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Abstract 

Cell migration refers to the ability of cells to translocate across a substrate or 

through a matrix. To achieve net movement requires spatiotemporal regulation of 

the actin cytoskeleton. Computational approaches are neceary to identify and 

quantify the regulatory mechanisms that generate directed cell movement.  To 

address this need, we developed computational tools, based on stochastic 

modeling, to analyze time series data for the position of randomly migrating cells. 

Our approach allows parameters that characterize cell movement to be efficiently 

estimated from time series data. We applied our methods to analyze the random 

migration of Mouse Embryonic Fibroblasts (MEFS). Our analysis revealed that 

these cells exist in two distinct states of migration characterized by differences in 

cell speed and persistence. Further analysis revealed that the Rho-family 

GTPase RhoG plays a role in establishing these two states. An important feature 

of our computational approach is that it provides a method for predicting the 

current migration state of an individual cell from time series data.  Using this 

feature, we demonstrate that HeLa cells also exhibit two states of migration, and 

that these states correlate with differences in the spatial distribution of active 

Rac1.  
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Introduction 

The ability of cells to move is essential to many biological processes, such as 

tissue development, the immune response and wound healing [1]-[3]. Anomalous 

cell migration plays a role in diseases, such as cancer and atherosclerosis [2], 

[4]-[6]. During cell migration, intracellular signaling networks tightly control the 

spatiotemporal dynamics of the cytoskeleton. In particular, the Rho family of 

small GTPases has been implicated in membrane protrusion, adhesion, 

contraction and de-adhesion, all steps necessary for cell migration [7]-[12] . 

 During random cell migration, in which cells do not experience directional 

environmental cues, cells move in a persistent manner, but with significant 

variability in their direction and speed. Therefore, methods for quantifying cell 

movement that take into account the stochastic nature of this phenomenon are 

needed. Previous studies have analyzed cell migration in terms of quantitative 

metrics such as the mean squared deviation in cell position, which can be linked 

to both speed and persistence [13]-[16]. Additionally, it has been suggested that 

fractional diffusion models are required to accurately describe cell movement [13]. 

We used stochastic modeling to develop tools for quantifying cell migration such 

that it can be characterized in terms of biologically relevant parameters. In our 

approach, the motion of cells is assumed to follow a 2D random walk with 

persistence. A related method that takes into account the probability of turning 

and contains a parameter related to persistence also has been applied to 

analyze random cell migration [17]. An important distinction of our approach is 

that our model allows for the possibility of multiple states of migration, 

distinguished by differences in speed and persistence. This feature allowed us to 

determine that Mouse Embryonic Fibroblasts (MEFS) exist in two distinct states 

during random migration. Knock down of the Rho-GTPase RhoG, suggests that 

this protein plays an important role in establishing the two states. We next 

demonstrated how our method allows the migration state of cell to be predicted 

from time series data. HeLa cells expressing a Rac1 biosensor revealed that 

these cells also undergo two states of migration, and that these two states 

correlate with the number of active Rac1 foci.  
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Results 

Preliminary Analysis. 

To develop our methods, we collected data sets that consisted of time series for 

the x and y coordinates of the cell centroids of randomly migrating MEF cells 

(Fig. 1A and B). We chose MEFs because these cells show persistent migration 

in the absence of directional cues. As an initial analysis of the data, we computed 

the average persistence of cell movement defined as ! = < cos ! >, where ! is 

the change in the direction of cell movement between measurements (Fig. 1C) 

and the angular bracket denotes averaging over cell tracks. If ! is uniformly 

distributed, then the motion of the cell lacks persistence and P = 0. This behavior 

would be consistent with a pure random walk (diffusive motion). For values of P 

greater than zero, the movement of the cell shows persistence, with a value of 1 

indicating motion in a straight line. Combining the cell tracks for individual cells, 

produced a value of P = 0.43. This value is consistent with cells that show highly 

persistent motion. We also generated a histogram from all the Δx and Δy 

displacements and empirically calculated cumulative density functions for each 

(Sup Fig. 1). For purely diffusive motion, the step sizes follow a Gaussian 

distribution. However, the experimentally measured distribution was found to 

deviate significantly from Gaussian (Sup Fig. 1).  

