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1 Abstract 
 
On average, educated people are healthier, wealthier and have higher life expectancy than those 
with less education. Numerous studies have attempted to determine whether these differences are 
caused by education, or are merely correlated with it and are ultimately caused by another factor. 
Previous studies have used a range of natural experiments to provide causal evidence. Here we 
exploit two natural experiments, perturbation of germline genetic variation associated with 
education which occurs at conception, known as Mendelian randomization, and a policy reform, the 
raising of the school leaving age in the UK in 1972. Previous studies have suggested that the 
differences in outcomes associated with education may be due to confounding. However, the two 
independent sources of variation we exploit largely imply consistent causal effects of education on 
outcomes much later in life. 
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2 Introduction 
Educational decisions, such as choosing to remain in school, made comparatively early in life 
associate with substantial differences in outcomes across the life course.(1–8) Unfortunately for 
researchers interested in the causal effects of education, these choices do not occur at random. For 
example, on average people who chose to remain in school for longer are more likely to have 
educated parents. Thus it is challenging to determine if education causes differences in outcomes 
later in life, or if other, potentially unknown, factors drive these associations. As a result, approaches 
such as multivariable adjustment are likely to suffer from residual confounding.(9) In contrast, 
instrumental variable analysis can potentially estimate the causal effects of education in the 
presence of unmeasured confounding of the education-outcome association. Three assumptions 
define instrumental variables: 1) they must associate with the risk factor of interest (the 
“relevance/informativeness criterion”); 2) they have no common cause with the outcome (“the 
independence assumption”); and 3) they have no effect on the outcome except via the risk factor of 
interest (the “exclusion restriction”).(10) Natural experiments, such as legal changes to school 
leaving ages are potential instrumental variables for educational attainment. These changes forced 
people to remain in school for longer, and, because parents could not have anticipated them, are 
unlikely to be associated with factors that confound the association of education and other 
outcomes. The size of the effect of education can be estimated using instrumental variable 
estimators.(1) 
 
Another potential instrumental variable for education are genetic variants that are known to 
associate with educational attainment.(6, 11, 12) The use of genetic variants as instrumental 
variables is known as Mendelian randomization. This approach exploits the natural experiment that 
occurs at conception – when each child inherits half of each of their parents’ genomes. This process 
means that at each locus there is a 50% chance of inheriting one or other of their parents’ alleles. 
The first instrumental variable assumption is likely to hold because large genome-wide association 
studies (GWAS) have discovered genetic variants that robustly associate with education. Because of 
the segregation of alleles at conception, these genetic variants are also independent of many 
confounders. While many phenotypes are far more associated with each other than would be 
expected by chance, genetic variants known to associate with one trait, tend to be independent of 
other potential risk factors.(13) Furthermore, each person’s genome is set at conception cannot be 
affected by their later educational choices or other outcomes. 
 
While legal changes to school leaving ages have been widely used as an instrumental variable for 
education, genetic variants known to associate with education have received less attention. The 
instrumental variable assumptions are plausible for phenotypes whose biological pathways are 
relatively well understood (e.g. variants in the CRP gene for CRP levels(14) or variants in ALDH2 for 
alcohol(15)), they may be less plausible for phenotypes where the mediating pathways are less well 
understood such as education. For example, genetic variants that affect parents’ education may 
have direct effects on the offspring (so-called “dynastic effects”); parents assortatively mating on 
education(16); or that more educated parents have different ancestry from those with less 
education. These potential sources of bias are illustrated in Supplementary Figure 1. While 
Mendelian randomization using samples of unrelated individuals may be a credible identification 
strategy for biologically proximal phenotypes such as CRP or alcohol consumption, it may be less 
plausible for biologically distal phenotypes such as education. Recent studies have used genetic 
variants known to associate with education to estimate the effects of education on coronary heart 
disease and dementia.(6, 12) However, unlike hypotheses that relate to biological traits, such as 
lipids, there are no randomized trials that can provide gold-standard evidence of the causal effects 
of education. 
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Two key questions in the scientific and policy literature, are whether the effects of education across 
individuals or at different points in the life course are heterogeneous.(17–20) For example, does an 
additional year of schooling at age 16 have the same effect on everyone? Does an additional year of 
schooling at age 16 have the same effect as an additional year of schooling at age 20? Many of the 
previously investigated policy reforms affect a subset of individuals at a specific age (e.g. the effect 
of an additional year of education for low ability students at age 16). Policy makers may be 
interested in the effects of education on average across the whole population, or of the effects of 
obtaining a specific length of schooling (e.g. staying in school to age 18 versus 16). However, genetic 
variants affect educational choices across the entire lifespan. They identify the average effect of an 
additional year of school across the entire cohort. 
 
Here we compare two potential instrumental variables, a policy reform and Mendelian 
randomization within the same sample. We have previously reported the effects of educational 
attainment using the raising of the mandatory minimum school leaving age using data from the UK 
Biobank.(21) We assess the plausibility of the Mendelian randomization assumptions for estimating 
the effects of educational attainment. We estimate the long-term effects of education using both 
genetic variants and the raising of the school leaving age. 
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3 Results 
3.1 Descriptive statistics 
The UK Biobank invited 9.2 million people aged between 40-69 to attend 23 centres across Great 
Britain.(22) Of those invited 503,325 (5.47%) were recruited in 2006-2010 to the study. Of these 
315,436 met the inclusion criteria for this study. See the supplementary materials for a flowchart of 
the inclusions and exclusion of participants (Supplementary Figure 2). The average age when 
attending the assessment centre was 56.9, and 53.8% were female. On average, UK Biobank 
participants were more educated than the British population, 41.0%, 64.0%, and 82.1% had a degree 
or equivalent, had post-16 education, and any academic qualifications respectively. Whereas the UK 
census found that 27.9%, 61.8%, and 76.5% of the British population aged between 40 and 70 in 
2011 had these qualifications respectively.(23) See Table 1 for a description of the participants 
included in this study. We used inverse probability weights to correct for this selection. 
 

