pool as

before, we see that circuit function is now maintained (Figure 6b, lower panels). Note that while

there is still a small loss in repressilator amplitude upon induction of p4 this is significantly reduced,

thus staying closer to the original device behaviour.

It has previously been shown that resource limitations can change the input-output response of a

simple genetic activation cascade [4]. The authors show that if the upstream module has a stronger

ability to sequester ribosomes than the downstream module (a small kL1-to-kL2 ratio) then the

expected response determined from simple Hill-function type modelling (i.e. an increasing output

to increasing input in a step-like fashion) can become biphasic or even invert (Figure 6c, dotted

open loop lines). We simulate a range of prototype activation cascades in the absence and presence

of our controller. In the absence of the controller, no additional resources are available as demand

increases and so we see the activation cascade failing in the same manner as found in Qian et al..

In the presence of the controller, the desired behaviour of the activation cascade is restored, as

translational capacity is directed to the circuit as demand increases. The controller acts to remove

the resource limitation, thus allowing simpler models, which often do not account for limited cellular

resources, to be used to produce circuit designs which then function as expected in vivo.

2.6 Conclusions

Numerous genetic components and devices have been developed to ensure predictable gene expres-

sion or dampen the effect of loading in genetic circuits. However, to date, little attention has

been paid to developing genetic devices that are capable of relieving cellular resource limitations.

Controllers for orthogonal transcriptional activity based on phage RNA polymerases have been

developed [24, 25] and we have previously implemented a prototype translational controller [14].

Here, we develop a detailed mechanistic model of gene expression and resource allocation, which

when simplified to a tractable level of complexity, allows the rational design of optimal translational

controllers. We demonstrated that this new model allows the design of controllers which can dy-

namically allocate orthogonal ribosomes to synthetic circuits within reasonable timeframes (< 12

hours). Using our model, we identify a fundamental trade-off in controller design; that reducing

coupling act to decrease gene expression. We determined how each controller design parameter

affects the overall closed-loop behaviour of the system, leading to a detailed set of design guidelines

for optimally managing this trade-off. We find that both controller co-operativity and RBS strength

are key parameters in determining the level of decoupling that can be achieved. Based on our de-

signs, we identified and evaluated a number of alternative potential experimental implementations

of the proposed system using commonly available biological components. Finally, we showed that

our controller is capable of dynamically allocating ribosomes as needed to restore modularity in

a number of more complex synthetic circuits, such as the repressilator, and activation cascades
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composed of multiple interacting modules.

3 Methods

3.1 Numerical simulations

All models were implemented in either MATLAB 2016b and 2017a (The MathWorks Inc, MA,

USA) and simulated using the in-built stiff solvers ode15s and ode23s using increased tolerances

(Relative 10−6 and Absolute 10−6). Simulations were deemed to have reached steady state when

the maximum of the calculated derivative was less than 10−2 (relaxed) or 10−3 (strict). Additional

specialist functions as needed were utilised from the Optimization Toolbox (Version 7.4) and Parallel

Computing Toolbox (Version 6.8 or 6.10).

3.2 Assessment of controller function

The behaviour of controllers was characterised by simulating the action of a simple two gene circuit.

Initially, the behaviour of one gene p1 is simulated before its response is assessed to the induction

of a second gene p2 at time t = θind. Coupling and expression are normalised:

coupling =
(
p1(t = θind)− p1(t = θss

)
/p1(t = θind) (31)

expression =
(
p2(t = θss)− ptarget

)
/ptarget (32)

3.3 Optimisation

The mutliobjective optimisation was carried out using the inbuilt function gamuliobj with a pop-

ulation size of 200 individuals and with a Pareto fraction of 0.25 from the Optimization Toolbox.

kX values were set to 1 allowing the x̂ ratios to be investigated by varying gr,T and gf,T only. See

Section S2 for a discussion of permissible parameter bounds. The parameters varied (and their

scale and bounds) were gr,T /kXr ratio (log10 scale, 10−2 − 102), kLf
(log10 scale, 103 − 108), ηf

(linear scale, 1− 4), µf (log10 scale, 10−2 − 103) and gr,T /kXr ratio (log10 scale, 10−2 − 102). The

optimisation routine aims to minimise:

