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ABSTRACT 25 

In an age where the volume of data regarding biological systems exceeds our 26 

ability to analyse it, many researchers are looking towards systems biology 27 

and computational modelling to help unravel the complexities of gene and 28 

protein regulatory networks. In particular, the use of discrete modelling allows 29 

generation of signalling networks in the absence of full quantitative 30 

descriptions of systems, which are necessary for ordinary differential equation 31 

(ODE) models. In order to make such techniques more accessible to 32 

mainstream researchers, tools such as the BioModelAnalyzer (BMA) have 33 

been developed to provide a user-friendly graphical interface for discrete 34 

modelling of biological systems. Here we use the BMA to build a library of 35 

discrete target functions of known canonical molecular interactions, translated 36 

from ordinary differential equations (ODEs). We then show that these BMA 37 

target functions can be used to reconstruct complex networks, which can 38 

correctly predict many known genetic perturbations. This new library supports 39 

the accessibility ethos behind the creation of BMA, providing a toolbox for the 40 

construction of complex cell signalling models without the need for extensive 41 

experience in computer programming or mathematical modelling, and allows 42 

for construction and simulation of complex biological systems with only small 43 

amounts of quantitative data. (199 words) 44 
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AUTHOR SUMMARY 50 

Ordinary differential equation (ODE) based models are a popular approach for 51 

modelling biological networks. A limitation of ODE models is that they require 52 

complete networks and detailed kinetic parameterisation. An alternative is the 53 

use of discrete, executable models, in which nodes are assigned discrete 54 

value ranges, and the relationship between them defined with simple 55 

mathematical operations. One tool for constructing such models is the 56 

BioModelAnalyzer (BMA), an open source and publicly available 57 

(www.biomodelanalyzer.org) software, aimed to be fully usable by 58 

researchers without extensive computational or mathematical experience. A 59 

fundamental question for executable models is whether the high level of 60 

abstraction substantially reduces expressivity relative to continuous 61 

approaches. Here, we present a canonical library of biological signalling 62 

motifs, initially defined by Tyson et al (2003), translated for the first time into 63 

the BMA. We show that; 1) these motifs are easily and fully translatable from 64 

continuous to discrete models, 2) Combining these motifs in a computationally 65 

naïve way generates a fully functional and predictive model of the yeast cell 66 

cycle.  67 

(169 words) 68 
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INTRODUCTION 79 

We are in an era of ever-increasing biological data. With data available from 80 

genomic studies, through to metabolomic studies, the size, scale and 81 

heterogeneity of the resources available present many triumphs in terms of 82 

advancing high-throughput technologies but also many challenges. Despite 83 

the enormous multitude of available data, our understanding of how such 84 

information encoded in a cell’s genome is used to carry out the complex 85 

biological interactions found between genes and gene products is still lacking. 86 

It is therefore no surprise that a central goal of modern biology in this post-87 

genomic era is to understand the structural and temporal nature of these 88 

control networks. Not only would this allow us to translate ‘Big Data’ into 89 

working models of biological systems, but also equip us with a better 90 

understanding of biological mechanisms, allowing the exploration of emergent 91 

behaviours and consequences of genomic variants, with an aim to develop 92 

real-world hypotheses for experimental validation.  93 

 94 

If we are to meet these challenges, new tools, techniques and ways of 95 

working need to be adopted. Whilst experimental procedures using a 96 

traditional reductionist approach, focusing on the study of individual proteins 97 

or genes in isolation from other network interactions have proved useful in 98 

uncovering specific elemental functions of various cellular mechanisms, many 99 
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disease processes continue to elude us.  This has fuelled the growth of new 100 

lines of scientific inquiry. The wide-ranging, vast improvements in computing 101 

power brought about at the beginning of the twenty-first century has led 102 

biologists down the path of Systems Biology as a means to organise this 103 

biological data more holistically.  This strategy therefore seeks to combine 104 

traditional biological thinking with more interdisciplinary, integrated, synthetic 105 

approaches allowing for larger-scale simulations of complex systems, which 106 

could revolutionise biomedical discovery.   107 

 108 

Computational modelling therefore presents a powerful and novel approach to 109 

combat these challenges. The application of standard mathematical 110 

modelling, such as through stochastic or ordinary differential equations 111 

(ODEs), have been faithfully reproducing the interplay between genes and 112 

proteins in small regulatory networks with relative success. Prominent 113 

examples of ODE models include that of bacterial chemotaxis [1], the lactose 114 

operon control system in Escherichia coli [2] and the process of X 115 

chromosome inactivation [3], the cell cycle in yeast [4], and the generation of 116 

amyloid fibrils [5].Such models employ complex kinetic equations to describe 117 

relationships between proteins or genes over time, and require highly 118 

accurate and intensive experimental data for their development as input. The 119 

complexity of such equations and experimental data required can provide a lot 120 

of dynamical detail however this complexity also begs the question of whether 121 

this approach will scale well when constructing much larger, more intricate 122 

networks in the future.  123 

 124 
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Executable modelling on the other hand, which describes biological systems 125 

as discrete systems, can provide a much simpler class of models [6]. Such 126 

models are immediately executable, allowing for much larger-scale 127 

simulations to be produced as well as providing the ability to undergo model 128 

checking and other formal verifications with ease [7–10]. One of the oldest 129 

and simplest forms of executable network models is based on Boolean states 130 

(logical models), where each node of the network represents a single gene or 131 

protein which is in one of two states: active/on (1) or inactive/off (0) [11,12]. 132 

Abstract models based on this paradigm have proved capable of forecasting 133 

dynamic processes. Clear examples include that of the control of segment 134 

polarity genes in Drosophila [13] or modelling of the neurotransmitter-135 

signalling pathway between dopamine and glutamate receptors [14]. Yet the 136 

activities of cellular networks and signalling pathways are often subtler than 137 

this, which has resulted in various extensions being made to this model. One 138 

such refinement is Qualitative Networks (QNs), which uses discrete variables 139 

as opposed to Boolean states, and is able to model a much broader range of 140 

interactions by using algebraic target functions [7]. These target functions are 141 

composed of simple mathematical operations (e.g. addition, subtraction, 142 

division, multiplication) to allow for the generation of models with complex 143 

relationships between variables.  144 

 145 

The BioModelAnalyzer (BMA) tool is a freely accessible online platform that 146 

creates QNs from user’s instructions. These instructions are formed using a 147 

graphical interface, where different genes or proteins are represented by 148 

simple symbols that can be connected by inhibitory or activatory edges 149 
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negating the need for extensive experience in computer programming, logical 150 

