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Abstract 29 

Many tumors are characterized by large genomic heterogeneity and it remains unclear to what extent this 30 

impacts on protein biomarker discovery. Here, we quantified proteome intra-tissue heterogeneity (ITH) 31 

based on a multi-region analysis of 30 biopsy-scale prostate tissues using pressure cycling technology and 32 

SWATH mass spectrometry. We quantified 8,248 proteins and analyzed the ITH of 3,700 proteins. The 33 

level of ITH varied significantly depending on proteins and tissue types. Benign tissues exhibited 34 

generally more complex ITH patterns than malignant tissues. Spatial variability of ten prostate biomarkers 35 

was further validated by immunohistochemistry in an independent cohort (n=83) using tissue microarrays. 36 

PSA was preferentially variable in benign prostatic hyperplasia, while GDF15 substantially varied in 37 

prostate adenocarcinomas. Further, we found that DNA repair pathways exhibited a high degree of 38 

variability in tumorous tissues, which may contribute to the genetic heterogeneity of tumors. This study 39 

conceptually adds a new perspective to protein biomarker discovery by quantifying spatial proteome 40 

variation and it demonstrates the feasibility by exploiting recent technological progress.  41 
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Introduction 42 

During the last decade numerous new cancer treatment options have been developed. Their 43 

optimal application, however, requires better molecular characterization of the tumors with the aim of 44 

developing biomarkers matching the specific tumor to the best available therapy. Some cancer types, such 45 

as prostate cancer, still suffer from an ‘over treatment problem’, i.e. radical therapy such as removal of 46 

the organ in unnecessary cases due to uncertain diagnosis. These problems persist despite the recent 47 

progress in genomic, transcriptomic, and proteomic profiling of tumors. In contrast to the standardization 48 

of histopathological diagnostic categories, tumor grading, and standards of reporting, molecular testing is 49 

still underexploited in routine diagnostics of localized prostate cancer cases. A recent review about 50 

biomarkers in prostate cancer (Kristiansen, 2018) has highlighted the need to consider intra-tissue 51 

heterogeneity (ITH) in each individual case for successful molecular testing. ITH is of high clinical 52 

relevance. For instance, a tumor may contain a small sub-population of cells with primary resistance, 53 

leading to incomplete response to treatment or early recurrence (Murtaza, Dawson et al., 2015). High 54 

degree of Gleason score, DNA ploidy, and PTEN expression have been observed in prostate tumors (Cyll, 55 

Ersvaer et al., 2017). Thus, it remains a challenge to optimize clinical decisions based on single biopsies 56 

(Boutros, Fraser et al., 2015). 57 

Indeed, ITH is an important contributor to spatially variable molecular levels, which poses a 58 

substantial problem for biopsy-based tumor diagnostics, because for highly variable proteins, the 59 

measured quantity is position-dependent. Genomic ITH has been predicted based on clonal evolution and 60 

the cancer stem cell hypothesis (Dalerba, Cho et al., 2007). This prediction was experimentally validated 61 

by the application of high-throughput sequencing to small tissue samples and even single cells. Such 62 

studies have uncovered a high degree of genetic ITH in colon (Jones, Chen et al., 2008), pancreas 63 

(Yachida, Jones et al., 2010), breast (Russnes, Navin et al., 2011), prostate (Haffner, Mosbruger et al., 64 

2013), renal carcinomas (Gerlinger, Rowan et al., 2012), and leukemia (Cancer Genome Atlas Research, 65 

2013, Ding, Ley et al., 2012), with regard to both mutational and gene expression profiles of tumor cells. 66 