χ1 =
(
p1(t = θss)− p1(t = θtind

)2
(33)

χ2 =
(
p2(t = θss)− ptarget

)2
(34)

where θind is the time of the induction of p2 and θss is the last time point, tmax. If the simulation

is not at steady state at tmax then the result is given the poorest fitness. ptarget is calculated by

simulating the action of the circuit in a model utilising the host ribosome pool for gene expression.
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3.4 Selection of controller parameters for design guidelines

Coupling and expression scores where calculated for each controller as outlined above for all the

results of robustness analysis. These results were then scaled by their maximum absolute values to

ensure both axes are between 0 and 1 (note that for calculating the distance metric we can ignore

signs). We calculate the Euclidean distance between each point (xscaled, yscaled) and the point of

interest from our numerical optimisation (x0, y0):

d =

√(
(xscaled − x0)2 + (yscaled − y0)2

)
(35)

We then define any points within a circuit of radius 0.025 centred on (x0, y0) as within the local

region. Qualitatively these points have the same behaviour and so we group them for further

analysis as outlined in the main text.
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Table 1: Controller designs to manage the coupling expression trade-off. Regions of
parameter space were identified as described in the Methods using a distance score of 0.25. The
coupling (co. %) and expression cost (ex. %) are reported for each controller from the Pareto front
chosen. The number of controllers in the local region is reported as N .

gr,T /kXr kLf
ηf µf gr,T /kXr

(co. %, ex. %) N LB UB LB UB LB UB LB UB LB UB

(-13, -22) 125 10−1.91 101.16 107.25 109.25 3 3 100.497 102.34 10−2.38 10−0.28

(-11, -27) 110 10−1.89 100.87 107.01 109.08 3 3 100.471 102.46 10−2.47 10−0.33

(- 9, -35) 100 10−2.28 100.94 107.11 108.80 3 3 100.593 102.27 10−2.39 10−0.3

(- 5.5, - 51) 126 10−2.49 100.8 106.86 108.82 3 3 100.492 102.49 10−2.23 10−0.32

(- 1, -90) 2514 10−2.86 101.42 104.12 108.26 2 4 100.43 102.47 10−2.54 10−0.23
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Figure 1: Development of a genetic feedback controller model (a) Schematic of the negative
feedback loop implementation. (b) Block diagram of the controller. The process, highlighted in
green, converts the input u1 into protein output p1 utilising the o-ribosome pool R. The input
into a second process (not shown) u2 acts as a disturbance to the first process which is ameliorated
by the effect of the controller. The controller protein is constitutively expressed (f0 signal) so the
output pf is dependent upon R. As inputs ui disturb R the level of pf changes (i.e. as ui increases,
pf decreases). As pf is a repressor the disturbance signal is inverted in the F (pf ) block. (c) The
reduced model successfully captures the behaviour of the full model. Numerical simulations carried
out as described in the Methods. Parameters used are derived from [17]. A range of controllers
are shown: open loop with no controller gf,T = 0 nM, a linear controller ηf = 1, gf,T = 500 nM,
a non-linear controller ηf = 2, gf,T = 500 nM. Inputs are as follows: u1 = u2 = 0 nM except
u1(t > 148) = 500 nM and u2(t > 244) = 500 nM (d) As in (c) with inputs u1 = u2 = 0 except
u1(t > 148) = 500(cos(0.8t) + 1) nM and u2(t > 244) = 500(cos(0.8t) + 1) nM.
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Figure 2: Trade-off between gene expression and decoupling. (a) The Pareto front demon-
strating the trade off between gene expression and coupling. Expression is measured as change in
steady state gene expression in comparison to simulations of the circuit using the saturated host
ribosome pool. Coupling is measured as the steady-state change in p1 in response to u2. Robustness
was determined by allowing the controller parameters to vary within +/- 50%. N = 89, 890. The
values of the respective parameters are shown in the following panels. As described in the main
text, controllers where ηf = 1 are removed from the following panels for clarity. Also note that
the third axis and subsequent separation serves only to aid visualisation and does not represent
parameter value which is indicated by the colour and outlined in the figure legend. (b) Controller
co-operativity as shown by ηf . (c) o-rRNA transcription as determined by the gr,T /kXr ratio.
(d) Transcription of the controller protein as determined by the gf,T /kXf

ratio. (e) Controller
mRNA ribosome binding site strength as measure by mRNA-ribosome dissociation constant kLf