 

A stochastic model for cell migration. 

Our preliminary cell track analysis led us to model cell movement as a 2D 

random walk with persistence (Fig. 1C). In our model, for each time interval i, the 

distance, !!, traveled by a cell and the angle, !!, through which the cell moves are 

considered random variables. The random variable !!  is taken to have a 

Gaussian distribution characterized by mean !!, and variance !!!. We allowed for 

negative values of !! to account for the scenario in which a cell maintains its 

direction of polarization, but its centroid moves in a rearward direction. The 

directional angle !!, is also taken to have a Gaussian distribution with variance 

!!!, and centered on the value of the previous angle !!!!. Small values of !!! 
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correspond to highly persistent migration. For large values of !!!  the new 

direction becomes uniformly distributed on the interval [-!, !] and the model 

represents a purely diffusive process.  

It is not possible to tell from cell track data if changes in !! of magnitude 

greater than !/2 resulted from large deviations in orientation or negative !!. Thus, 

the probability distribution for these variables cannot be constructed 

unambiguously from the cell track data. To overcome this difficulty, we performed 

a change of variables from (!! , !! ) to (!"!∥,!"!!), where these new variables 

correspond to changes in the centroid’s position during the ith time interval that 

are parallel and perpendicular to the direction of the previous step (Fig. 1C).   An 

important feature of the model is that analytical expressions for the probability 

density functions (pdf) of !"!∥and !"!! can be found (Supplemental Material) 

allowing estimation of model parameters from experimental data to be performed 

in a computationally efficient manner. These co-ordinates explicitly handle the 

degeneracy described above, because in these co-ordinates all possibilities that 

could have led to a given observation are considered.  If cells show persistent 

motion, !"!∥ has a positive mean value. Also, if there are no external cues in the 

experiments to define a preferred direction of motion, !"!!is symmetric about 

zero. Therefore, the distribution for !"!∥ is more informative, and we use it to 

compare the experimental results with the model’s behavior.  It is possible to 

simultaneously fit the !"!∥ and !"!! distributions, but this comes at an increased 

computational cost. As a consistency check, after performing parameter 

estimation, we verify that the model accurately captures the !"!! distribution. If 

the model failed this consistency test, we could repeat the parameter estimation 

using both distributions. However, this was not required for any of the cases 

considered here.  

 We used a Monte Carlo method based on the Metropolis algorithm to 

perform parameter estimation. This was followed by local optimization algorithms 

to identify parameters associated with the global minimum error between the 

model and data (Supplementary Material). To test the accuracy and efficiency of 
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this method, we benchmarked our approach using data generated from 

computational simulations of the stochastic model (Suppl. Fig. 2). Having 

validated our computational methods, we next attempted to fit the model to the 

experimentally measured distribution. However, the model did not generate a 

good fit to the experimental data (Suppl. Fig. 3). In particular, we found that the 

model could not capture a second mode observed in the distribution for !"!∥. 
 

A multistate model for cell migration. 

Further inspection of the cell tracks, and the distribution for !"!∥, suggested that 

individual cells might exist in different modes of migration, distinguished by 

differences in the speed and persistence. Therefore, we expanded our model to 

allow for different states of migration. That is, we hypothesized that at any given 

time a migrating cell is in one of n states denoted by Si, with ! ∈ {1…!}.   Each 

state is characterized by the parameters !!! , !!!  and  !!! .  The additional 

parameters, !!, denoting the fraction of time spent in state !, are required to fully 

specify the model. Since ∑!! = 1, in the two-state case the total number of 

parameters is 7. Note that if a two-state model is fit to data consisting of only a 

single state, then we expect our Monte Carlo method to produce parameter sets 

in which !! takes on values of 0 or 1, or !!! = !!! , !!! = !!! and !!! =  !!!. The 

extended model is essentially a mixture model, which is itself a reduced hidden 

Markov model under the assumption that the probabilities of transitioning 

between states are independent and identically distributed. We again used 

simulated data to validate the accuracy and efficiency of our Monte Carlo method 

when multiple states are considered (Suppl. Fig. 4). 

