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The idea that lateral intraparietal cortex (LIP) integrates in-
formation for and against a decision, is one of the most popular
models in neuroscience. However, a recent statistical analysis has
suggested that LIP does not integrate information but that indi-
vidual neurons’ activities jump. The result was based on a model
comparison, which is often hard to interpret. There are two wor-
ries that can render comparisons problematic. (1) Important as-
pects of variance are contained in neither model. (2) The analysis
is complicated, making it hard to verify. We thus followed up with
a simple approach for model comparison: crossvalidation. We find
evidence that baseline fluctuations describe much of the variance,
which are properly modeled by neither the original paper’s drift-
diffusion model, nor simple ramp or step models. Moreover, we
find that our straightforward analysis strategy prefers ramping
models, both with and without trial-by-trial baseline fluctuations.
Our analysis, implementable in a few lines of code, suggests the
importance of simple analyses.

Most decisions are made under uncertainty and their neural implementa-
tion is typically studied using tasks where noisy stimuli need to be integrated
over time. For example, noisily moving dots may be shown before asking
an animal the question if they predominantly moved left or right in a two
alternative forced choice (2AFC, or more precisely a yes-no task) paradigm.
This allows asking how information is integrated over time.

Results from such experiments are typically modeled using the drift-
diffusion model (DDM) which assumes that neurons linearly integrate weak
information for either direction which produces drift of the state while noise
adds diffusion. The finding of neurons in LIP that have activities that, once
averaged across trials, show ramping activities (Gold and Shadlen, 2007)
has been seen as strong evidence for the DDM model. The DDM model has
been successful at describing both behavioral and neuronal findings.

A recent paper (Latimer et al., 2015) has cast doubt on this model. They
fit a simple model, where the rate jumps up or down at a given point of time
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with two free parameters, the time of transition and the binary direction.
They also fit a very high dimensional DDM model where activity evolves
over time and found that the jump model had a better deviance information
criterion (DIC). However, there are plenty of reasons to be concerned about
the analysis. First, it is too complex for even specialists in the art to repli-
cate. Second, we know that model comparison techniques are notoriously
fickle at comparing models that are vastly different. Third, the model did
not allow a neurons firing rate to explicitly depend on its own past history,
an effect that is known to be large. Lastly, we know from past research
that firing rates change across trials Goris et al. (2014), which is modeled by
neither model. There is an ongoing debate about the role of LIP in decision
making and we think that a simple reanalysis could be illuminating.

Indeed, there are three simple models that one could pose in this space.
Either a constant firing rate that is modulated in baseline across trials, a
ramp, or a step model, or potentially their combination. In Fig. 2 the models
panel shows different variations of the ramp or step model.

There are different strategies to compare models. For example, Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), and De-
viance Information Criterion (DIC) (Burnham and Anderson, 2004), which
are all asymptotic approximations that involve complicating assumptions
regarding the posterior. A conceptually simpler, alternative approach is
cross-validation (CV). CV is a method for estimating a model’s predictive
accuracy by dividing the training data into partitions or folds. Each fold
is then used iteratively as a test set while the remaining folds are used for
training. The model’s average perform is then used to estimate the model’s
predictive accuracy. CV boils down to the idea that a good model should
generalize well. CV allows us a fresh and above all simple perspective on
the question of different models underlying sensory integration in LIP.

Here we use a simple statistical approach for the comparison of three
competing models: steps, ramps, and a constant firing rate model. We train
the model on data from training time-bins, and test how good each of the
models is at predicting spikes in the held-out time-bins. This is a simple
metric that allows a meaningful model comparison. Moreover, we compare
three simple models, each of which has just a single free parameter to make
them more interpretable and easily compared.

Results

To understand neural activities we first look at some raw traces. We observe
that for some neuron/condition pairs, there are trials that elicit many spikes
while others elicit few of them (Fig. 1 left ). We can quantify this dispersion
of spike trains using the Fano factor (Fig. 1). Indeed, Fano factors are often
much higher than expected for a Poisson process (FF=1). It seems unlikely
that typical models for firing rates would predict such a dispersion of firing
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Figure 1: Left: examples of spike trains contributing to high Fano factors
(>6) aligned to stimulus onset (black), saccade times are indicated by green
lines. Red spike trains are out-RF, horizontal black line denotes spike trains
from different conditions. Right: histogram of Fano factors calculated from
real and synthetic data belonging to the same neuron, coherence level, and
receptive field. Blue: real spike trains, in-RF; red: real spike trains, out-RF;
dark-grey: synthetic data, in-RF; light-grey: synthetic data, out-RF.

rates, after all, the analyzed trials are fixed length. This raises the issue if
this effect will introduce biases into a model comparison strategy.