.
(f) Controller protein gr dissociation constant µf .
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Figure 3: Controller dynamics as it decouples circuit genes. Simulations showing the dy-
namics of a highly decoupling controller (Point 47, Table S1). The first gene p1 is constitutively
expressed, u1 = 500 nM throughout. At 12 h, u2 rises from 0 to 500 nM. (a) Translational com-
plexes: Changing the distribution of the orthogonal ribosomes across circuit and contoller mRNAs,
c1, c2 and cf represent the translation complexes of the mRNAs of gene 1, 2 and regulator f re-
spectively. R represents the free orthogonal ribosomes. cf acts as the sensor for the disturbance
at t = 12 h. Levels are a normalised by the total number of orthogonal ribosomes at t = 12 h.
(b) Controller action: Changes in controller components over time. Levels are normalised by value
at t = 12 such that 0 indicates no change. xr, o-16S rRNA gene in the transcribing state; Σ(R),
number of orthogonal ribosomes; pf , controller protein. (c) Normalised protein output. Protein
levels are normalised by p1(t = 12) and shown in the absence of the controller (OL, gf,T = 0 nM)
and the presence of the controller (CL). Inset, steady state protein levels.
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Figure 4: Tuning decay parameters allows design of system dynamics. The effect of varying
the decay prameters δr and δpf on the response of p1 to the additional input u2 (as described in
Figure 3. The optimal parameter as determined by the optimisation routine was varied by +/−25%
and +/−50% named δ in the figure legend. (a) Sensitivity analysis around the parameter set from
the high decoupling regime (Point 47). (b) Sensitivity analysis around a parameter set from the
intermediate decoupling regime (Point 9).
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Figure 5: Comparison of biological implementations based on orthogonal repressors.
Simulations of implementations based on the repressors in different plasmid confirmations and with
degradation motifs. (a) The positions of the prototype controllers in the coupling-expression space.
Inset, expansion of the main figure around point (0,-1). Point colours represent the regulator
protein and point style denotes copy number as follows: Same plasmid, gr,T = gf,T = 100 nM;
Chromosomal, gr,T = 500 nM and gf,T = 10 nM. Decay tag, gr,T = 500 nM, gf,T = 10 nM, δpf = 15
h−1 ≈ t1/2 = 3 − 5 minutes, equivalent to LVA tag []. (b) Upper Circuit dynamics showing the
normalised levels of protein 1. Inset, steady state output at t = 48 h. Lower Characterisation of the
response of p1 to the disturbance caused by u2. Settling time, number of hours from the induction
until p1 returns to steady state; Overshoot, transient increase in p1. Steady state error, difference
between p1(t = 48) and p1(t = 12). Rise time, time it takes for p2 to increase from 10% of its steady
state to 90% of its steady state. Designs are available in Table S4.
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Figure 6: The controller rescues modularity in a variety of circuit contexts A range of
common circuits were simulated in both the open and closed loop confirmations. All y-axes are
normalised output. (a) The controller successfully renders a gene invulnerable to the induction
of many additional genes at 100 h intervals. Other genes not shown.(b) Maintaining repressilator
behaviour in the presents of an induced gene. The repressilator (protein p1 to p3, only p1 is shown)
is simulated before an additional gene p4 with a stronger RBS is induced. Upper panels Open loop
(no controller). Lower panels Closed loop (with controller). Left and centre panels Function of the
individual modules alone. Right Function of the two modules in one circuit. p4 is induced at 24 h.
(c) The controller removes resource limitation-induced failure in the design of an activation cascade
(u1 → p1 → p2). In the absence of the controller (dotted line) some prototype designs do not show
the monotonically increasing output of p2 to u1 as desired in an activation cascade. The controller
removes these resource limitations allowing the circuit to function as expected across all prototype
designs.
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