Using the multi-state model, the Monte Carlo method produced a good fit 

to the !"!∥  distribution (Fig. 2A). To assess the accuracy of our parameter 

estimates we used confidence-interval profiling [18]. To determine acceptable 

values for the sum of the squared errors (SSE) we boot-strapped the original 

datasets to assess plausible differences in our observed distributions should we 

repeat the experiments (Supplementary Material). The results of this analysis 

provides a measure of the confidence that should be placed on each estimated 
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parameter value (Suppl. Fig. 5).  Of particular interest is the parameter α which 

represents the fraction of time in each state. For this parameter, our analysis 

provided further evidence that the data were not consistent with a single state 

model (α = 1 or 0).  The best fits were achieved with α = 0.12. We confirmed that 

the model also captured the distributions for !"!! (Suppl. Fig. 6). The results of 

our analysis suggest that randomly migrating MEFs exist in one of two states. 

About 12% of time these cells are in a state with a well-defined characteristic 

step of ~3 µm (State 1 - blue distribution in Fig. 2A left inset) and an angular 

distribution with !!! =  0.7. In the second state, the step size is highly variable 

(State 2 – red distribution Fig. 2A right inset) and the motion is less persistent 

!!! =  1.3. For completeness, we also show the distribution for the angle θ (Fig. 

2B) .  

 

RhoG’s role in migration. 

It has long been appreciated that the canonical Rho-GTPases RhoA, Rac1, and 

Cdc42 play important roles in cell migration. However, the role of RhoG in 

migration is less well studied. To determine if RhoG plays a role in the random 

migration of MEFs, we generated time series data for cells in which this protein 

was knocked down. The experimentally determined distributions for the Δx|| and θ 

differed significantly from wildtype cells (Figs. 2C and D).  Our computational 

analysis on the resulting cell tracks produced several insights into the role of 

RhoG in cell migration. Confidence-interval profiling of the predicted parameter 

values suggested that the predicted state 2 for WT and the RhoG KD are similar 

(i.e., the range of estimated parameter values for these states overlap) (Supp. 

Fig. 5). However, State 1 in the control case, in which the cells display strong 

directed migration, is replaced in the RhoG knock down case by a state in which 

the cells show little movement. Interestingly the time spent in these states is 

approximately the same in both cases. This leads us to hypothesize that RhoG 

plays a role in establishing persistent migration. A putative pathway for this 

mechanism is RhoG activation of Rac1 (via the DOCK180/ELMO) complex [19], 
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[20]. However, whether this is the key pathway in this process, and how it is 

organized spatio-temporally, is a direction of future research. 

 

Inferring states from time series data. 

We next sought to determine if the two states corresponded to distinct 

phenotypes within the cell culture or if individual cells could transition between 

states. To test the possibility that individual cells change their migration state, we 

devised a method to predict the current state from individual cell tracks. Our 

approach uses a Bayesian prediction method based on the probability for a 

sequence of k successive steps arising from state 1 or state 2 (Methods).  

 Because RhoG is upstream of Rac1, we decided to make use of our 

existing FRET-based biosensor for Rac1 [21] to determine if the two predicted 

states correlate with differences in Rac1 activity. Ideally, we would have done 

this analysis in MEF cells. However, the high motility of MEFs makes it 

challenging to automatically track them for longer time periods within the field of 

view of the high magnification and high n.a. objective required for FRET 

biosensor imaging. Therefore, we decided to use slower moving HeLa cells. We 

ran our cell track analysis on HeLa cells containing the Rac1 biosenor (Fig. 3). 

Our method again predicted the presence of two states (Fig. 3A insets).  

Before running our state prediction methods on the experimental data, we 

first validated the approach using synthetic data. To generate this data, we 

performed computational simulations of the stochastic model using the 

parameter estimated from the experimental data. To generate cells tracks 

consistent with the experimental data, steps were generated in state 1 and 2 in  

proportion to ! =  0.19 and 1− !, respectively. For HeLa cells expressing the 

Rac1 biosensor this approach could correctly identify the states more than 90% 

of the time  (Suppl.  Fig 7.).  