We thus ask how well the three simple models describe the spikes. We
thus analyze the probability each model assigns to the actual spike counts in
bins that have not been used to train the model (which includes trial-specific
and across-trial parameters). We find that generally the fixed activity model
outperforms the other two, and that the ramp model outperforms the step
model on individual trials (Fig. 2 Log Likelihood panel). These findings
are somewhat surprising given the past literature’s emphasis on ramping
models (Hanks et al., 2006; Shadlen and Kiani, 2013; Roitman and Shadlen,
2002; Kiani and Shadlen, 2009; Churchland et al., 2008). It seems like the
trial-by-trial variance is dominated by baseline fluctuations, suggesting that
the previously observed preference for jump models may simply reflect the
fact that jump models can describe more of the firing rate fluctuations.
The strong fluctuation of firing rate across trials dominates the variance
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rendering comparisons problematic.
Clearly, a model in which only the baseline drifts can not adequately

describe the observed post stimulus time histograms (PSTHs). In fact, a
crossvalidation approach will reject a more complicated model if it does not
help at describing individual trials. Interestingly, the predictions from a
model that contains both mean fluctuations and also ramping or stepping
are worse than those considering only constant fluctuations. As such, our
model, that does not regularize, is biased against complex models. Our
finding simply mean that in any given trial, we can not meaningfully detect
the ramping or stepping. However, we can detect baseline fluctuations,
suggesting that they have a dominating effect.

Furthermore, we find that history dependence helps considerably in pre-
dicting spikes in time-bins (average log probability change 4.5993±0.5817
across neurons for the constant model). This should not be surprising given
previous studies in this space (Pillow et al., 2008; Paninski et al., 2007; Truc-
colo et al., 2011). History dependence, somewhat to our surprise, seems to
have relatively little influence on the preference for ramping, stepping and
constant models.

To address the ongoing controversy in the field, we compared, in a con-
servative manner, different types of models for LIP neurons on individual
trials. We found the constant model to work best, but the ramp to some-
what outperform the step model. The strong performance of the constant
model is probably due to known massive fluctuations baseline firing rates
(Fig. 1) probably due to changes in excitability(Goris et al., 2014). The
strength of such an effect makes the comparison between step and ramp
models (Latimer et al., 2015) problematic. The jump model has some of the
properties of the constant model, if it jumps in the beginning it adds a con-
stant to excitability. Alternatively it can jump into the opposite direction.
This apparent modulation of average firing rate is something that the ramp
model simply can not achieve early in the trial. It is nearly impossible to
interpret the fits of models to data if none of them properly does justice to
the data(Kording et al., 2017).

Model comparison is complicated and we have purposefully used one of
the most direct approaches. The standard comparison metrics, e.g. AIC,
BIC, and DIC are complicated, based on a host of assumptions, and hard to
interpret in situations where the real model is not part of the considered set.
By restricting all three models of interest to only one degree of freedom, and
simply evaluating cross-validated prediction, we used a simple but easy to
verify and understand approach. At some level, our paper tells a cautionary
tale - if the comparison is too opaque, then details in the approach may
decide which model wins.

Obviously one could build better models of neural spiking. We were able
to readily consider spike history but that strongly affects log likelihoods but
only weakly the distribution of relative log likelihoods between the models.
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Figure 2: Top: One-parameter variations of the constant, ramp, and step
models respectively. Middle: Typical single trial binned (10ms) spike trains
of three different neurons with the spike train shown at the top. Fits of the
models are superimposed (same colors as in top row). Bottom: Difference
of the mean crossvalidated log-likelihoods constant vs step model (left) and
constant vs ramp model (right). Red represents model with a self-history
covariate, blue represents model without. Error bars are the standard error
of the mean across folds.