For example, Boutros et al. observed extensive ITH in prostate cancers at the level of gene copy number 67 

alterations and point mutations, which led to spatially divergent mutational patterns for thousands of 68 

genes, including several tumor-relevant genes (Boutros et al., 2015). It can be expected that genomic ITH 69 

will be translated, at least to some extent, to ITH at the protein level. For example, androgen receptor and 70 

prostate specific antigen (PSA/KLK3) expression can significantly vary between different regions within 71 

the same prostate carcinoma (Magi-Galluzzi, Xu et al., 1997, Shah, Bentley et al., 2015). Thus, there is a 72 

need to systematically describe and quantify protein level heterogeneity in tumor tissues.  73 

Despite this well recognized need, technical challenges have so far prevented the quantification of 74 

protein level heterogeneity in tumor specimens at the proteomic scale (Alizadeh, Aranda et al., 2015). 75 
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High-throughput antibody-based immunohistochemistry staining has been applied to tissue sections 76 

(Uhlen, Fagerberg et al., 2015). However, such data are semi-quantitative and limited in scope by the 77 

availability of suitable antibodies. Label-free shotgun proteomics has been used to explore in-depth the 78 

proteome of multiple regions of tumor tissues (Wisniewski, Ostasiewicz et al., 2012). However, due to 79 

the inherent technical limitations, the method is not suitable to systematically explore ITH at high sample-80 

throughput and high spatial resolution, which is essential to achieve adequate spatial resolution (Domon 81 

& Aebersold, 2010). Single-cell proteomics using mass cytometry is another promising technology 82 

allowing quantification of protein levels in thousands of individual cells. However, the technique at 83 

present only measures 10s of proteins per sample (Giesen, Wang et al., 2014). 84 

We have recently developed a mass spectrometry-based proteomics method, i.e. pressure cycling 85 

technology and sequential windowed acquisition of all theoretical fragment ion mass spectra (PCT-86 

SWATH)(Guo, Kouvonen et al., 2015b), which supports highly reproducible and accurate quantification 87 

of a few thousand proteins from biopsy-scale tissue samples at high throughput. This is accomplished by 88 

the integration into a single platform of optimized sample preparation, mass spectrometric and 89 

computational elements. To generate mass spectrometry-ready peptide samples from tissue samples we 90 

adopted PCT to lyse the tissues, extract proteins and digest them into peptides in a single tube under 91 

precisely controlled conditions (Powell, Lazarev et al., 2012). To analyze the resulting peptide samples, 92 

we used SWATH-MS, a massively parallel targeting mass spectrometry method (Gillet, Navarro et al., 93 

2012). In SWATH-MS all MS-measurable peptides in a sample are fragmented and periodically recorded 94 

over a single dimension of relatively short chromatography (Gillet et al., 2012). The net result of this 95 

technique is a single digital file that contains fragment ions of all mass spectrometry-detectable peptides, 96 

from which peptides and proteins are identified and quantified post acquisition, via a targeted data 97 

analysis strategy (Gillet et al., 2012, Röst, Rosenberger et al., 2014).  98 

In this study, we approached proteomic ITH for prostate cancer tissues by PCT-SWATH-based 99 

multi-region proteomic analysis of 60 biopsy-level tissue samples from three prostate cancer patients. We 100 

then computed the technical and spatial biological variation for each measured protein in different types 101 

of tissues and different patients, and established a proteome-scale landscape of protein ITH in benign and 102 

malignant prostate tissues. Our data revealed distinct ITH patterns of prostate cancer biomarkers that were 103 

further independently validated using immunohistochemistry (IHC) in an independent set of 83 patients. 104 

  105 
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RESULTS 106 

 107 

Study design for quantifying proteomic variability 108 

We designed a study to quantify spatial proteomic variability in multiple regions of malignant and 109 

matching benign prostate tissues using the PCT-SWATH-MS platform (Guo, Kouvonen et al., 2015a). 110 