We next applied our method to the experimental data (Fig. 4). Our 

analysis suggested that individual HeLa cells do change their state of migration, 

with cells switching multiple times between states (Fig. 4A).  To assess the 

biological relevance of the two states, we identified (see Supplementary Material 
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for details) and counted the number of foci of Rac1 activity in each image and 

grouped these counts by the predicted state (Fig. 4B). Cells predicted be in state 

1, which corresponds to the fast persistent state, had fewer Rac1 foci than those 

predicted to be in state 2 (Fig. 4B). The observed correlation between the 

predicted migration states and differences in Rac1 activity, provides further 

evidence to support the existence of distinct states of migration and the ability of 

cells to transition between these states.  

 

Discussion 

We developed novel computational methods for analyzing the movement of 

randomly migrating cells. Our approach combines stochastic modeling with 

statistical inference methods to detect and quantify migratory phenotypes. 

Migrating cells have a biochemical, morphological, and structural orientation that 

persists as these cells move. Our model captures this ‘memory’ by conditioning 

the cell’s movement during the current time interval on its previous direction of 

motion. An important feature of our model is that analytic expressions for the 

probability densities for cell displacements parallel and perpendicular to the 

previous direction of motion can be found. This feature allows model parameters 

corresponding to cell velocity and persistence to be efficiently and accurately 

estimated from cell track data. We have validated all our approaches using 

simulated data, and then applied the methodology to study randomly migrating 

MEF and HeLa cells.   

An important feature of our modeling approach is that it is general enough 

to allow for multiple states of migration.  This feature allowed us to demonstrate 

that migrating cells randomly transition between modes of movement. Crucial to 

the detection of these states is the quantification of parameter values and the 

associated confidence in those estimates. This process allowed us to be 

confident in the existence of two states of migration for MEF cells and HeLa cells 

expressing a Rac1 biosensor.  

The identification of multiple states of migration for MEF cells led us to 

assess the role of RhoG in establishing these states. To do this we used siRNA 
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to reduce RhoG expression. This perturbation indicated that RhoG plays a role in 

orchestrating periods of persistent directed migration, a state that is lacking in 

cells where RhoG has been knocked down. To investigate the two states of 

migration in more detail, we developed a Bayesian approach to predict the 

current migration state of a cell from time series of the cell’s position. Using this 

method, we demonstrated that individual HeLa cells expressing a Rac1 

biosensor switched between migratory states. Importantly, we were able to 

correlate these two states with differences in the distribution of Rac1 activity.  

We believe that our methods provide useful tools for quantifying and 

characterizing cell migration. Our stochastic model characterizes cell migration 

using parameters with straightforward biological interpretations. Hence, 

application of this model can lead to biological insights not apparent in the data 

from visual inspection or simple quantitative measures. In this case, our analysis 

suggests a role of RhoG in orchestrating a persistent state of motion. 

 

Methods  

Computational methods 

Coordinate transformation. We modeled cell migration as a stochastic sequence 

of steps characterized by the step size !! and directional angle !! (Fig. 1). Since 

we assume !! and !! to be realizations of independent random variables ! and !  

the probability the cell moves (!,!) is defined by 

 

! !,! !!!! = !! ! .!!(!|!!!!          (0) 

 

where !! !  is the probability density function (pdf) for the step magnitude, which 

we take to have the normal distribution ! !! ,!!!�! , and !! ! !!!!  is the pdf 

generating the new orientation conditioned on the previous angle, which we take 

to have the normal distribution ! !!!!,!!!�! .  The experimental data is 

collected in Cartesian coordinates (X,Y). In principle we could transform the data 

into the coordinates ! and !. However this transformation cannot be completed 

uniquely, because there is no way to distinguish a backward step in which the 
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cell maintains its direction of polarity (!! = !!!!) from one in which the front and 

back of the cell have reversed (!! = !!!! + 2! + 1 !). Furthermore the value of 

!! cannot be determined if !! = 0. For these reasons, we transform the model to 

the coordinates (!"!∥,!"!!), where these new variables correspond to changes in 

the centroid’s position during the ith time interval that are parallel and 

perpendicular to the direction of the previous step.  