One could also model motor planning, transient responses to fixation, stim-
ulus onset and stimulus offset, but it is unclear which specification we should
prefer. Furthermore, the ramp and step models use regressors that are re-
stricted to between 0 and 1, hence we assume they are scaled by the same
estimated weight across trials for any particular neuron due to a common
covariate weighting. This is ameliorated to an extent by separating integra-
tion models related to in-RF and out-RF saccades into separate covariates.
The upshot is that there are countless specifications. Which one should be
used to ask the question of how the brain makes decisions is unclear.

When the finding that an integration model did worse than a jump model
at explaining activity in LIP (Latimer et al., 2015) were published, many
commentators where quick to dismiss the drift diffusion model of decision
making. However, a close reading of the paper made clear that the com-
parison was very complicated. Given the possibility of coding bugs in large
academic software (Axelrod, 2014), complex analyses are always a worry
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and even if correct they are hard to replicate. Here we used a much simpler
strategy and obtained considerably different answers. This may suggest that
we do not do justice to the problem by not fully modeling the drift-diffusion
process. Alternatively, it may instead suggest that the original paper does
not take into account the constant trial-by-trial changes in baseline. In that
sense, we want to simply emphasize that the field needs to use a breadth of
model comparison strategies. If the effects are not sufficiently obvious, we
should expect that any of the many defensible strategies for comparison will
provide materially different answers and we still do not know how we should
feel about the drift diffusion model of LIP activity. But lastly and maybe
most importantly, our paper tells a cautionary tale about exploratory data
analysis. In fact, it seems that trial by trial fluctuations of firing rates can
be seen by the naked eye in Figure 2 of Latimer et al. (2015). Omitting any
such effect can dramatically affect the results of model comparison.

Methods

We ask whether a ramp, step, or constant model is most appropriate to
describe neuronal spike trains across individual trials during evidence inte-
gration in decision-making tasks. To test our hypotheses regarding integra-
tion activity during a decision-making task we built ramp, step, or constant
firing rate models that include spike history to compare the likelihoods of
each model in describing observed spike data.

Data Analysis

The dataset we are using for our analysis is from (Roitman and Shadlen,
2002) and is publicly available at https://www.shadlenlab.columbia.

edu/resources/RoitmanDataCode.html. We have split the data into fixed
duration (FD) and reaction-time (RT) trials. For FD trials integration ac-
tivity is assumed to begin from 200 ms after stimulus onset and terminates
at motion offset. For RT trials integration activity is assumed to begin from
200 ms after stimulus onset and terminates 50 ms before saccade initiation,
following (Bollimunta et al., 2012), where we use target acquisition time as a
proxy for saccade initiation. This duration is used because neuronal activity
at the beginning of a trial contains non-integration related activity and the
duration leading up to saccadic activity contains signals related to motor
planning and preparatory activity (Roitman and Shadlen, 2002).

We analyze only correct trials, wherein the monkey performs fixation
appropriately and chooses the correct target. The trials included both in
receptive field (RF) and out of RF trials. If a trial contained no spike trains
in the duration of interest then it was excluded.

As in (Latimer et al., 2015), we use the same d’ analysis to order cells
with respect to choice selectivity in the 200-700 ms period after dot motion
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onset for FD trials and 200 ms after motion onset to 50 ms before saccade
initiation. The d’ measure for a single cell is

d′ =
µin − µout√
1
2(σ2in + σ2out)

(1)

where µin and µout are mean spike counts on in-RF and out-RF trials re-
spectively. Likewise, σ2in and σ2out represent variances. Unlike in (Latimer
et al., 2015) we analyze all the cells and ordered them using their d′ values
as a proxy for how decision-related the cells were.

The duration between 200 ms after stimulus-on and stimulus-off for each
trial was then partitioned into 10ms bins. This allowed a sufficient granular-
ity to distinguish ramping versus stepping activity on the individual neuron
level while maintaining computational tractability.