3.2 Testing the relevance assumption 
Participants born after August 1957, who were affected by the raising of the school leaving age, 
were 26.6 (95% confidence interval (95%CI): 21.7 to 24.4) percentage points more likely to remain in 
school after age 15. We used the 74 genetic variants detected in the educational attainment GWAS 
to construct a weighted genetic score in the UK Biobank. Each variant was weighted by its 
association with educational attainment in the discovery sample of the GWAS. The educational 
attainment allele score was more weakly associated with educational attainment. A unit increase in 
the score was associated with 1.48 additional years of education (95%CI: 1.39 to 1.57) as defined by 
the International Standard Classification of Education (ISCED). Thus the educational attainment allele 
score was a strong instrument, but explained less of the variation in educational attainment than the 
raising of the school leaving age. Neither proposed instrument are likely to suffer from weak 
instrument bias. The policy reform induced fewer individuals to leave school before the age of 16 
(Figure 1, top). Whereas the educational attainment allele score was associated with an increased 
likelihood of remaining in school at all ages (Figure 1, bottom). 
  

3.3 Bias component plots 
We were concerned that our results may be affected by selection bias or residual confounding. If 
there was strong selection into the study then this could induce correlations between the 
instruments and outcomes that are independent in the population. We evaluated this using bias 
component plots.(24) Bias component plots compare the relative bias of the instrumental variable 
and conventional estimators if an observed covariate was omitted. We assessed the bias associated 
with 14 non-genetic phenotypes and polygenic scores for 45 traits. The biases for the educational 
attainment genetic score were similar in size to those for the raising of the school leaving age 
(Figures 2 and 3). 
 

3.3.1 Phenotypic confounders 
The parents of participants affected by the raising of the school leaving age were less likely to have 
died. These differences are likely to be due to cohort effects. On average participants affected by the 
reform were one year younger than those who were not affected. Offspring educational attainment 
may also affect parental mortality.(25–27) There was little evidence that the reform affected any of 
the other baseline and childhood phenotypes. There was evidence that the educational attainment 
genetic score was non-randomly distributed across the UK (Figure 2). On average, genetic variants 
associated with educational attainment were more common in the east and south of the UK. 
However, the magnitude of these associations was relatively small. There was evidence that the 
educational attainment genetic score associated with having been breastfed, birthweight, being 
taller than average at age 10, and whether the participants’ mother smoked in pregnancy. These 
associations may be driven by dynastic effects or assortative mating. Dynastic effects could occur 
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because on average, participants with more education associated genetic variants will have more 
educated parents. If more educated parents behave differently, e.g. smoke less in pregnancy, then 
this could cause an association with the educational attainment genetic score. Assortative mating 
could induce associations if for example, on average more educated parents choose taller spouses. 
Nevertheless, these covariates weakly associate with the outcomes. There is little evidence that the 
covariates associate more strongly with the educational attainment genetic score than the reform. 
As a result, for many outcomes the bias induced by these covariates is small, for more details see the 
full adjusted sensitivity analyses below. This suggests that residual confounding due to phenotypic 
covariates is unlikely. 
 

3.3.2 Genetic confounders 
The educational attainment genetic score weakly associated with polygenic scores for other 
phenotypes including bipolar disorder, childhood intelligence, inspection time, simple reaction time 
and infant head circumference (Figure 3). However, there was little evidence that bias components 
for the educational attainment genetic score were larger than those for the raising of the school 
leaving age. This suggests that genotypic confounding is limited. 
 

3.4 Effect of educational attainment on outcomes 
Figure 4 plots the estimated effects of an additional year of education on each of the 25 outcomes. 
 

3.4.1 Mortality 
Each additional year of education was observationally associated with -0.14 (95%CI: -0.16 to -0.11) 
percentage points lower mortality. The Mendelian randomization estimates were similar to this but 
less precise (-0.37 95%CI: -0.80 to 0.06). This effect is larger than the observational association of 
educational attainment and mortality, but smaller than the effect of remaining in school estimated 
by the raising of the school leaving age (Figure 4). 
 

3.4.2 Morbidity 
Observationally, an additional year of education generally associated with improved health. Each 
year of education was associated with 0.65 per 100 (95%CI: 0.58 to 0.72) fewer cases of 
hypertension, 0.30 (95%CI: 0.27 to 0.34) fewer diagnoses of diabetes, 0.14 (0.12 to 0.17) fewer 
strokes, 0.27 (95%CI: 0.24 to 0.30) fewer heart attacks, and 0.60 (95%CI: 0.55 to 0.66) more episodes 
of depression. There was little evidence of differences in rates of cancer diagnoses. The Mendelian 
randomization estimates suggested that each year of education reduced the likelihood of being 
diagnosed with hypertension by 1.04 per 100 (95%CI: -0.18 to 2.25), diabetes by 1.38 (95%CI: 0.78 to 
1.97), stroke by 0.50 (95%CI: 0.14 to 0.86), heart attack by 1.21 (95%CI: 0.70 to 1.71). However, the 
Mendelian randomization estimates provided little evidence of an effect on depression or cancer. 
The estimates based on the raising of the school leaving age were in the same direction as the 
Mendelian randomization results. The policy reform suggested larger effects on diabetes and stroke. 
 