 

To compare with the model the data needs to be manipulated to generate 

histograms for steps in the !∥ and !!   directions  For each sequential triplet of 

coordinates  !!!!, !!!!  , !! , !!  , !!!!, !!!! , we rotate the steps as a rigid body 

about !!!!,!!!!  by a four quadrant inverse tangent based on tan!! !!!!!!!!!!!!!!
 . The 

result of this is that all steps are pre-orientated in a positive x-direction and 

initiated at 0,0 , and can be plotted as histograms of step distance in the ! and ! 

direction: !"!∥,!"!! =  !!!!� − !!�,!!!!� − !!�  . 

 

The pdf for !!|| is: 

 

!! !!|| = !!(!!||/!,!)
!

!
!! !ℎ                 (0) 

 

where ℎ = cos (!), and, 

 

!!(!!||/ℎ, ℎ) = !!(!!||/ℎ) !

!!!!
!
!

! (!�(arccos h +2!") + !�(− arccos h +2!"))    (0) 

The expression for !!(!!!) is similar, however now with !�(arccos(h)+!/2+
2!")+ !�(− arccos(h)+!/2+ 2!") in the summation term. A derivation of these 

results is presented in the Supplemental Material.   

 

Parameter estimation.  Parameters were estimated by simulated annealing, 

which is a Monte Carlo method based on the Metropolis algorithm (24, 25). Initial 

choices of parameters generate an analytical solution (Eq. 2), which is scored 
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against the experimental data (!"!∥) by the sum of least squared differences. At 

each step of the algorithm the parameters are updated by a small addition of 

Gaussian noise, if this update scores better than the current score then these 

parameters are accepted. If the score is higher, the parameter set is accepted 

with probability !!
!"
! , where !" is the difference between the current and previous 

scores and T  is the current temperature. Over the course of the fitting T, the 

temperature is reduced. This fixes the parameter choices into a local minimum. 

Here we choose a geometric cooling regime. Due to the stochastic nature of the 

simulation, and that there could be many local minima, it is necessary to run this 

fitting procedure multiple times. The best fit of this routine was then further 

refined using MATLABs fmincon routine, which was also used to assess the 

sensitivity of our fit to altering parameter values via confidence-interval profiling 

(Sup. Fig 4, Supplementary Materials for details). 

 

The histograms were amalgamated from multiple cell tracks. For the case of two 

states, the pdf for !" becomes 

 

!! !! = ! !!! !! + (1− !)!!! !!  

 

where ! is the fraction of time spent in state 1 and the distributions  !!! !!  and 

!!! !!  are parameterized by !!!,!!!,!!!  and !!!,!!!,!!! , respectively.  

Parameter sets were identified by multiple simulated annealing runs, 

followed by local-optimization routines.  

 

Validation of methods. To validate the pdfs and the parameter estimation 

algorithm, we simulated cell tracks using the stochastic model (Fig. 1). Cell 

tracks were generated using two states, each with distinct parameter sets. At 

each step a state was chosen at random with probability 0.5.  As above, the 

simulated cell tracks were used to construct the distributions for !"!∥ and !"!!. We 

assumed model parameters were not known and used the Monte Carlo method 
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to fit Eq. 2., modified to two states (see below) to the simulated data for !"!∥. The 

Monte Carlo method quickly converged on the correct parameter values (Suppl. 

Fig. 4), validating the analytical solution to the model and our fitting procedure. In 

theory we also could fit the pdf for !"!!.  However, the pdf for !"!! is symmetric, 

because there is no preferred direction of migration and therefore less 

informative than the distribution for !"!∥. We found that we could maintain the 

accuracy of our parameter estimation while improving the computational cost by 

only considering the !"!∥distribution. As a consistency check, we always verify 

that the estimated parameters accurately reproduce the pdfs for !"!! (Suppl. Fig.  