We assumed that the total proteomic variability observed in the sample cohort was composed of technical 111 

and biological variation, the latter including inter-patient, inter-tissue and intra-tissue variation. To open 112 

the possibility to partition the overall observed variability into its possible sources, we obtained tissue 113 

samples from multiple regions of prostatectomy specimens as illustrated in Figure 1. Each sample was a 114 

tissue punch biopsy consisting of a cylinder of 1 mm diameter and about 3 mm length that was derived 115 

from fresh frozen tissue blocks using a core needle. Samples were obtained from prostatectomy 116 

specimens in three individuals diagnosed with adenocarcinoma (ADCA) of the prostate. Gleason grading 117 

was performed according to the International Society of Urological Pathology and the World Health 118 

Organization consensus (Epstein, Egevad et al., 2016, Humphrey, Moch et al., 2016) (Supplementary 119 

Fig. 1). In total, 12 benign prostatic hyperplasia (BPH) and 18 ADAC tissue samples were obtained. One 120 

of the three individuals had a mixed acinar and ductal ADAC, and both subtypes were included in the 121 

study to measure the variation resulting from morphologically distinct subtypes. The other two patient 122 

samples displayed acinar ADCA by histologic means. Each tissue type (malignant versus benign) of each 123 

patient was sampled three to six times resulting in a total of 30 biological samples. Each sample was 124 

processed by PCT-SWATH in duplicate to evaluate the technical variation of the proteomic analysis (Fig. 125 

1, Supplementary Table 1). The samples were grouped into 10 batches of six samples, according to 126 

patient identity, tissue type and technical replicate (Fig. 1A, Supplementary Table 2). This experimental 127 

design allowed us to subsequently estimate intra-tissue variability from within-batch comparisons (see 128 

Methods), which is important to avoid overestimating variances due to batch effects. 129 

 130 

Quantitative proteomic analysis of 30 prostate cancer tissue regions 131 

The 10 batches of samples were processed using PCT-SWATH in duplicate over a period of 15 132 

working days. The acquired SWATH-MS data were subjected to in silico targeted analysis using the 133 

OpenSWATH software(Röst et al., 2014) . In total, 39,493 proteotypic peptides and 8,248 protein groups 134 

were quantified consistently across all 60 measurements (Supplementary Table 3 and 4). The measured 135 

protein intensities were highly reproducible (average Pearson correlation values between replicates: 136 

0.944). To obtain high-confidence estimates of ITH, we subsequently narrowed our statistical variation 137 

analyses to a subset of 3,700 proteins quantified by at least two concordant proteotypic peptides. Our 138 

peptide selection procedure ensured that the selected peptides showed consistent behavior across samples. 139 
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Thereby, we minimized the possibility that peptide intensity variation was not due to protein abundance 140 

changes, but due to post-translational modifications or other artifacts (see Methods) (Picotti, Clement-141 

Ziza et al., 2013). We then corrected batch effects in the dataset by subtracting the average signal of each 142 

protein per batch. After batch correction, most technical replicates grouped together by unsupervised 143 

clustering based on the abundance of all proteins (Supplementary Fig. 2).  144 

 145 

Quantification of spatial proteomic heterogeneity  146 

Our estimates of proteomic ITH are based on the notion that the signal variation between two 147 

samples is due to a combination of biological and technical factors. Since the biological variation is not 148 

directly quantifiable, we estimated biological variance by subtracting the technical variance from the total 149 

observed punch-to-punch variance. 150 

The technical variance was estimated by calculating the dispersion between two technical 151 

replicates for each sample (independent protein digests from the same punch measured separately), i.e. 152 

generating 30 initial technical variance estimates per protein before averaging them (see Methods for 153 

details). This strategy produced seven technical variance estimates for all pairs of patient / tissue type 154 