3.4.3 Health behaviours 
An additional year of education was associated with 1.65 per 100 (95%CI: 1.57 to 1.73) and 1.10 
(95%CI: 1.04 to 1.17) fewer ever and current smokers. The Mendelian randomization analysis 
suggested that the causal effects of education on smoking were substantially larger, 8.25 (95%CI: 
6.78 to 9.73) and 4.38 (95%CI: 3.43 to 5.34) fewer smokers per 100. The estimates based on the 
raising of the school leaving age were similar to those using Mendelian randomization. Each year of 
education was associated with a 0.07 (95%CI: 0.07 to 0.08) units increase in alcohol consumption. 
The Mendelian randomization estimates implied the causal effect of an additional year of schooling 
was 0.19 (95%CI: 0.15 to 0.23). Each year of education was associated with watching 0.16 (95%CI: 
0.15 to 0.16) fewer hours of television per day. The Mendelian randomization suggests that this is 
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likely to underestimate the causal effects (0.49, 95%CI: 0.44 to 0.54). A year of education was 
associated with 0.02 (95%CI: 0.02 to 0.02) fewer days per week of moderate exercise. The 
Mendelian randomization estimate suggested this underestimated the causal effect (0.10, 95%CI: 
0.04 to 0.16). There were only very small associations between educational attainment and vigorous 
exercise which were similar to the Mendelian randomization and policy reform estimates. 
 

3.4.4 Income 
Each additional year of education was associated with a higher probability of having an income 
above £18,000, £31,000, £52,000 and £100,000 of 3.91 (95%CI: 3.74 to 4.06), 4.59 (95%CI: 4.51 to 
4.67), 3.34 (95%CI: 3.20 to 3.48), 0.94 (95%CI: 0.88 to 1.00) per 100 participants respectively. The 
Mendelian randomization estimates were larger, suggesting 9.42 (95%CI: 7.93 to 10.90), 11.33 
(95%CI: 9.94 to 12.72), 9.22 (95%CI: 8.06 to 10.38), and 2.98 (95%CI: 2.44 to 3.53) increase per 100 
participants. The raising of the school leaving age analysis were similar in direction and magnitude as 
the Mendelian randomization estimates but provided little evidence that education affected the 
probability of having the highest income. 
 

3.4.5 Indicators of ageing 
Each year of education was associated with 0.25 (95%CI: 0.24 to 0.26) stronger grips. The Mendelian 
randomization estimates suggest a larger causal effect of 0.42 (95%CI: 0.22 to 0.61). Education was 
also associated with lower arterial stiffness 0.06 (95%CI: 0.04 to 0.07). The Mendelian randomization 
estimate was imprecise, but in the same direction, implying each year of education reduced arterial 
stiffness by 0.04 (95%CI: -0.14 to 0.22). The estimates based on the raising of the school leaving age 
suggested a larger effect on grip strength, but similar equivocal effects on arterial stiffness. 
 

3.4.6 Anthropometry 
Each additional year of education was observationally associated with a 0.28 (95%CI: 0.27 to 0.29) 
cm increase in height and 0.18 (95%CI: 0.17 to 0.18) kg/m2 reduction in BMI. The Mendelian 
randomization estimates suggested larger causal effects of education of 0.99 (95%CI: 0.80 to 1.17) 
cm increase in height and a 0.71 (95%CI: 0.57 to 0.86) kg/m2 reduction in BMI. The estimated effect 
on height using the raising of the school leaving age was very similar to the observational 
association. Whereas the effects on BMI estimated using the reform were much larger than the 
observational associations, and very similar to the Mendelian randomization estimates. The effect 
on education on height is likely to be due to pleiotropic or residual population stratification. We 
investigated this using a negative control outcome: whether the participant reported being taller 
than average at age 10. Mendelian randomization implied that each additional year of education 
was associated with being 4.14 (95%CI: 3.03 to 5.24) percentage points more likely to report being 
taller than average at age 10. We investigated this finding further in the pleiotropy robust sensitivity 
analyses below. 
 

3.4.7 Blood pressure 
Each additional year education was associated with lower diastolic and systolic blood pressure (0.12 
mmHg, 95%CI: 0.10 to 0.14  and 0.32 mmHg 95%CI: 0.29 to 0.35 respectively). The genetic analysis 
suggested the causal effects were in the same direction, but larger (0.82 mmHg 95%CI: 0.59 to 1.08 
and 1.20 mmHg 95%CI: 0.70 to 1.71 respectively). There was little evidence the reform affected 
diastolic blood pressure, and some evidence that it increased systolic blood pressure, however, 
these estimates are likely to be biased due to age effects.(21) 
 

3.4.8 Neurocognitive 
Each year of education was associated with 0.25 (95%CI: 0.25 to 0.26) additional correct answers on 
the intelligence test, but there was little difference in subjective well-being. The Mendelian 
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randomization estimates suggested that educational attainment caused a 0.93 (95CI: 0.80 to 1.05) 
additional correct answers, but found little detectable effect on subjective well-being. The estimates 
of the effect on intelligence based on the raising of the school leaving age were also positive, but 
were slightly smaller. There was little evidence that the reform affected subjective well-being. 
 

3.5 Sensitivity analyses 

3.5.1 Weighting to account for non-random sampling 
Reanalysing the data without applying inverse probability weights did not materially influence the 
Mendelian randomization estimates, see Supplementary Figure 2. 
 

3.5.2 Association between the educational attainment genetic score and the outcome, the 
“reduced form” 

We present the associations between the educational attainment genetic score and each of the 25 
outcomes in Supplementary Figure 4. These associations are consistent in direction with the main 
instrumental variable results presented above. 
 