formalisms or mathematical proofs [15]. As a result, the BMA is a highly 151 

accessible, unimposing interface that is suitable for experimental biologists, 152 

whilst still providing powerful stability checking, simulation and Linear 153 

Temporal Logic analysis abilities. Although on the surface BMA may appear to 154 

be highly abstract, elaborate biological functions can be robustly modelled 155 

such as that of C. elegans germline development [16], mammalian epidermis 156 

differentiation [7], gene and protein regulatory networks in chronic myeloid 157 

leukaemia (CML) [17] and acute myeloid leukaemia (AML) [18].  In the case of 158 

CML, a novel therapeutic strategy using an Imatinib and pan-Bcl2 family gene 159 

inhibitor combination has been identified, highlighting BMAs ability to work on 160 

either a hypothesis-creation or hypothesis-testing basis. Cell line specific 161 

differences in the PIM pathway were identified in the case of AML, leading to 162 

clinically relevant predictions about resistance and how to overcome it. 163 

 164 

Although BMA provides the ability to encode complex dependencies between 165 

different genes or proteins via the use of algebraic target functions, this task 166 

can still seem quite onerous to many biologists. In 2003, Tyson, Chen and 167 

Novak [19] published a review outlining a concise mathematical vocabulary of 168 

common cellular interactions and pathways using ODEs. In their article, they 169 

identify a number of simple functional motifs, akin to electrical circuits which 170 

are found at the base of a variety of key biological processes and can be 171 

easily combined in order to model complex regulatory interactions. Here we 172 

outline a target function library which translates the ODEs outlined by Tyson 173 

et al. [19] into discrete equations encoded within nodes of a BMA model. In 174 
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order to investigate whether these target functions are capable of modelling 175 

cellular behaviours of greater complexity, we then created a BMA model of 176 

eukaryotic cell cycle regulation similar to Tyson et al [19]. In silico over-177 

expression and knockouts of combinations of genes and genetic interactions 178 

were then carried out to highlight the sensitivity of our model. A key benefit of 179 

using discrete, executable modelling is that complex systems can be 180 

simulated and analysed, and experimentally testable hypotheses can be 181 

generated in the absence of large amounts of quantitative data required for 182 

ODE models. 183 

 184 

This library of ODE translations to discrete target functions also complements 185 

the accessibility ethos behind the creation of the BMA. By providing simple 186 

building blocks that can be “plugged” into a set of specific nodes, much time 187 

and effort will be saved allowing biologists to construct elaborated valid 188 

models of biological phenomena, which can guide and direct hypotheses and 189 

ultimately drug treatments.  190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 
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RESULTS 200 

A Target Function Library Accurately Reproduces Expected Biological 201 

Behaviour in Simple Networks 202 

 203 

We constructed QN models representing the ten major archetypal regulatory 204 

and signalling pathways. Networks were generated within the BMA, and 205 

signal/response curves compared to previous publications [19–23] for 206 

accuracy. Networks are represented by a series of nodes interconnected via 207 

activatory (i.e. generally increasing target node value), and inhibitory 208 

(generally decreasing target node value) relationships. Nodes in the system 209 

can contain values with a granularity of 5 (a range of 0-4), but are generally 210 

easily extrapolated to different system ranges. Full details are included in 211 

Supplementary Table 1, and all models are available in supplementary data. 212 

 213 

1. Linear Response 214 

A system where the signal-response is linear (i.e. an increasing signal gives a 215 

proportionally increasing response) can be accurately modelled  using the 216 

default target function. A node with no specified target function will have its 217 

value calculated by: 218 

 219 

�����������	���	
� 	
���� � ��������	
�	�	�	
� 	
���� 

 220 

A schematic linear signal-response network, from Tyson et al. [19] and built 221 

within the BMA is shown in Fig 1, A, i &ii, with signal-response curves from 222 

both systems shown in Fig 1, A, iii & iv.  223 
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 224 

Fig 1. Comparison of Signal-Response Elements. In this illustration, the 225 

rows correspond to (A) linear response (B) hyperbolic response, (C) sigmoidal 226 

response, (D) perfect adaption, (E) mutual inhibition, (F) mutual inhibition and 227 

(G) homeostasis as in Tyson et al. [19] The columns correspond to (i) Tyson 228 

et al. [19] wiring diagrams, (ii) BMA wiring diagram translation, (iii) Tyson et 229 

al. [19] signal-response curves and (iv) BMA equivalent signal-response 230 

curves. Each BMA wiring diagram contains a unique set of target functions 231 

located within particular nodes of the network which can be found in 232 

Supplementary table 1. For most cases clear comparison between Tyson et 233 

al. [19] wiring diagrams (i) and the corresponding BMA wiring diagrams (ii) 234 

can be made. Here like in Tyson et al. [19] S indicates the input Signal and R 235 

indicates the output Response with, in our case, letters A-C representing 236 

intermediate nodes. The graphs in (iv) are derived from simulation analysis 237 

carried out in the BMA.  For all cases bar (d- iv) and (g-iv) the signal is altered 238 

from 0 through to 4 directly within the S node and the output in node R 239 

recorded and subsequently plotted. For cases (d- iv) and (g-iv) a simulation is 240 

run with a set signal input of 4 as an example, and the response output from 241 

the BMA simulation plotted based on the response per calculation time step. 242 

Graphs plotted from the BMA model (iv) can then be compared to ODE 243 

counterpart (iii). In (e-iv) and (f-iv) the dashed line represents an unsteady 244 

state. In (e-iv) Scrit, which is denoted x in our target function (Supplementary 245 

table 1) represents the signal input where a switch in steady states will occur. 246 

The motifs in each case reproduce the bifurcation as expected. Similarly, in (f-247 
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iv) Scrit1 which is denoted y in our target function and Scrit2 which is denoted z 248 

in our target function also correspond to the switch points in stable states.  249 

 250 

 2. Hyperbolic Response 251 

We generated four ways to discretely model different hyperbolic functions 252 

within the BMA. This function describes a “phosphorylation and 253 

dephosphorylation” reaction and is modelled using a three-node wiring 254 

diagram shown in Fig 1, B, ii. A simple function included in node A results in 255 

a hyperbolic response as a result of a linearly increasing input. Node A 256 

contains the target function: 257 

 258 

��	� ��32� ������	�
����� 

 259 

Where �����	�
��� represents the signal received by the network. This linear 260 

approximation captures the rapid initial growth of the response, whilst the 261 

plateau is enforced by the granularity of the variable. Additional modifiers (for 262 

details see Supplementary Table 1) can be included to change the shape 263 

and thresholds of the response. Hyperbolic signal-response curves from 264 

Tyson et al. [19] and from within the BMA are shown in Fig 1, B, iii & iv.  265 

 266 

3. Sigmoidal Response 267 

Sigmoidal response curves represent systems that act in a switch like 268 

manner, which are reversible and increase continuously with an increasing 269 

input. Schematics for sigmoidal signal-response networks are shown in Fig 1, 270 

C, I & ii. The target function for Node A contains the function describing the 271 
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sigmoidal response. Multiple functions produce differing sigmoidal curves (for 272 

details see Supplementary Table 1). The simplest, producing a sigmoidal 273 

response from a linear signal is: 274 

 275 

������ ������	�
���
� � ! 