(three normal tissue regions, three acinar tissue regions, and one ductal tissue region, Fig. 1). Pairwise 155 

correlations of these seven independent estimates showed that technical variances were consistently 156 

positively correlated, with a median correlation of 0.572 (Fig. 2A). Likewise, we analyzed the same type 157 

of correlation for the total punch variances. Like the technical variance, independent estimates of the total 158 

variance were also highly correlated, albeit with a slightly lower median correlation of 0.302, suggesting 159 

that the technical variance was more robust and less dependent on the specific sample than the total 160 

variance and the biological variance (Fig. 2B). Thus, as expected, the technical variance of a protein was 161 

mostly determined by its physico-chemical properties, whereas total variance varied in different tissue 162 

samples probably due to biological factors. Further, technical variance of log-transformed intensities was 163 

independent of the mean log-intensity (Supplementary Fig. 3), suggesting that the same estimate of 164 

technical variance could be used at high and low protein concentrations. Subsequently, we averaged the 165 

seven estimates of technical variance per protein to obtain a single, robust estimate of each protein’s 166 

technical variance. 167 

Having established that our estimates of total variances and technical variances are robust, we 168 

next computed biological variances by subtracting each protein’s technical variance from its total 169 

variance between punches of the same patient and tissue type (see Methods). This yielded an estimate of 170 

intra-tissue biological variances of protein abundance which can be interpreted as the degree of proteomic 171 

ITH. The technical and total variances were independently estimated, which makes it numerically 172 

possible that the technical variance can be larger than the total variance of a specific set of punches. 173 
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Indeed, for 183 proteins (4.9%) the estimated technical variance was larger than the total variance 174 

(Supplementary Fig. 4). These were mostly the proteins with very low total variance. We could not 175 

rigorously quantify the biological variances of these proteins, nevertheless, we assumed that most of them 176 

would have comparably low biological variances. Proteins with technical variances higher than total 177 

variances were excluded from most subsequent analyses. 178 

Next, we compared the biological variances within a tissue with the biological variance between 179 

tissue types (benign versus malignant; termed inter-tissue) and between patients (Fig. 3). Inter-tissue and 180 

inter-patient variances were obtained by first averaging protein intensities from punches of the same 181 

tissue or patient, respectively (see Fig. 1A and Methods). Our data showed that the biological variance 182 

between punches within the same tissue (i.e. intra-tissue variance) is of similar magnitude as the variation 183 

of average intensities between tissues and patients, indicating a high degree of protein ITH (Fig. 3A). 184 

Further, the protein variances between patients, tissue, and within tissue were significantly correlated 185 

(Fig. 3B-D). Thus, a protein with large intra-tissue variation is also likely to vary across tissues and 186 

between the three patients.  187 

 188 

Classification of proteins based on their intra-tissue variability 189 

To characterize ITH in different tissue types, we compared the biological variance of each protein 190 

in benign and malignant prostate tissues, and quantified the variability of 3,517 proteins in BPH and 191 

ADCA tissue samples (Supplementary Table 5). Interestingly, we observed a strong dependence of the 192 

variability of some proteins on the tissue type. We then classified the thus quantified proteins into five 193 

groups based on their biological variance patterns in the different sample types (Fig. 4A). Group no. 1 194 

consisted of 100 proteins that were always robust and generally showed little intra-tissue variation in 195 

benign and malignant prostate tissues. Group no. 2 consisted of 339 proteins that varied substantially 196 

more in benign tissues compared to malignant tissues. Group no. 3 consisted of 93 proteins that varied 197 

more strongly in malignant tissues compared to benign tissues. Group no. 4 contained 365 proteins that 198 

had high intra-tissue variance in both malignant and benign tissues, while group no. 5 contained the 199 

remaining 2,620 proteins with intermediate variability. Remarkably, the top three most variable proteins 200 

in BPH are three proteins known or used in the diagnosis of prostate tumors, including prostate-specific 201 

antigen (PSA/KLK3), prostatic acid phosphatase (PAP/ACPP) and Desmin (DES). PSA is an androgen-202 

regulated kallikrein family serine protease, that is produced by the secretary epithelial cells in acini and 203 

ducts of prostate glands (Balk, Ko et al., 2003). The secreted PSA, originated from prostate tissues, is the 204 