Generalized Linear Model

We developed a generalized linear model (GLM) approach to estimate the
likelihood of ramp, step, or constant models for describing spike trains from
neurons on individual trials. Our model describes the probability of a spike
rate in a given timebin conditioned on a set of parameters and variables.
The time-varying spike rate is given by

λ(t) = exp (k ∗ x(t) + h ∗ r(t)) , (2)

where k are kernels for the input variables x of our model and h represents
the post-spike history filter for the spike history r. We used the neuroGLM
package (https://github.com/pillowlab/neuroGLM) to find the maximum
likelihood estimate of the model parameters for each given trial under an
exponential-response GLM model. The model parameters θ = k,h are
regularized by ridge regression. We found that the ridge regression constant
did not meaningfully affect our results across a range of ρ ∈ [0, 100], hence
we chose ρ = 1.0 as our penalty.

We randomly held-out 10% of timebins from each trial during the fitting
procedure and validated on the held-out bins during each cross-validation
fold. We maximize the log-likelihood of the firing rate of held-out bins from
each trial for a given neuron,

L(λ; r) =
∑
t

r(t) log(∆λ(t))−∆λ(t) (3)

where ∆ is 10 ms.

Covariates and Integration Models

The design of our GLM model included the binned spike train, a 200 ms
spike history filter consisting of raised, log cosines delayed by one timebin
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with respect to the target spike train, an integration model for in-RF rials,
the same type of integration model for out-RF trials, and a constant column
as the regressors of interest. The binned spike train and spike history only
included spikes from the duration of interest.

We used three types of integration models as possible regressors in our
design matrix. The ramp model always begins 200 ms after stimulus onset,
and terminated at a chosen timebin, ti. This implicitly sets the slope of the
ramping model, which can be either negative or positive.

For the step model, the chosen timebin, ti, represented the timebin dur-
ing which the neuron stepped to a different firing rate. This could either be
a step up to a higher firing rate or a step down to a lower firing rate.

The constant rate model takes a constant value which can be chosen
from 0− 100. This is representative of plausible LIP neuronal firing rates.

Both ramp and step models varied from 0 to ±1. The constant integra-
tion model ranged from 0−100 for each trial. We created separate covariates
for integration models in the case of in-RF and out-RF trials.

For all three models, it is possible on each trial to not have a change in
the integration model. That is, the ramp or step model is flat during the
trial. Also, note that the model covariates are then exponentiated by the
generalized linear model that we used here; in fact this alternative model
has been posited previously in the literature (Churchland et al., 2011).

Coordinate Ascent

For a given type of integration model, our goal was to determine the partic-
ular variation of the integration model that maximized the log-likelihood of
the GLM’s predictions on held-out bins. For all three sensorial integration
models we assume evidence integration begins 200 ms after stimulus onset
and ends at stimulus offset for FD trials and 50 ms before saccade initiation
for RT trials. Hence we restrict our analysis to this duration.

We used coordinate ascent to find the best fit of integration models and
weights for the GLM. This is achieved by alternating between fitting the
GLM’s covariate weights and finding the best set of timebin ti’s for trials
associated with each neuron. To find the best ti’s we initialize by setting
them randomly, do the first iteration fit of the covariate weights, then fix
these weights and scan across all tis for all trials and find the maximum
likelihood estimate for each trial. Specifically, in the case of ramps we’ve
assumed that integration begins from the first timebin and ti represents the
timebin that the integration ramp hits a decision boundary and terminates.
For steps, ti represents the timebin during which there is a transition to a
different firing rate. Finally, for the constant rate model, we do not iterate
through the timebins, instead we search across a range of values (0 − 100)
and find the best fitting value for each trial.
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Model Comparison

Model comparison is done by finding the mean and variance of log-likelihoods
across all k folds (k = 10) of cross-validation for each integration model type.
We then plot the difference of means with standard error mean (sem) be-
tween different integration model types as shown in Fig. 2. This comparison
is fair as we have only exactly one free parameter for each model type.

Note that Latimer et al. (2015) used latent variables and hence required
integration over the latent variable to compute the probability of spike train
data, which we have not in this current study.

Additionally, here we have used cross-validation for model selection though
it is possible that are situations where it may not be superior to Bayesian
approaches to model selection (Shao, 1993).

Fano Factors

We also study the Fano Factor of spike trains that are from the same neuron,
coherence level, and receptive field (in/out). We define the Fano factor as

F =
σ2

µ
. (4)

Conditions that contain less than 5 trials were excluded. We then compared
this against synthetic Fano factors that we would expect if we assumed the
same number of spike trains with the same mean spike rate for each condition
were drawn from a Poisson process.
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