 276 

Where � is the value at which the system switches between high and low 277 

values, and ! is the upper value for the sigmoidal response. Signal-response 278 

curves are shown in Fig 1, C, iii & iv. 279 

 280 

4. Perfect Adaptation Response 281 

Adaptation is defined as “a process where a system initially responds to a 282 

stimulus, but then returns to basal or near-basal levels of activity after some 283 

period of time” [24]. Perfect adaptation is further characterised by the final 284 

response of the network returning to the exact pre-stimulus level. Perfect 285 

adaptation is used in numerous biological systems, for example, the 286 

Friedlander and Brenner [25] model of ion channel activation and inactivation. 287 

Network schematics for perfect adaptation systems can be seen in Fig 1, D, i 288 

& ii. Perfect adaptation is modelled with the addition of the following target 289 

function to Node C (Signal-response curves can be seen in Fig 1, D, iii & iv): 290 

 291 

"������#��$ � "������%��$ 

 292 
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Where � represents the maximal height of the response before the system 293 

adapts. 294 

 295 

5. Mutual Activation Response 296 

Mutual activation behaviour represents irreversible cell switches, i.e. a “point-297 

of-no-return”. These discontinuous, one-way switches are typical of cell fate 298 

determination. Once a critical signal value (Scrit) is reached, the response 299 

immediately increases to a high level. A critical feature of mutual activation 300 

networks is that the switch is irreversible i.e. if the signal increases beyond 301 

Scrit and subsequently decreases, the response will not decrease. Network 302 

schematics for mutual activation systems are shown in Fig 1, E, i & ii. 303 

Inclusion of the following target function in Node A results in the signal-304 

response curves shown in Fig 1, E, iii & iv: 305 

 306 

����� ������	�
���
� � & ����'� 

Where � is Scrit – the value at which the irreversible switch occurs. 307 

 308 

6. Mutual Inhibition Signal Response Curve 309 

Mutual inhibition differs from mutual activation in that these systems exhibit 310 

hysteresis; if the input decreases below a defined critical value, then the 311 

output will return to zero. Tyson et al. [19] describe this type of feedback as a 312 

“toggle switch” , where there are two defined critical values; Scrit1 and Scrit2, at 313 

which point the response will shift from either upper or lower values to the 314 

opposite. This is simplified below: 315 

( ) (����� * + , +��� 
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( - (����	 * + , +��
 

(����� . (����	 
 316 

Essentially, this works similarly to mutual activation, except if S is decreased 317 

below Scrit2 then the switch will return to the inactive state. Our model is 318 

composed of 6 nodes and is compared to the “traditional” toggle switch 319 

schematic in Fig 1, F, ii. B is split into two separate nodes representing active 320 

and inactive states (Bactive, and Binactive respectively), and it is the interactions 321 

between these 2 states of B that give rise to hysteresis. The target function for 322 

the node representing inactive B (Node Binactive) in a system with a granularity 323 

of 0-4 is: 324 

 325 

� "�����#� & �4 � !�� � ����%������
�$ 

 326 

Where � represents the maximal response of the network, and ! is Scrit1. The 327 

target function for the node representing active B (Node Bactive) is: 328 

 329 

�� � ����%�
������
�� & �1 � 1� 

 330 

Where x represents the maximal response for the network, and 1 is Scrit2. 331 

Additionally, Node C contains the following target function: 332 

 333 

������#� � ����%������� 

 334 
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Where � represents the maximal response for the network. Signal-response 335 

curves for this network are shown in Fig 1, E, iii & iv. 336 

 337 

7. Homeostasis 338 

Homeostatic regulation involves a network where the network counteracts the 339 

activity of the stimulus such that the response is constrained to a very narrow 340 

window (in the case of our network, a single value). A schematic homeostasis 341 

network is shown in Fig 1, F, I & ii. In this network, the granularity of Node B 342 

is adjusted such that it is double the range of the other nodes within the 343 

system. This is required for stability of the system, as nodes can only alter by 344 

a single integer value each time step, a node of granularity 10 (0-9) will take 345 

twice as long to reach a maximal value from 0 as a node with a granularity of 346 

5 (0-4). This temporal difference allows us to eliminate instability in the system 347 

caused by oscillatory feedback between Nodes A and B, which is present 348 

when both nodes have the same granularity. Within this network two unique 349 

target functions are required to exhibit homeostasis, for Node A: 350 

 351 

�����	�
��� � ����� �23 ����%�� & 1 

 352 

And for the node representing the system response (Node Response): 353 

 354 

��	� �����#�
3 � 

 355 

Signal-response curves can be seen in Fig 1, F, iii & iv. 356 
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  357 

8. Negative Feedback Oscillations  358 

Negative feedback oscillations result from similar network wiring as 359 

homeostasis, with the result being a system where the response oscillates 360 

between 0 and the signal value. 361 

 362 

A negative feedback oscillation loop is seen in Fig 2, A. No change in the 363 

default target functions are required to generate an oscillatory output. For 364 

these networks, an input of S will result in an oscillation that tends to between 365 

S and 0. The temporal constraints of the network however (in that each node 366 

can only update by a single integer value each step) results in cases where 367 

the oscillation will not reach the maximal value before the inhibitory portion of 368 

the network kicks in. The ultimate range of the oscillations can be tailored 369 

however, with either the addition of values to the output node (in order to 370 

adjust the oscillation range up or down), or by inserting the following formula 371 

into node A: 372 

 373 

������	�
��� & �� � �����'�� & !� 

 374 

Where the difference between � and ! changes the range of the oscillations. 375 

Additionally, the temporal properties of the system, specifically how long it 376 

takes to perform each loop, can be adjusted by the addition of more nodes to 377 

the loop, with a large number of nodes increasing the number of steps 378 

required to complete one oscillation. For an example see Supplementary 379 

Figure 1. 380 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2018. ; https://doi.org/10.1101/249888doi: bioRxiv preprint 

https://doi.org/10.1101/249888
http://creativecommons.org/licenses/by-nd/4.0/


17 

 