3.5.3 Robustness of results to adjustment 
We investigated whether the results were affected by removing the covariates, including sex, year 
and month of birth, and the first ten principal components of population stratification. The only 
estimates that was affected by this were grip strength and height, which attenuated towards the 
null. See Supplementary Figure 5 for details. There was little detectable impact of adjusting for a 
range of confounders, see Supplementary Figure 6. The estimated effect of height attenuated 
modestly. These sensitivity analysis suggests that residual confounding is unlikely to explain our 
results. 
 

3.5.4 Pleiotropy robust methods 
We investigated whether the results could be explained by pleiotropy using MR-Egger, weighted 
median and weighted mode approaches (Supplementary Figure 7). MR-Egger was highly imprecise 
for all outcomes and provided few inferences. The different estimators provided consistent evidence 
of causal effects for some of the outcomes including diabetes, Heart attack, mortality, smoking, 
income, grip strength, BMI, blood pressure, intelligence, alcohol consumption, and exercise. There 
was evidence of differences in the estimates for height, which may indicate the inverse variance 
weighted and two-stage least squares estimates above suffer from pleiotropy. The weighted mode 
estimator suggested little effect of educational attainment on height. We present the I2 statistics of 
the heterogeneity in estimated effects of education across the 74 genetic variants in Supplementary 
Table 2.  
 

4 Discussion 
Our findings suggest that the differences in many later life outcomes between educational groups 
are likely to be caused by education. There was evidence that genotypic perturbations in educational 
attainment associated with morbidity, including the risk of hypertension, diabetes, stroke, heart 
attack, and mortality. Furthermore, these results imply that education reduces the risk of currently 
or ever smoking, increases household income, lowers blood pressure and increases scores on 
intelligence tests. However, there was evidence that education reduced rates of moderate exercise 
and increased alcohol consumption. Our sensitivity analyses suggest that confounding by genotypic 
or phenotypic confounders, or specific forms of pleiotropy are unlikely to explain our results. 
 
Triangulating across multiple sources of evidence can help provide stronger evidence of causal 
effects.(28) Here, we found that the two natural experiments gave remarkably similar results. The 
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two sources of variation, Mendelian randomization and the raising of the school leaving age, have 
distinct causes of and direction of bias. The similarity in results strengthens the case that education 
has causal effects. The raising of the school leaving age affected relatively low-ability students, who 
were forced to remain in school for an additional year.(1) In contrast, our Mendelian randomization 
results exploit variation across the entire distribution of educational attainment, estimating an 
average effect of an additional year of schooling for everyone from those who leave school at 15 to 
graduates (see Figure 1). A priori there was little reason to assume that a year of additional 
schooling will have the same effects on a high school leaver as on a graduate. Surprisingly we found 
relatively little evidence that educational attainment had heterogeneous effects. The estimates from 
the two natural experiments are remarkably similar, both in direction and in many cases magnitude. 
There was very little evidence of heterogeneity in the effects identified by different variants. The 
effect of an additional year of education on smoking is comparable to other studies using natural 
experiments. For example, Grimard and Parent (2007) used data from the US Current Population 
Survey and the Vietnam draft to estimate that in 1995-99 an additional year of schooling caused a 
7.97 (95%CI: 3.15 to 12.79 ) and 11.13 (95%CI: 5.54 to 16.72) percentage point reduction in probably 
of currently or ever smoking.(29) For other outcomes, such as measured blood pressure the results 
are very different. The effects of education on blood pressure estimated using the raising of the 
school leaving age may reflect non-linear cohort effects as previously discussed.(21)  
 
We found some evidence that the educational attainment genetic score correlated with baseline 
covariates, including birth weight, being taller than average at age 10, mother smoked in pregnancy, 
parental mortality and geography. These associations may reflect dynastic effects or assortative 
mating (Figure 3). If there is assortative mating, then this could induce associations between 
education variants and variants for other traits. For example, if highly educated people assortatively 
mate with taller spouses, then the Mendelian randomization estimates of the effect of education on 
height would be positively biased. These effects may explain the implausible Mendelian 
randomization estimate of the effect of education on height. A sub-sample (N= 310,230) of the study 
provided information on whether they were taller than average at age 10, this variable cannot be 
affected by completed years of educational attainment. When we adjusted for being taller than 
average at age 10 the estimated effect falls from 0.93 (95CI: 0.78 to 1.09) to 0.62 (95CI: 0.46 to 0.78) 
cm increase in height per year of education. This result suggests that the effects on height may be 
induced by assortative mating, dynastic effects or population stratification.  
 
A limitation of our study is that we used a non-representative sample. We have addressed this using 
inverse probability weights. The weights made little differences to the Mendelian randomization 
estimates. This suggests that sample selection bias is unlikely to affect our results. 
 
The Mendelian randomization estimates can suffer from bias due to assortative mating or dynastic 
effects, however except height, adjusting for measured baseline covariates had little affect on our 
results (Supplementary Figure 5 and 6). Our results could reflect either direct effects of the 
participants’ educational attainment, assortative mating between their parents, dynastic effects of 
their parents’ education or differences in ancestry not accounted for by the principal components 
(Supplementary Figure 1). These potential explanations could be evaluated using either offspring-
mother-father trios or sibling designs. Okbay and colleagues (2016) found little evidence that the 
effects of the genome-wide significant education variants attenuated after controlling for family 
structure.(30) However, these analyses may not have had sufficient power to detect dynastic effects. 
Kong and colleagues investigated this using a sample of parent and offspring from Iceland.(31) They 
found that a polygenic score for education, made up of alleles that were not inherited, was 
associated with offspring’s education. The association with the non-inherited polygenic score was 
29% of the size of the association with the inherited genetic score. This suggests that the effects we 
identify are likely to represent a combination of the effect of the participants’ education and their 
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parents’ education. Kong and colleagues results provide an upper bound for the contribution of 
parents’ education of 29%. The contribution of parents’ education to our results will be smaller if the 
direct effect of parents’ education on each outcome is smaller than the effect of the participant’s 
own education. To determine the relative contributions of parent versus offspring education will 
require large samples of parent-offspring data. 
 