most commonly used, blood-based biomarker for prostate cancer (Hayes & Barry, 2014). However, PSA 205 

screening has remained controversial because of uncertainty surrounding its benefits and risks and the 206 

optimal screening strategy (Barry, 2009). Our data showed that PSA in situ was most variable in BPH but 207 
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more stable in ADCA tissues. Since PSA is regulated by androgen, this indicates androgen-driven 208 

malignant growth of prostate tumor cells. PAP is a non-specific tyrosine phosphatase and a well-studied 209 

tumor suppressor for PCa. PAP has already been used in immunotherapy regimens against PCa (Di 210 

Lorenzo, Buonerba et al., 2011) and is the second most variable protein in BPH after PSA. The variability 211 

of PAP expression was relatively high in ADCA samples, but lower than its variability in BPH samples. 212 

Desmin (DES) constructs class-III intermediate filament in smooth muscle cells. As a marker for prostate 213 

stromal composition, DES expression has already been associated with PCa survival (Ayala, Tuxhorn et 214 

al., 2003). Tuxhorn et al. have shown that prostate cancer-reactive stroma is composed of a 215 

myofibroblast/fibroblast mix with a significant decrease or complete loss of fully differentiated smooth 216 

muscle, whereas normal prostate stroma is predominantly smooth muscle (Tuxhorn, Ayala et al., 2002). 217 

Given the known heterogeneous composition of myoglandular hyperplasia (i.e. BPH) out of glandular and 218 

stromal (smooth muscle) elements, the higher variability of DES expression in BPH compared to PCa is 219 

not surprising.  220 

To further investigate the protein variability classes, we then performed a gene ontology (GO) 221 

enrichment analysis (Fig. 4B). As expected, stable proteins of group no. 1 were enriched for basic cellular 222 

functions that were required irrespective of the tissue state, such as energy metabolism (Fig. 4B). Proteins 223 

highly variable in both malignant and benign tissues (group no. 4) were enriched for immunity-associated 224 

processes. Muscle-related proteins exhibited a high degree of heterogeneity in benign tissues, reflecting 225 

the fact that smooth muscle fibers are part of healthy prostate tissues, whereas prostate cancer glands are 226 

per definition closely packed with less intervening stroma (Humphrey et al., 2016). This agrees with the 227 

variability observed for the DES as discussed above. Proteins associated with cell cycle-related functions 228 

such as nucleosome and chromatin assembly displayed a high degree of heterogeneity in malignant 229 

tissues. Thus, our data is consistent with recent findings suggesting that the proliferation rates among 230 

prostate cancer cells can be highly variable (Zellweger, Gunther et al., 2009), and that epigenetic events 231 

are of high importance in prostate carcinogenesis (Beharier, Shusterman et al., 2015, Grasso, Wu et al., 232 

2012, Plass, Pfister et al., 2013). 233 

 234 

Spatial heterogeneity of biochemical pathways 235 

Based on the determined protein level variance patterns described above we could also 236 

interrogate the ITH of biochemical pathways. To quantify a pathway’s variance we computed the average 237 

biological variance (intra-tissue variance) for all human pathways from ConsensusPathDB (Kamburov, 238 

Stelzl et al., 2013) with at least five quantified proteins (Fig. 4C). Like the individual proteins, we 239 

grouped pathways into five groups depending on their degrees of heterogeneity in malignant and benign 240 

tissues. Five pathways emerged as being particularly variable in tumor tissues (i.e., average biological 241 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2018. ; https://doi.org/10.1101/250167doi: bioRxiv preprint 

https://doi.org/10.1101/250167


 
 
 
Guo, Li, Zhong, et al. Quantify prostate tissue proteome heterogeneity.                                            Page  9 / 26 

variance in malignant samples above 0.02): ‘Fanconi Anemia Pathway’, ‘Meiosis’, ‘Meiotic synapsis’, 242 