Fig 2. Comparison of Oscillatory Networks. In this illustration, the rows 381 

correspond to (A) negative feedback, (B) activator-inhibitor and (C) substrate-382 

depletion oscillators as in Tyson et al. [19] The columns correspond to (i) 383 

Tyson et al. [19]wiring diagrams, (ii) BMA wiring diagram translation, (iii) 384 

Tyson et al. [19] signal-response curves and (iv) BMA equivalent signal-385 

response curves. Each BMA wiring diagram contains a unique set of target 386 

functions located within particular nodes of the network which can be found in 387 

Supplementary table 1. For most cases clear comparison between Tyson et 388 

al. [19] wiring diagrams (i) and the corresponding BMA wiring diagrams (ii) 389 

can be made. Here like in Tyson et al. [19] S indicates the input Signal and R 390 

indicates the output Response with, in our case, letters A-E representing 391 

intermediate nodes. The graphs in (iv) are derived from simulation analysis 392 

carried out in the BMA.  For all cases bar a simulation is run with a set signal 393 

input of 2 as an example, and the response output from the BMA simulation 394 

plotted based on the response per calculation time step and are thus not 395 

directly comparable, however clear oscillatory behaviour can still be observed.  396 

 397 

9. Activator-Inhibitor Oscillations 398 

 399 

The activator-inhibitor oscillation relationship is characterised by a positive 400 

and negative feedback loop within a system (shown in Fig 2, B, i and ii). The 401 

interactions of the two loops result in a system that oscillates between a 402 

maximal and minimal value, called a hysteresis oscillator. Including the 403 

following formula in node A results in an oscillation between the maximal and 404 

minimal values of the nodes when I = 2: 405 
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 406 

"�������	�
��� � �����2� & !��$ & ����#� 
 407 

Where �  is 3 value of the nodes, and !  is 0. Adjusting these values will 408 

change the range of the oscillations (i.e a range of 3 or 2 is obtained by 409 

reducing the value of �), and altering the value of ! adjusts the start and end 410 

points of the oscillation. The signal-response curves for activator-inhibitor 411 

networks are shown in Fig 2, B, iii and iv). 412 

 413 

10. Substrate-Depletion Oscillations 414 

 415 

The substrate depletion oscillation (SDOs) is quite similar to that of negative 416 

feedback. However, the number of nodes are reduced to reflect the greater 417 

intimacy between enzyme-substrate reactions compared to negative feedback 418 

loops. The network schematics for substrate-depletion oscillations are shown 419 

in Fig 2, C, i. In substrate-depletion oscillations, a small signal produces a 420 

small response and a large signal produces a large response. To model this, 421 

the following target function is applied to Node A: 422 

 423 

1 & ������ ������	�
���
� � 3 �"!2$ 3 �����	�
���� � �12 3 ����%�� 

 424 

 425 

Where � is the starting point of the oscillations and ! and 1 are the range of 426 

the oscillations. Signal-response curves are presented in Fig 2, C, ii. 427 
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 428 

Using the BMA Target Function Library to Construct Complex Networks: 429 

Eukaryotic Cell Cycle Control 430 

 431 

After translating these motifs that were originally defined with ODEs to BMA 432 

models and their target functions, we then sought to determine the robustness 433 

of these motifs and their target functions by modelling a complex cellular 434 

behaviour: Eukaryotic cell cycle regulation.  Based on the wiring diagram 435 

presented by Tyson et al. [19], a QN model was constructed using our own 436 

BMA target function library (Fig 3, A). Clear descriptions of the dynamics of 437 

cell cycle regulation can be found in the following review articles: Tyson, 438 

Csikasz-Nagy & Novak (2002) [22], Tyson & Novak (2015)[20]  and 439 

Hochegger, Takeda & Hunt (2008) [26].  440 

 441 

Fig 3. Qualitative Network of Eukaryotic Cell Cycle Regulation. (A) BMA 442 

Wiring diagram. The network is constructed around a central pool of the major 443 

cell cycle regulator cyclin dependent kinase (Cdk1) and its cyclin partner 444 

(cycB). This cell cycle transitions are triggered by changes in the Cdk1-cycB 445 

activity, which is regulated by a number of different components. CKI a cyclin 446 

kinase inhibitor and Wee1 kinase subunit inactive the Cdk1-cycB complex 447 

whereas the Cdc25 phosphatase activates the complex. Cdk1-cycB activity 448 

can also be destroyed via the Anaphase-promoting complex (APC) in 449 

combination with Cdc20, which target cyclin for degradation. The activities of 450 

the Cdk1-cycB activity can then be monitored by 3 extracellular markers; G1S, 451 

G2M and MG1. (B) BMA simulation of Cdk1-cycB activity. The solid black line 452 
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indicates the progression of Cdk1-cycB levels through the cycle. Dotted lines 453 

and block colours represent distinct phases as determined by the key. The 454 

cycle repeats itself if growth conditions remain favourable, as is represented in 455 

this simulation.  456 

 457 

Pool Module 458 

This module contains the “master molecules” of the cell cycle, that being 459 

cyclin-dependent kinases (Cdks) and their cyclin partner, which as the name 460 

suggests are required in order to activate the Cdks. Our model is limited to 461 

only a single Cdk-cyclin partnership, Cdk1-cycB for simplicity. This module is 462 

fuelled by the growth of cyclin levels which we assume can have unlimited 463 

binding capacity to Cdk1. Unlike cycB, intracellular Cdk1 concentration does 464 

not fluctuate throughout the cell cycle [27], we therefore model Cdk1 as being 465 

at a constant level which can accommodate the variations in cycB levels [20].  466 

 467 

 468 

G1/S Module 469 

The G1/S module features mutual inhibition between Cdk1-cycB and CKI.  470 

This feedback loop is described as a “toggle switch” and is modelled using our 471 

BMA mutual inhibition target function. Here we model CKI as being present at 472 

high levels in G1 by assigning it an initial value of 10 (max based on our 473 

granularity choice). The input in this case is labelled as cyclin, which, as it 474 

increases causes an increase in bound_Cdk1 (i.e. heterodimer of CKI, Cdk1 & 475 

cycB) due to the initial high levels of CKI. As the CKI doesn’t stop cyclin 476 

accumulation and binding to Cdk molecules, the rising Cdk1-cycB levels 477 
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which are not opposed by CKIs soon tips the balance, phosphorylating the 478 