A further limitation is that the genetic variants may have pleiotropic, or direct effects on the 
outcomes, as their biological mechanisms of effect are unknown. However, our estimates were 
similar when using the weighted median and mode estimates. An exception to this was height, 
where the mode and median based estimate suggested smaller effects. 
 
In conclusion, two independent natural experiments suggest that education has wide-ranging effects 
on important outcomes measured much later in life. Importantly, the two experiments affected 
different educational choices – one exclusively affecting those at the bottom of the distribution, the 
other affected education levels across the whole distribution – and yet find effects of a similar 
magnitude. This suggests a common treatment effect of additional education on many health 
behaviours and outcomes.  
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Figure 1: Differences in the age participants left school across the raising of the school leaving age 
(top) and quintiles of the educational attainment genetic score (bottom). The policy reform 
substantially reduced the proportion who left school before the age of 16. The genetic scores are 
associated with a higher probability of remaining in schools at all ages. 
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Figure 2: Bias component plots comparing actual educational attainment (ISCED) ●, raising of the 

school leaving age ■, and the educational attainment genetic score ▲ with non-genetic covariates. 
There was little evidence that the educational attainment allele score was more strongly associated 
with the phenotypic covariates than the raising of the school leaving age. There was some evidence 
that the score was associated with geographic location, but the size of these associations was modest. 

 
Notes: Adjusted for month of birth, sex, and the ten principal components of population 
stratification. Confidence intervals allowing for clustering by month of birth reported. Sample 
weighted to adjust for under sampling of less educated. 
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Figure 3: Bias component plots comparing educational attainment (ISCED) ●, raising of the school 

leaving age ■, and the educational attainment genetic score ▲ with genetic covariates. There was 
little evidence that the educational allele score was more strongly associated with the genetic 
confounders than the raising of the school leaving age. 

 
Notes: Adjusted for month of birth, sex, and the ten principal components of population 
stratification. Confidence intervals allowing for clustering by month of birth reported. Sample 
weighted to adjust for under sampling of less educated. 
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Figure 4: The effect of one additional year of schooling on morbidity, mortality and socioeconomic 
outcomes, estimated via multivariable adjusted regression ●, and using instrumental variables raising 

of the school leaving age ■, and the educational attainment genetic score ▲.The results using both 
the educational allele score and the raising of the school leaving age were similar, and suggested that 
the observational difference is likely to underestimate the difference in outcomes caused by 
education. 

 
 
Notes: Adjusted for month and year of birth, sex, and the ten principal components of population 
stratification. Confidence intervals allowing for clustering by month of birth reported. Sample 
weighted to adjust for under sampling of less educated. 
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Supplementary Materials 

6 Materials and Methods 
6.1 Data 
The UK Biobank sampled 503,325 people via 23 study centres in urban areas across the United 
Kingdom. The study invited people between the ages of 40 and 70 to attend an assessment clinic 
between 2006 and 2010. The participants completed surveys, and had detailed phenotypic 
measurements and provided samples of blood. 
 

6.2 Genotyping 
DNA was extracted from the blood sample which was genotyped using UK BiLEVE Axiom and UK 
Biobank Axiom arrays. Full details of the genotyping and imputation procedure are available.(32) The 
genotyping data quality control process consisted of the following steps. First SNPs were set to 
missing when there was evidence of clustering across chips, batch or plate effects, departure from 
Hardy Weinberg equilibrium, sex effects, array effects or discordance across the genotyping controls 
(at p<10-12). On average these exclusion criteria affected 7,704 (0.01%) of SNPs per batch. Second, 
968 participants who had less than 5% call rates or extreme heterozygosity were excluded. Third, 
individuals from a European ancestry were identified by projecting each participant onto the 
principal components from the 1000 genomes project. Fourth, we excluded participants who were 
as genetically alike as third-degree relatives or more. Fifth, we excluded participants whose self-
reported gender did not match their genetic sex.  
 

6.3 Educational attainment 
For the observational and Mendelian randomization analyses, we used years of schooling as the 
exposure, for the raising of the school leaving age we used whether someone had remained in 
school after the age of 15. Within the instrumental variables framework, this means that both 
exposures indicate the effect of an additional year of schooling. We derived each participants’ years 
of schooling using the information they provided using a touch screen survey as part of their 
assessment centre visit. This survey included questions on the educational qualification the 
participant had (i.e. did they have a degree, A-levels). We used these variables to derive a measure 
of educational attainment based on the International Standardized Classification of Education 
(ISCED). This definition was used by Okbay and colleagues, we recoded the number of years of 
education each category referred to be consistent with the UK education system. See the 
supplementary materials for a detailed coding. If the participant stated they did not have a degree 
they were asked at which age they left school. We used these survey responses to derive an 
indicator of whether the participant remained in school after age 15. If the participant did not have a 
degree, then this was equal to one if they stated they left school after the age of 15, otherwise, it 
was set equal to zero. If they stated they had a degree, then this variable was set to one. 
 

6.4 Outcomes 

6.4.1 Morbidity 
The participants completed questionnaires about whether a doctor had diagnosed them with high 
blood pressure, stroke, or a heart attack. They were asked if they had been diagnosed with diabetes. 
We set this outcome to missing if they received a diagnosis before the age of 21. They were also 
asked if they had experienced episodes of depression. Finally, cancer diagnoses were defined using 
linked cancer registry data. 