‘Regulation of cell cycle progression by plk3’, as well as ‘Role of brca1 brca2 and atr in cancer 243 

susceptibility’. These pathways are involved in DNA damage response and include proteins such as 244 

serine/threonine-protein kinase ATR and the cohesion complex. The specific role of these pathways in 245 

responding to chromosomal aberrations suggests that the occurrence and repair of double strand breaks 246 

(which are a hallmark of prostate cancer) are heterogeneous within tissue specimens (Haffner, Aryee et 247 

al., 2010). Pathways highly variable only in non-tumorous tissues are markedly enriched for immune 248 

activity. The stromal component of BPH samples demonstrated a high degree of ITH in antigen 249 

processing and presentation, naïve CD8+ T cells signaling, IL12- mediated signaling, interactions 250 

between a lymphoid and a non-lymphoid cell, MHC class I complex expression, NK-cell mediated 251 

cytotoxicity, suggesting the combat between carcinogenesis and immunity. Consistent with the previous 252 

analysis, we observed more variable muscle contraction activity in non-tumorous tissues. The only 253 

pathway variable in both tumorous and non-tumorous tissues was the synthesis of phosphatidic acid, a 254 

critical component of mTOR signaling and a biosynthetic precursor for all cellular acylglycerol lipids 255 

with critical roles in prostate tissue biology (Fang, Vilella-Bach et al., 2001, Foster, 2009). 256 

 257 

Investigation of spatial heterogeneity of selected proteins using immunohistochemistry (IHC) in an 258 

independent cohort 259 

We further investigated the biological variation of selected proteins from the PCT-SWATH 260 

analysis using a complementary technology in an independent, larger cohort. We constructed a tissue 261 

microarray (TMA) using benign and malignant (ADCA) prostate tissues from 83 additional patients and 262 

established IHC assays to measure the expression of ten representative proteins in the various ITH groups 263 

identified from the PCT-SWATH results, including ACTR1B, DES, PSA, GDF15 as shown in Fig. 5, as 264 

well as ACPP, ABCF1, NUP93, CUTA, CRAT, and FSTL1 (Supplementary Fig. 5). This set of 265 

validation proteins contains some well-established markers for prostate cancer in order to elucidate their 266 

variability within benign and tumorous tissue specimens. The stained TMAs contained duplicate tissue 267 

cores of 48 ADCA and 35 BPH samples. The heterogeneity of proteins was evaluated based on an 268 

immunoreactivity score computed from duplicate tissue spots and measured by the Pearson correlation 269 

coefficient between the two spots for BPH and ADCA respectively (Fig. 5). Thus, a high Pearson 270 

correlation score indicates a homogeneous distribution of the respective protein in the TMAs (i.e. low 271 

ITH). We found that the degree of ITH determined in the three patients by PCT-SWATH was well 272 

validated in the independent cohort. ACTR1B is an actin-related protein in the dynamin complex to 273 

construct cytoskeleton. This house-keeping protein exhibited a very high degree of correlation in both 274 

BPH (r = 0.96) and ADCA (r = 0.80) samples, serving as a positive control.  In the TMA cohort, DES 275 
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was more variable in BPH (r = 0.51) than in ADCA (r = 0.67), which is consistent with proteomics data. 276 