CKI and labelling them for degradation. The values chosen for the switch 479 

points can be found in Supplementary table 2.  480 

 481 

G2/M Module 482 

Following the degradation of CKI and subsequent spike in Cdk1-cycB activity 483 

the cycle enters the G2/M module. This module features both mutual 484 

activation, between Cdk1-cycB and Cdc25, and mutual inhibition between 485 

Cdk1-cycB and Wee1 [19]. The later works in a similar way to that of Ck1-486 

cycB and CKI, with a race occurring being between Cdk1-cycB and Wee1. 487 

The Cdk-cycB and Cdc25 mutual activation interaction on the other hand is a 488 

type of positive feedback loop, where Cdc25 and Cdk1-cycB activate each 489 

other rather than inhibit each other. This is modelled using our BMA mutual 490 

inhibition target function combined with the mutual activation target function. 491 

Here we model Wee1 as being present at high levels in G2/M by assigning it 492 

an initial value of 10. The input in this case comes from the G1_Cdk1 levels, 493 

which as it increases causes an increase in phos_Cdk1 (i.e. phosphorylated 494 

form of Cdk1-cycB) due to the initial high levels of Wee1. As Wee1 does not 495 

stop cyclin accumulation and binding to Cdk molecules, the rising Cdk1-cycB 496 

levels (which are not opposed by Wee1) soon tips the balance, 497 

phosphorylating the Wee1 and marking them as inactive. Inactive Wee1 498 

maintains active Cdc25, thus decreasing Wee1 results in an increase in 499 

Cdc25 and thus the switch like activation of Cdk1-cycB. Again, the values 500 

chosen for the switch points can be found in Supplementary table 2.  501 

 502 
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M/G1 Module 503 

Once the Cdk1-cycB reaches a high level due to Cdc25 activation the cell 504 

enters mitosis. In order to exit this phase, the Cdk1-cycB activity must be 505 

destroyed and CKI levels stockpiled. This transition is aided by the 506 

Cdc20:APC complex, which itself is indirectly activated by Cdk1-cycB activity, 507 

causing degradation of CycB.  This results in a substantial drop in Cdk1-cycB 508 

activity, which then allows CKI to rise again. This relationship is described as 509 

an oscillator based on a negative feedback loop, where Cdk1-cycB activates 510 

APC, which activates Cdc20, which then degrades CycB [19].  In the BMA, 511 

the negative feedback oscillators target function uses the default function. 512 

Therefore this was modelled simply by considering the whole cycle as a 513 

feedback loop by adding an inhibitory edge back to the cyclin B in order to 514 

create the desired response (Supplementary table 2 & 3).  515 

 516 

Comparison to ODE Eukaryotic Cell Cycle Model Predictions  517 

 518 

The initial conditions were set so that all nodes remained with an initial value 519 

of 0, except for CKI and Wee1 which are given an initial value of 10 (max 520 

based on our granularity choice). As Growth, Replicated_DNA, 521 

Undamaged_DNA and Aligned_Chromosomes are conditions that can be 522 

represented by a binary value, a value of 0 represents the absence of the cell 523 

phenotype, whereas a value of 1 corresponds to the presence of the 524 

phenotype. The initial values for all four of these phenotypes were therefore 525 

set to 1 to represent normal growth conditions. Simulation analysis, starting 526 

from this initial state leads to the initiation of a series of network states 527 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2018. ; https://doi.org/10.1101/249888doi: bioRxiv preprint 

https://doi.org/10.1101/249888
http://creativecommons.org/licenses/by-nd/4.0/


23 

 

(ranging between 0 and 10 based on our granularity). These steps correspond 528 

to the biological time series of protein activation and inactivation that occur 529 

during the wild-type cell cycle (Fig 3, B).    530 

 531 

Similar to the Tyson et al. [19] signal-response curve, Fig 3, B shows the cell 532 

progresses through the cycle via a number of steady states. Firstly, at low 533 

levels of Cdk1-cycB activity the cell will remain in G1. With increased growth it 534 

will eventually pass a critical point, resulting in the irreversible disappearance 535 

of G1.  As the cell moves into the S phase the level of Cdk1-cycB continues to 536 

grow until it reaches an intermediate level (3 as determined by our target 537 

function).  Here in the G2 phase the cell will continue to grow until it reaches 538 

the next critical threshold, where the G2 state will disappear. This gives rise to 539 

a large spike in Cdk1-cycB activity (driving the cell into mitosis) which then 540 

decreases as cycB is degraded by APC:Cdc20, signalling cell division and 541 

resetting the system for the next round of division. One added benefit of this 542 

model is its ability to continuously cycle, as highlighted in Fig 3, B. 543 

 544 

Simulation of Mutant Phenotypes Replicate Experimental Results Found 545 

in the Literature 546 

 547 

In order to evaluate the accuracy of our model loss of function (KO) and over-548 

expression (OP) mutations were carried out based on a sample of previous 549 

experiments found in the literature (Table 1). In our limited subset of mutant 550 

experiments 8 out of 9 cases were able to accurately replicate the 551 

experimental results found in the literature without making any modifications 552 
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to the underlying model described above beyond modelling the mutations (Fig 553 

4). For instance in the case of Cdc25 OP, studies in both yeast and mice have 554 

shown that over-production of Cdc25 result in premature entry into mitosis 555 

due to early activation of Cdk1-cycB [28,29]. In the in silico experiment, the 556 

same result can be discerned. Rather than needing 8 steps to pass through 557 

G2 the Cdc25 OP, the model only takes one step. Similarly less time is spent 558 

in M phase with only 1 step occurring versus 2 steps for wild types (WT). This 559 

results in the mutant model undergoing each cycle in fewer calculation steps, 560 

needing only 33 steps compared to the 41 needed in the WT model. 561 

Descriptions of the other seven successfully reproduced experiments can be 562 

found in Table 1. For the case concerning the CKI OP mutant, experimental 563 

results were not as clearly reproduced. Experimental evidence by Moreno & 564 

Nurse [30] showed that overexpression of Rum1, a fission yeast CKI, leads to 565 

delays in G1, with repeated S-phase and no M-phase. This is partially 566 

replicated in our mutant model, with there being a long delay in G1 phase (23 567 

calculation steps compared to 14 in the WT model), as well as no M phase 568 

being reached (where Cdk1-cycB hits max value of 10). The model however 569 

still runs through the M/G1 phase rather than just repeating the S phase.  570 

 571 

Table 1: Mutant simulations reproduce described behaviour from the 572 

literature. Summary of experimental results are given in “Expected Outcome”, 573 

and in silico results are given in “Model Outcome”.  574 

Genetic 

Perturbation 
Source Expected Outcome Model Output 

Wee1Δ 
Yeast - Nurse 1975[31] 