6.4.2 Mortality 
Mortality was defined using linked NHS mortality records. This dataset included the date of death for 
all participants which occurred after attending the clinic until 17th of February 2014.  
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6.4.3 Health behaviours 
The participants were asked detailed questions about their smoking history. From this information 
was derived about whether they currently or had ever smoked. They were asked about their alcohol 
consumption, which was coded as an ordinal variable (0=never, 1=special occasions only, 2=one to 
three times a month, 3=once or twice a week, 4=three or four times a week, and 5=daily or almost 
daily). They were asked how many hours they spent watching television per day, and the number of 
days per week they did 10 minutes or more of moderate or vigorous physical activity. 

6.4.4 Income 
The participants were asked their average total before-tax household income. We transformed this 
into four binary variables indicating whether their income was above £18,000, £31,000, £52,000, or 
£100,000. 

6.4.5 Indicators of ageing 
During the clinic visit measures of grip strength were taken on both hands using a Jamar J00105 
hydraulic hand dynamometer. The measures for each hand were averaged and residualized to 
account for between device differences which accounted for 2.92% of the variation in grip strength. 
Pulsewave arterial stiffness was measured from the finger using an infra-red sensor (PulseTrace 
PCA2, CareFusion, USA). These measurements were residualized to account for between device 
differences which account for 2.53% of the variation in arterial stiffness.  

6.4.6 Anthropometry 
We derived height and BMI using the participant’s standing height was measured using a Seca 202 
measuring rod, and their weight was measured. 

6.4.7 Blood pressure 
The participants’ blood pressure was measured twice using an Omron 705 IT electronic blood 
pressure monitor. These measurements were averaged to give a measure of diastolic and systolic 
blood pressure. 

6.4.8 Neurocognitive  
The participants used a touchscreen to complete a battery of 13 fluid intelligence questions. The 
participants were given 2 minutes to answer as many questions correctly as possible. The 
participants were also asked if they were extremely, very, or moderately happy or unhappy. 

6.5 Statistical methods 
We investigated two potential instrumental variables for educational attainment, 1) the raising of 
the school leaving age in 1972, 2) an allele score (called the “educational attainment genetic score”) 
constructed using results from the discovery sample of a GWAS of years of education in an 
independent sample. 
 

6.5.1 The raising of the school leaving age 
In September 1972, the minimum school leaving age in the United Kingdom increased from 15 to 16. 
This forced participants who would otherwise have left school to remain in school for an extra year. 
This policy reform has been used by a large number of research papers to estimate the effect of 
schooling on later outcomes. It is a plausible natural experiment because parents of children 
affected by the reform could not have anticipated the change in the law at the time of conception. 
So on average individuals affected by the reform will be similar to those who were not affected. We 
used a 12-month bandwidth. This analysis compares the outcomes of the first individuals in the first 
school cohort affected by the reform to the outcomes of the last cohort who were not affected. We 
accounted for linear secular trends in the outcome using a difference in difference design. We 
subtracted the average year-on-year difference for the cohorts born in the ten years before and 
after the reform. See Davies and colleagues for further details.(21) 
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6.5.2 Allele scores for educational attainment 
We constructed the allele scores using the 74 SNPs which were associated with years of education 
(p<5e-08) in the discovery sample of the educational attainment GWAS.(30) Five SNPs reported by 
the GWAS were not available in the Haplotype Reference Consortium (HRC) panel, we replaced 
these SNPs with proxies that were in perfect LD and the HRC panel. See Supplementary Table 1 for a 
list of the specific GWAS used. The allele scores are the weighted sum of the number of education 
increasing alleles for each participant. The contribution of each SNP to the score was weighted by 
the size of the coefficient reported by the GWAS. The effect alleles of all GWAS results were 
harmonised to be consistent with the UK Biobank genome-wide data. We excluded palindromic 
SNPs with an allele frequency of 0.3 or above. We checked for consistency between the effect allele 
frequency between the GWAS and UK Biobank data. The allele frequencies were correlated 0.9913, 
and the maximum difference in allele frequency was 0.091. 
 

6.6 Specification tests 
Instrumental variables are defined by three assumptions, 1) they must be associated with the risk 
factor of interest, 2) they must have no common cause with the outcome (no confounding), and 3) 
they must have no direct effect on the outcome (the exclusion restriction). We tested whether the 
first assumption held using a partial F-statistic of the association of the instrument and the exposure. 
We investigated the plausibility of the second assumption by estimating the association of each of 
the instruments and a broad set of phenotypic and genetic confounders (defined below). We used 
covariate bias plots to account for the relative strength of the instruments.(24) Covariate balance 
plots are the ratio of the association of the instrument and a measured confounder and the 
association of the instrument and the exposure (educational attainment).(33) We estimated these 
terms using the generalised method of moments.(34) 
 
Covariate balance plots allow for direct comparison of the relative bias caused by omitting each 
observed covariate from an instrumental variable or multivariable-adjusted regression analysis. The 
third instrumental variable assumption, that the instrument has no direct effect on the outcome, 
can potentially be investigated (falsified) if there are measures of alternative mediating pathways. 
The UK Biobank recruited participants over the age of 40 after they completed full-time education; 
therefore it has few suitable measures to evaluate this assumption. We evaluated this assumption 
using a small number of available covariates and a set of genetic covariates. 
 