6) 

 

State prediction. To identify which state a cell is in at a given time, we used 

Bayes’ theorem to invert the problem. That is, we calculate the probability that a 

cell is in state !!  given the experimental data. Note that in calculating this 

probability, we also get the false positive rate or p-value.  To make a reliable 

prediction of !!  may require an n-step window,where n is odd, such that, 

! = {!!!!/!,… , !!!!, !! , !!!!,… , !!!!/! }. Then: 

 

! !! !) =
! ! !! !(!!)

! ! !! ! !! + ! ! !!! !(!!!)
 

where ! ! !!  is calculated from the model, and we take ! !! = !. Windows of 

length one, three and five were tested. For the case presented here, we found 

that the window of length one produced results similar to the other two window 

lengths.  

 

Foci identification. Ratiometric images of the FRET based Rac1 biosensor were 

analyzed for localized regions of higher Rac1 activity near the periphery of the 

cell. We call these regions ‘foci’. We used custom application of the image 

processing toolbox in MATLAB to identify foci, which we define as contiguous 

regions within the cell that were simultaneously: (1) 60% above the average 

intensity of the cell, (2) greater than 100 pixels in area and (3) contained at least 
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one point within 5 pixels of the cell edge. The length of time (or number of 

frames) that a cell could be followed for varied. So to not overweight any one cell,   

the number of image frames analyzed, !, was selected to maximize !×! where 

! is the number of cells with at least ! images. 

 

Experimental methods 

Cell tracks were generated through 20x phase contrast imaging of cells plated on 

fibronectin-coated coverslips. Cells were imaged using Ham’s F12K medium 

supplemented with 2% FBS for 18-24 hours at 5 minute intervals in a closed, 

heated chamber.  41 cells were tracked for at least 190 frames, obtained at 5 

minute intervals.  

 

IA32MEFs were transfected with either RhoG siRNA 

(CAGGTTTACCTAAGAGGCCAA) or Allstars Negative Control siRNA (Qiagen,  

USA). Control siRNA cells were incubated with 5uM CFDA green for 20min in 

serum-free DMEM. CFDA-labeled control cells were mixed with unlabeled RhoG 

siRNA cells immediately prior to the experiment. Cell tracks were generated 

through 10x DIC imaging of cells plated on 10ug/mL fibronectin-coated 

coverslips, using Ham’s F12K medium supplemented with 5% FBS. Images were 

acquired for at least 70 frames at 10 minute intervals, in a closed, heated 

chamber. This length of track was objectively identified as optimal by maximizing 

the total number of analyzed frames in the entire data set. 
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Figure 1. A Tracking and modeling of random cell migration. Cell tracks are the 

result of recording the geometric center of the cell over a time-course. B Example 

track resulting from tracking the cell centroid at 5 minute time intervals (black 

dots). C A simple model of migration, where over a time step the cell moves a 

distance !!  on average (with variance !!!), on average the cell continues to move 

in the same direction (with variance !!!). We apply this model by using an 

analytical expression for the probability density function of the distance travelled 

in the direction of the prior orientation, !!!∥. 
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Figure 2. Fitting the model to MEF WT cells and MEF RhoG KD cells identified 

two states in each case. A MEF WT B MEF RhoG KD. In A and B: Observed 

data (open bars), model fit (green) and individual pdfs for state one and state two 

(insets). C MEF WT. Observed angular distribution for angle turned at each time 

step, !" D MEF RhoG KD. Observed angular distribution for angle turned at 

each time step, !". 
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Figure 3. Fitting the model to HeLa cells expressing a Rac1 biosensor identified 

two states. A HeLa cells with Rac1 biosensor. Observed data (open bars), model 

fit (green) and individual pdfs for state one and state two (insets). B HeLa cells 

with Rac1 biosensor. Observed angular distribution for angle turned at each time 

step, !". 
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Figure 4. HeLa Cells expressing a Rac1 biosensor switch between states, and 

the states correspond with differential biological activity. A Example cell track 

showing switching between a fast persistent state (state one, blue) and a 

relatively stationary, turning, state (state two, red). States predicted from applying 

Bayes’ theorem with our model (Fig 3). B When in state two cells have a higher 

number of foci than when in state one. The probability for observing this effect by 

chance (if there was no difference between the states) is vanishingly small 

(supplementary figure 8). 
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