Mammal - Tominaga 

Premature entry into mitosis, with 

long G1, short G2, but still viable  

G1 same length, Short G2, 

cell cycles quicker 
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2006[32] 

Wee1 OP 
Arabidopsis – De Schutter 

2007[33] 
Cell cycle blocked in G2 Arrest in G2 

CKIΔ 
Yeast – Lengronne 

2002[34] 

Short G1, extended G2, increased 

activation of Cdks 
Short G1, extended G2 

CKI OP Yeast – Moreno 1994[30] 
In yeast delays G1 followed by 

multiple S & no M 

Long delay in G1, cycles but 

no M phase 

Wee1Δ 

CKIΔ 
Yeast – Sveiczer 2000[35] 

Cell divides very quickly, cell gets 

smaller with each division 

Divisions occur over less time 

steps 

Cdc25Δ 
Yeast – Russell 1986[28] 

Mammal – Lee 2009[36] 
Cell cycle blocked in G2 Arrest in G2 

Wee1Δ 

Cdc25Δ 
Yeast – Davidich 2013[37] Cell not viable, cannot enter mitosis  Arrest in G2 

Cdc25 OP 

Yeast – Russell 1986[28] 

Mammal – Timofeev 

2010[29] 

Premature entry into mitosis, early 

activation of Cdk-cyc 
Short G2, cell cycles quicker 

Cdc20Δ 
Yeast – Kim 1998[38] 

Mammal – Li 2007[39] 
Lethal, cannot complete mitosis Arrest in M 

 575 

Figure 4. Mutant Phenotype Simulation Analysis. Depicts the temporal 576 

evolution of the network following perturbation of particular nodes. Each 577 

mutant perturbation can be compared to the wild type, which is listed first. 578 

Each distinct cell cycle phase is coloured coded according to the key 579 

provided. Each time step corresponds to each calculation step recoded in the 580 

BMA simulation which is exported as a CSV file.  581 

 582 

 583 

 584 

 585 

 586 
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 587 

 588 

 589 

 590 

 591 

 592 

DISCUSSION 593 

We present a library of novel Qualitative Network modules that can accurately 594 

replicate the biological behaviour of core, ubiquitous network motifs. We 595 

generate and compare our library based on biological behaviours defined 596 

previously [19], and confirm the modular nature of the library with the 597 

generation of a model for the eukaryotic cell cycle produced using motifs from 598 

the library. By simulating known genetic perturbations we further test this 599 

novel qualitative eukaryotic cell cycle model, highlighting its capacity to 600 

accurately replicate many well-known mutant phenotypes without the need for 601 

explicit parameterisation, as would generally be needed for ODE models. This 602 

study constitutes both a toolbox for biologists to construct elaborate networks 603 

with ease, but also an example of its application to a relevant biological 604 

system. The QN presented has much wider applications, with our working 605 

model having the potential to be adapted in order to provide much more 606 

dynamic details on the regulation of these core cell cycle components.  Such 607 

a model could then be utilised to provide new insights into cell cycle regulation 608 

allowing the prediction of novel mutant phenotypes that have not been 609 

previously investigated. Not only could this provide a more thorough 610 

understanding of the underlying cell cycle regulatory principles, but also assist 611 
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in the identification of a host of mutants that contribute to cancers or other 612 

pathologies, potentially allowing for the generation of novel drug therapeutics 613 

[40]. Similarly, in compiling this simple, easy to use BMA target function library 614 

we hope to encourage experimentalists to adopt this type of QN modelling as 615 

part of mainstream biological research. This would offer a wealth of 616 

advantages in terms of consolidating what is known about large networks into 617 

concise descriptions, as well as by allowing the generation of novel 618 

predictions about systems in the absence of large amounts of data and thus 619 

help focus experimental design. 620 

 621 

Through the construction of our BMA motif/target function library we have 622 

been able to capture the dynamic behaviours of simple cell signalling 623 

pathways. Although networks can be modelled using ODEs, with behaviours 624 

being predicted using numerical simulations, this requires more complex and 625 

harder-to-obtain biological data and may equally appear mathematically 626 

complex to many biologists. As shown through the analysis of a model of 627 

eukaryotic cell cycle regulation, a relatively simple QN model can capture 628 

many of the advanced dynamic features of ODE models, including 629 

multistability and bifurcations. Simulation analysis of the described model 630 

shows strong similarities to that of the quantitative biological signal response 631 

curve, first proposed by Stern & Nurse [41], which was based on the results of 632 

multiple Cdk and cyclin knockout experimental studies. Like our model, they 633 

described the cycle as having three distinctive phases of Cdk activity, with the 634 

Cdk1-cycB levels transitioning through the cell cycle via different levels or 635 

bifurcations [22,41]. These levels or bifurcations are representative of firstly a 636 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2018. ; https://doi.org/10.1101/249888doi: bioRxiv preprint 

https://doi.org/10.1101/249888
http://creativecommons.org/licenses/by-nd/4.0/


28 

 

stage of inactivity (G1) where Cdk activity remains low, secondly a stage of 637 

moderate Cdk activity sufficient to trigger S phase, and lastly a stage of high 638 

Cdk activity sufficient to initiate mitosis, all of which can be easily recognised 639 

in our model simulation [41]. This ability to model varying levels of Cdk activity 640 

sets our model apart from its Boolean counterparts, where only two levels of 641 

detail (“on” or “off”) can be captured. Through simple manipulation of our 642 

target functions we were also able to capture an extra layer of detail, by 643 

allowing our model to continue cycling over unceasing divisions when 644 

conditions remain favourable, a behaviour which has not always been 645 

replicated in previous studies [19,37,42]. The addition of this extra layer of 646 

complexity, showing sustained cell cycle oscillations, results in a model that is 647 

more representative of the true clock-like oscillatory nature of the cell cycle 648 