Previous studies have found that the raising of the school leaving age affected students who would 
otherwise have left school at the age of 15. These students were generally less academic, and most 
chose to leave at the new minimum age of 16. This meant the reform had little effect on the 
proportion of students remaining in school to the age of 18 or attending university. This means the 
raising of the school leaving age estimates the effect of an additional year of schooling at age 15. In 
contrast, the genetic variants associated with years of education are likely to associate with 
educational outcomes across the entire life course, and the probability of remaining in school at age 
15, 16, 18 and the likelihood of obtaining a degree. The effect identified by the genetic variants is, 
therefore, a weighted average of the effects of an additional year of educational attainment across 
the entire education distribution.(35, 36) We investigated this by plotting the difference in the 
cumulative density of educational attainment by the policy reform and between the quintiles of the 
educational attainment allele score. 

6.6.1 Covariates: Non-genetic 
We also assessed the association of the proposed instruments with 14 phenotypes that are 
measures of circumstances around the time of birth, childhood, or relating to family background. We 
assessed: birth location (easting, northing, Index of Multiple Deprivation, urban vs. rural and 
distance from London), early life factors (birth weight, whether the participant was breastfed, or 
their mother smoked during pregnancy, their comparative body size and height at age 10, and their 
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number of brothers and sisters). Some of these variables occurred after conception. However, they 
are unlikely to be directly affected by the educational attainment of the participant, so can provide 
useful evidence of the plausibility of the instrumental variable assumptions. 
 

6.6.2 Covariates: Genetic 
Genomes are determined at conception. Mendel’s law of independent assortment states that, in the 
absence of any other process (e.g. assortative mating, sample selection bias or variants in linkage 
disequilibrium), genetic variants for one trait will be inherited independently of another. Thus 
people who have many and few education increasing alleles should, on average, have a similar 
number of alleles known to increase BMI. However, individual SNPs are unlikely to provide sufficient 
statistical power. One way to increase the power is to assess this assumption using multiple variants 
for a given trait combined in polygenic risk scores. For example, if Mendel’s law of independent 
assortment holds, then we would expect a polygenic risk score for educational attainment to be 
independent of a polygenic risk score for BMI. If the education polygenic score associates with 
scores for other traits then it suggests that Mendel law is unlikely to hold.  
 
We evaluated this using genetic scores for 45 traits extracted from MR-Base (Supplementary Table 
1).(37) We constructed the scores from extracted SNPs that were associated with each trait at p<5e-
5. We used a lower threshold than is usually used for genome-wide significance (p<5e-8) to define 
the scores because we wanted to maximise the explanatory power of the scores. Furthermore, it is 
not possible for the educational attainment genetic score to have pleiotropic effects on the other 
polygenic scores. We LD pruned the SNPs for each trait using a threshold of r2>0.001 across a 
distance of 10,000kb. We excluded SNPs from these scores that were in LD (r2>0.001) with the 74 
SNPs identified as associated with educational attainment at the genome-wide level (p<5e-08) the 
educational attainment GWAS.(30) This resulted in a set of SNPs in independent points in the 
genome for each trait. We constructed allele scores equal to the sum of the effect alleles for each 
trait.(38) The contribution of each SNP to the allele score was weighted by the coefficient reported 
in the GWAS for that trait. We harmonised the direction of SNP effects between UK Biobank and the 
GWAS. Finally, we checked for consistency of the allele frequency reported in the GWAS and the UK 
Biobank data. 
 

6.7 Sample selection 
The UK Biobank is a highly non-random sample, that over sampled those with degrees and sampled 
relatively few people who have little education or no qualifications. This method of sampling could 
cause collider bias in our sample if the sample selection relates to both the outcome and the 
potential instruments. We accounted for this non-random sampling using inverse probability 
weights. Individuals who reported leaving school at age 15 were weighted by 34.29, and the selected 
participants who left school age 16 or older were weighted by 12.37 (weights rounded to two 
decimal places).(39) We investigated whether our results were sensitive to the specification of these 
weights in a sensitivity analysis in the supplementary materials. 
 

6.8 Instrumental variable estimators 
In our main analyses, we report the estimates of the effect of educational attainment using two-
stage least squares for continuous outcomes, and additive structural mean models for binary 
outcomes.(40–42) These identify the causal mean and risk differences respectively. The main 
analyses adjust for sex, age, and month of birth. We report sensitivity analyses without adjustment 
and also additionally adjusting for the covariates associated with the educational attainment genetic 
score in Figure 2 in the supplementary materials. 
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6.8.1 Identifying assumptions 
The two-stage least squares estimates of the effect on the continuous outcomes can be point 
identified by assuming a constant effect of education on the outcome, i.e. that an additional year of 
education causes the same unit change in the outcome for everyone. Alternatively, we could assume 
that the education allele score has a monotonic effect on education. That is, an additional 
educational attainment associated allele will increase the likelihood of having a higher level of 
education in everyone. This estimate identifies the “local average treatment effect” (LATE). This 
parameter is the effect of education on individuals whose educational choices were affected by the 
score. For the structural mean models for binary outcomes, we can either assume monotonicity, 
which is interpreted in the same way as above, or that the effects of education are the same 
regardless of the number of education variants each participant has. These estimates can be 
interpreted as the effect of education on individuals who chose to receive a given level of education. 
 

6.8.2 Sensitivity analyses 
We investigated the raw association of the education score and each of the outcomes, the so-called 
“reduced form”. The reduced form is a general test of causation under a minimal set of assumptions, 
i.e. it does not require point identification. Reduced form and instrumental variable estimates 
should be consistent in direction. We were concerned that our results could suffer from residual 
confounding given the non-random geographic distribution of alleles. So we investigated whether 
our results were sensitive to removing the basic controls (sex, year and month of birth, the first ten 
genetic principal components). We also investigated whether our results were sensitive to including 
a richer set of controls in the subset of participants with these data.  
 