[43]. It is worth noting, however, that our model does not contain continuous, 649 

biologically measurable values for components, and as such is limited in its 650 

ability to interpret continuous experimental data. 651 

 652 

As a means to further validate the model, loss of function and overexpression 653 

mutants were simulated, with the simplicity and generality of the model limiting 654 

the number of mutant phenotypes studies. Regardless of the simplification of 655 

using discrete modelling to represent continuous protein concentrations and 656 

interactions, the BMA model was capable of correctly modelling 8 out of 9 657 

mutant phenotypes studied. All knockout mutations were correctly 658 

reproduced, with the model capturing dynamic properties such as phase 659 

length changes. For over-expression models, where the corresponding node 660 

range is set to max-max, 90% of the OP mutants studied corresponded 661 
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accurately with experimental data, with CKI OP mutants being in partial 662 

agreement. This partial agreement is likely due to the minimalistic nature of 663 

our model, and could likely be overcome by using additional nodes to model 664 

the CKI interaction in more detail. Overall, the model produced using the BMA 665 

target function library accurately represents not only the WT regulation 666 

patterns of the general cell cycle control engine, but also the dynamic 667 

changes resulting from a number of mutants. This showcases our BMA target 668 

function library’s ability to be easily manipulated in order to model complex 669 

networks. Of particular note is the ability of the method to accurately generate 670 

protein behaviour through the simple addition of target functions from different 671 

modules that act on the same proteins, as is the case with the Cdk1-CycB 672 

node in our QN. This ability to draw together simple motifs to create realistic 673 

and useful biological networks demonstrates the validity of the approach and 674 

the opportunities that executable modelling makes available. 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 
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 686 

 687 

 688 

 689 

METHODS 690 

Qualitative Networks 691 

 692 

Qualitative networks (QNs) are an extension of Boolean models. In Boolean 693 

Networks, nodes are able to be in either and active (1), or inactive state (0), 694 

and are connected via functions that describe the mathematical relationship 695 

between them in an abstract way. Boolean Networks can be synchronous or 696 

asynchronous, that is – they may update every node simultaneously when a 697 

change is introduced in the system, or they can update in sequence from a 698 

propagation point. Qualitative networks are analogous to a synchronous 699 

Boolean Network, except that nodes are able to vary over a wide range of 700 

discrete values (called a granularity). Simple networks may be represented as 701 

Boolean, but Qualitative Networks may involve nodes with a greater range of 702 

values. For example, a node may have a range of 0-2 (granularity 3), where a 703 

value of 1 represents “normal activity” of an enzyme or gene product, and 0 704 

and 2 represent low and high values respectively. This can be extended for 705 

much larger granularities, for example 0-10, where 10 represents maximal 706 

activity, and 0 represents minimal activity, with each discrete value in between 707 

representing a different concentration.  708 

 709 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 18, 2018. ; https://doi.org/10.1101/249888doi: bioRxiv preprint 

https://doi.org/10.1101/249888
http://creativecommons.org/licenses/by-nd/4.0/


31 

 

Nodes within a Qualitative Network are associated with either activatory or 710 

inhibitory relationships. Activatory relationships generally result in a response 711 

being high when a stimulus is high, and inhibitory relationships result in a 712 

response being low when a stimulus is high. Relationships between nodes are 713 

controlled by simple mathematical functions that describe the value that a 714 

node should represent, given its current inputs, and this function is called a 715 

target function. The values of nodes within a Qualitative Network are updated 716 

simultaneously when the network is simulated, and nodes will change their 717 

values in order to reach their target function gradually – changing value by 718 

only one each step. Due to the synchronous and defined nature of Qualitative 719 

Networks, they are deterministic, and susceptible to formal verification 720 

techniques. QN’s can stabilize and reach a single self-perpetuating state 721 

(called a stable point), but can also give rise to cycles and oscillations.   722 

Models and motifs described in this document are available in supplementary 723 

information and at https://github.com/shorthouse-724 

mrc/biomodelanalyzer_targetfunctionlibrary.  725 

The BioModelAnalyzer (BMA) Platform 726 

 727 

The BMA is an accessible, publicly available (www.biomodelanalyzer.org) 728 

graphical tool for discrete modelling and analysis of Qualitative Networks. The 729 

platform, with its user-friendly graphical interface, uses visual notations 730 

familiar to specialists in biology. BMA models are constructed on a gridded 731 

canvas upon which one or more cells, and cell elements (i.e. membrane 732 

receptor, cellular proteins etc.) can be placed and connected together with 733 

activatory or inhibitory links. To create a model, the user starts by dragging 734 
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and dropping a cell onto the gridded canvas. These cells have no functional 735 

role in the analysis, being purely a visual aid to assist model design clarity. 736 

Cell elements are then placed in or outside of these cells, which can represent 737 

internal proteins, external proteins or membrane bound receptors. 738 

Connections between these cell elements can then be made using activatory 739 

arrows or inhibitory bar-arrows. Each cell element can then be labelled 740 

accordingly, using the simple drop down menus and a finite value range 741 

assigned, with the BMA default being [0,1], or Boolean. This range may be 742 

altered to add different levels of concentration, for example a range of [0,2] 743 

may represent “low”, “normal” and “high” concentrations of a protein or gene. 744 

If the user does not specify a target function for a node, then the BMA assigns 745 

a default target function. The default target function assigned within the BMA 746 

is described as: 747 

 748 

�����������	���	
� 	
���� � ��������	
�	�	�	
� 	
���� 

 749 

More complex target functions can be inserted for each node manually using 750 

an autocomplete function simplifying the use of correct syntax when 751 

referencing variables or using operators. 752 

 753 

This underlying QN can then be analysed using simulation, stability analysis 754 

or Linear Temporal Logic tools each of which is accessible using the graphical 755 

interface. Simulation analysis shows the step-by-step execution of the model 756 

starting from a set point, based on either initial values specified by the user or 757 

a randomised start point. A graphical representation of all node values as they 758 
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update over a user-defined number of time steps is produced, as well as a 759 

table of the simulation progression values, which can be exported as a CSV 760 

file for further analysis. Stability analysis can be used to test general 761 

properties of the model. If a model, given all possible starting conformations, 762 

will always result in a same self-perpetuating state, it is considered stable, and 763 

the graphical interface presents the user with the “stable values”. If stability is 764 

not achieved, however, the interface presents whether the system results in 765 

bifurcations (can potentially end in multiple states depending on the starting 766 

conformation) or oscillations (results in an infinite cycle). More advanced 767 

queries can be asked using the Linear Temporal Logic (LTL) interface, which 768 

allows the user to define simple or complex temporal logic queries with a drag 769 

and drop interface. LTL queries will return True, True sometimes, False, and 770 

False sometimes responses to queries, and the interface allows the user to 771 

see examples of systems where the behaviour occurs. 772 

 773 

Cell Cycle Model Generation 774 

 775 

The model was composed of 3 main modules; G1/S, G2/M and M/G1 linked to 776 

a central node representing the level of Cdk1-cycB activity throughout the 777 

cycle. Each module was represented by a different cell in the BMA and 778 

labelled accordingly. The modules themselves were comprised of 6 key 779 

components namely; Cyclin, CKI, Wee1, Cdc25, APC and Cdc20, which 780 

regulate this Cdk1-cycB activity and thus the different cell cycle transitions 781 