Our results could be affected by bias due to pleiotropic effects of the variants. That is if the variants 
directly affected the outcomes via pathways other than education. We investigated this using MR-
Egger, weighted median, and weighted mode estimators in summary data analyses.(43–45) We 
included the inverse variance weighted estimates for comparison. These estimates use the 
educational attainment GWAS discovery sample coefficients. We assessed the variability in the 
estimated effect of education across the 74 genetic variants using the I2 statistic.(46) 
 

6.8.3 Data availability  
The analytic datasets used in the study have been [reviewer note - will be] archived with the UK 
Biobank study. Please contact access@ukbiobank.ac.uk for further information. 
 

6.8.4 Code availability 
All analyses were conducted in StataMP 14.0.(47) The code used to generate these results have been 
[reviewer note - will be] archived at (https://github.com/nmdavies/UKbiobank-MR-vs-ROSLA). 
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Supplementary Figure 1: The Mendelian randomization estimates identify the effects of education on 
the outcomes using directly inherited genetic variants known to associate with educational 
attainment. These effects could mediated via 1) an effect of the participants’ educational attainment 
on their later outcomes, 2) a direct effect of parents’ phenotypes on their offspring’s outcomes, 3) or 
assortative mating on education and other phenotypes (e.g. height) between parents. Dynastic 
effects would lead to the Mendelian randomization estimates to overestimate the direct effects of 
educational attainment. Assortative mating would induce associations between the 74 SNP known to 
associate with education and other variants associated with education or related traits across the 
genome. 
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Supplementary Figure 2: Selection of participants into the study 
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Supplementary Figure 3: The effect of one additional year of schooling on morbidity, mortality and 
socioeconomic outcomes estimated using the educational attainment genetic score with and without 

weighting for under-sampling of less educated ▲ and ▲ respectively. The weighting did not affect 
the estimates. 

 
 
Notes: Adjusted for month and year of birth, sex, and the ten principal components of population 
stratification. Confidence intervals allowing for clustering by month of birth reported. 
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Supplementary Figure 4: The association of morbidity, mortality and socioeconomic outcomes and 

the educational attainment genetic score ▲ (the “reduced form”). These estimates are consistent 
with the main analyses presented in Figure 3. 

 
 
Notes: Adjusted for month and year of birth, sex, and the ten principal components of population 
stratification. Confidence intervals allowing for clustering by month of birth reported. Sample 
weighted to adjust for under sampling of less educated. 
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Supplementary Figure 5: The effect of one additional year of schooling on morbidity, mortality and 
socioeconomic outcomes estimated using the educational attainment genetic score with and without 
adjusting for the sex, month and year of birth and principal components of population stratification 

▲ and ▲ respectively. The Mendelian randomization estimates were robust. 

 
 
Notes: Confidence intervals allowing for clustering by month of birth reported. Sample weighted to 
adjust for under sampling of less educated.  
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Supplementary Figure 6: Fully adjusted results. The effect of one additional year of schooling on 
morbidity, mortality and socioeconomic outcomes estimated using the educational attainment 
genetic score with and without additionally adjusting for breastfeeding, mother smoked during 

pregnancy, birth weight, birth location and deprivation (easting, northing, and distance to London) ▲ 

and ▲ respectively. The fully adjusted estimates were comparable after including additional 
covariates.  

 
Notes: Confidence intervals clustered by month of birth reported. Sample weighted to adjust for 
under sampling of less educated. All results adjust for month and year of birth, sex, and the ten 
principal components of population stratification. 
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Supplementary Figure 7: The effect of one additional year of schooling on morbidity, mortality and 
socioeconomic outcomes, estimated using the educational attainment GWAS genome-wide 
significant SNPs using inverse variance weighted, MR-Egger regression, weighted median and 

weighted modal estimators. 

 
Notes: Confidence intervals clustered by month of birth reported. Sample weighted to adjust for 
under sampling of less educated. All results adjust for month and year of birth, sex, and the ten 
principal components of population stratification. I2

gx=0.21, this suggests that MR-Egger may be 
biased towards the null, as there is only modest variation in the SNP-educational attainment 
associations. 
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Supplementary Table 1: The estimated heterogeneity in the estimated effect of education across 
SNPs. Estimated using the I-squared statistic.(43) 

Binary outcomes 
 95% Confidence interval 

I2 Lower Upper 

Hypertension 0.610 0.499 0.697 

Diabetes 0.470 0.303 0.596 
Stroke 0.238 0.000 0.433 
Heart attack 0.152 0.000 0.371 
Depressive episode 0.451 0.277 0.583 
Cancer 0.063 0.000 0.298 
Died 0.179 0.000 0.391 
Ever smoked 0.726 0.655 0.782 
Currently smoke 0.462 0.292 0.591 
Income over £18k 0.661 0.567 0.734 
Income over £31k 0.771 0.715 0.816 
Income over £52k 0.822 0.782 0.855 
Income over £100k 0.735 0.667 0.789 

Continuous outcomes    

Grip strength (kg)* 0.795 0.746 0.834 
Arterial Stiffness* 0.088 0.000 0.322 
Height (cm)* 0.887 0.865 0.906 
BMI (kg/m2)* 0.857 0.826 0.882 
Diastolic blood pressure (mmHg)* 0.787 0.736 0.828 
Systolic blood pressure (mmHg)* 0.744 0.679 0.796 
Intelligence (0 to 13)* 0.829 0.791 0.861 
Happiness (0 to 5 Likert)* 0.111 0.000 0.340 
Alcohol consumption (1 low, 5 high)* 0.769 0.712 0.814 
Hours of television viewing per day* 0.842 0.807 0.870 
Moderate exercise (days/week)* 0.690 0.606 0.755 
Vigorous exercise (days/week)* 0.558 0.427 0.660 
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