(Table 2). These 6 components, modelled in their different chemical states 782 

(phosphorylated, active, inactive etc.) thus comprise a 20 node network, 783 
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including 4 cell behaviours and 3 descriptive nodes linked by 28 interactions 784 

(Supplementary Table 2 & 3). Three members of the BMA target function 785 

library were combined to create the cell cycle model, with the granularity set to 786 

11 (A range of 0-10). This granularity, which differs from the default of 5 in our 787 

target function library, was chosen to accommodate the varying levels of 788 

Cdk1-cycB activity required, and to allow for clearer analysis of mutant 789 

phenotypes. Modules were initially generated based on the wiring and target 790 

functions from the BMA target function library examples, which were linked 791 

together through appropriate nodes (Supplementary Figure 2). This method 792 

resulted in the creation of individual pools of Cdk1-cycB activity at the different 793 

cell cycle phases that fed into one central pool of Cdk1-cycB activity. To better 794 

represent the biological system, the model was then refined, by simply 795 

combining the Cdk1-cycB individual pool target functions into a single node 796 

via compound addition of each target function within the target function 797 

interface. To allow for multiple rounds of cell division, rather than the 798 

simulation of a single cell cycle, modification to the mutual activation target 799 

function was required. The mutual activation target function defines a one-way 800 

switch, and as such is not reversible. Here only nodes S and A (see figure 1, 801 

e, ii) and their associated target functions were used, thus allowing the cell to 802 

return from the high state achieved following the critical switch point 803 

activation.  804 

 805 

 806 

Table 2: Cross-species nomenclature of key nodes within each module 807 
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Module 
Target 

Function 
Node 

Mammalian 

Cells 

Xenopus 

embryo 

Fission 

Yeast 

Budding 

Yeast 
Function 

G1/S 
Mutual 

Inhibition 
CKI p27Kip1 Xic1 Rum1 Sic1 

Stoichiometric cyclin-

dependent kinase inhibitor 

G2/M 

Mutual 

Inhibition 
Wee1 hWee1 Xwee1 Wee1 Swe1 

Inhibitory kinase that 

inactivate Cdk-cyclin dimer 

Mutual 

Activation 
Cdc25 Cdc25C Xcdc25 Cdc25 Mih1 

Activatory phosphatase that 

activate Cdk-cyclin dimer 

M/G1 

Negative 

Feedback 

Oscillator 

APC APC APC APC APC 
Anaphase-promoting 

complex 

Cdc20 p55Cdc Fizzy Slp1 Cdc20 
Degrades cyclin in complex 

with APC 

 808 

 809 

 810 

 811 

 812 

Knock-Out (KO) & Overexpression (OP) Analysis 813 

 814 

In order to show if a model can faithfully reproduce known biological 815 

perturbations, loss of function and gain of function mutations can be analysed 816 

in BMA. A list of genetic perturbations curated from the literature is created 817 

and used to test the model.   In the case of KO mutations, the corresponding 818 

node within the model range was set to a range of 0-0, corresponding to a 819 

permanently inactive state.  OP mutations were simulated by setting the 820 

corresponding node range to max-max, (i.e. max based on the chosen 821 

granularity) simulating a permanently active state. Simulation analysis is then 822 
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carried out, and the results compared to the wild-type simulation. Differences 823 

were then compared to known biological behaviours.  824 
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 987 

SUPPLEMENTARY INFORMATION 988 

 989 

Supplementary Figure 1. Adjustment of Negative Feedback Oscillatory 990 

Module. In this illustration, the rows correspond to (A) a one node system (B) 991 

a two node system and (C) three node system of negative feedback. The 992 

columns correspond to (i) the BMA wiring diagram translation and (ii) the 993 

BMA response curves. Each BMA wiring diagram contains a unique set of 994 

target functions located within particular nodes of the network which can be 995 

found in Supplementary table 1. S indicates the input Signal and R indicates 996 

the output Response with, in our case, letters A-D representing intermediate 997 
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nodes. The graphs in (ii) are derived from simulation analysis carried out in 998 

the BMA.  For all cases a simulation is run with a set signal input of 2 as an 999 

example, and the response output from the BMA simulation plotted based on 1000 

the response per calculation time step. Comparison of the three different node 1001 

length systems highlights that with increased number of nodes there is an 1002 

increased length of oscillation response, as shown in the 20 calculation steps 1003 

graphed, with the three node system (C) carrying out only 2 full oscillations 1004 

compared to the one node system (A) which carries out 4 oscillations in the 1005 

20 calculation steps.  1006 

 1007 

Supplementary Figure 2.  Wiring Diagram. Wiring diagram composed using 1008 

the network topology specified from the BMA target function library modules. 1009 

Cdk-cycB activity is subdivided into individual pools which link to a central 1010 

Cdk1-cycB pool. Subsequent models combine the target functions of the G1 1011 

Cdk-cycB activity and the G2-cdk-cycB activity together into one node which 1012 

better represents the true biology.  1013 

Supplemental Table 1. List of networks assessed in the manuscript. Paper 1014 

reference refers to the figure in which the network occurs, included are the 1015 

target functions for each node (if not the default), and comments. Included are 1016 

the filenames and model names where the specific network can be found. 1017 

 1018 

Supplemental Table 2. List of nodes in the network. Network ID refers to the 1019 

internal label of the node. Full name is the common name found in the 1020 

literature while Network Name is the name given in construction of model. 1021 

 1022 
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Supplemental Table 3. List of nodes in the network. Network ID refers to the 1023 

internal label of the node. Full name is the common name found in the 1024 

literature while Network Name is the name given in construction of model. The 1025 

target function located in each node is found under the "Target Function" 1026 

heading. 1027 

 1028 

Model Files. We have additionally included all model files in .json format 1029 

within an enclosed .zip file, they are also available at 1030 

https://github.com/shorthouse-mrc/biomodelanalyzer_targetfunctionlibrary. 1031 

Importing any file into the BMA will load the model and allow manipulation and 1032 

simulation/stability analysis. Each file is named explicitly in Supplementary 1033 

Table 1, with some files containing multiple models, which are referenced 1034 

independently. 1035 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Wild	Type 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3
Wee1Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 10 9

Wee1	OP 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
CKI	Δ 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3

CKI	OP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CKI	&	Wee1Δ 0 0 0 0 1 2 3 3 3 3 3 3 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3

Cdc25	Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Cdc25	&	Wee1Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Cdc25	OP 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 9 8 7 6
Cdc20	Δ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

No	Growth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Unreplicated	DNA 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Damaged	DNA 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Misaligned	Chromosomes 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 3 3 3 3 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
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