Our TMA data demonstrated that in BPH samples, PSA was found only in the glandular tissue, and 277 

expressed more heterogeneous than in ADCA samples, with blood PSA levels being a non-specific 278 

biomarker for PCa. Growth/differentiation factor 15 (GDF15) is a stress-induced cytokine belonging to 279 

the transforming growth factor beta superfamily (Vanhara, Hampl et al., 2012). This protein is expressed 280 

in highly complex forms with distinct biological functions related to immunity. In various tumors 281 

including prostate cancer, GDF15 interacts with the extracellular matrix and promotes tumor progression 282 

and metastasis (Vanhara et al., 2012). We found GDF15 to be expressed at relatively low levels in BPH 283 

with a low degree of ITH probably due to inflammatory changes of glandular architecture followed by 284 

stromal tissue increase in BPH (Vanhara et al., 2012). In the ADCA samples, GDF15 expression was 285 

elevated with a high degree of variation, indicating complex interactions between tumor cells and the 286 

microenviroment via modulators including GDF15. The high variability of ACPP in BPH samples was 287 

also confirmed in this cohort. Proteins grouped as medium heterogeneity including ABCF1, NUP93, 288 

CUTA, CART, and FSTL1 displayed consistent heterogeneity patterns after manual inspection of the 289 

TMA data. Taken together, we observed significant correlations between the heterogeneity measured in 290 

the TMAs and the biological variance measures obtained with PCT-SWATH across all 10 proteins (Fig. 291 

6).   292 

 293 

 294 

DISCUSSION 295 

 This study investigated the spatial variability of the prostate proteome, which serves as a basis for 296 

better understanding the biology of PCa protein biomarkers. Protein biomarkers including PSA and 297 

GDF15 have been well studied in PCa, however, their spatial expression in prostate tissues has not been 298 

systematically studied. ITH has been studied at the morphologic and genomic level in diverse cancers, 299 

and it poses a major challenge for cancer biology and diagnosis (Alizadeh et al., 2015). However, 300 

proteomic ITH remains underexplored in prostate cancer, despite the critical roles of proteins in 301 

tumorigenesis and cellular biochemistry in general and the various single cell-based methods.  302 

This study represents a technical advance towards understanding spatial ITH at the proteome 303 

level for solid tumors and other tissues. Using the PCT-SWATH methodology (Guo et al., 2015b) and an 304 

associated data analysis strategy (Röst et al., 2014), we achieved deep proteomic coverage (consistent 305 

quantification of 8,248 reviewed SwissProt proteins across the 60 prostate tissue samples), and performed 306 

quantitative analysis of spatial ITH of 3,700 proteins, which were quantified by at least two proteotypic 307 

peptides that showed consistent abundance across samples. Despite the rigorous filtering, we could 308 

quantify a similar number of proteins like other studies of primary tissues, which used extensive peptide 309 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 18, 2018. ; https://doi.org/10.1101/250167doi: bioRxiv preprint 

https://doi.org/10.1101/250167


 
 
 
Guo, Li, Zhong, et al. Quantify prostate tissue proteome heterogeneity.                                            Page  11 / 26 

fractionation (Zhang, Wang et al., 2014, Zhang, Liu et al., 2016), and a three times higher number of 310 

proteins than a recent proteomic analysis of primary prostate tissue samples (Iglesias-Gato, Wikstrom et 311 

al., 2016). The number of proteins quantified in this study exceeds by 1-2 orders of magnitude the number 312 

of proteins typically quantified by tissue staining, which is the current standard method for protein 313 

quantification in clinical tissue samples. Our data did not achieve single cell resolution like the CyTOF 314 

technology These technologies, however, quantify orders of magnitude fewer proteins (Amir el, Davis et 315 

al., 2013, Giesen et al., 2014, Levine, Simonds et al., 2015). The data generated in this study are unique 316 

with respect to the structure of the sample set, the degree of proteomic coverage, and the degree of 317 

measurement reproducibility and accuracy. Nevertheless, new MS-based proteomics technologies 318 

enabling analysis of single cells from tissue samples will be desirable to quantify spatial ITH at higher 319 

spatial resolution in future studies. 320 

The main goal of this study was not to discover new protein biomarkers; instead we aimed to 321 

characterize the spatial ITH of the prostate proteome and investigate whether the ITH influences the 322 

utility of protein biomarkers and candidates. Our data contributed to the understanding of the following 323 

prostate cancer biology. First, we systematically reported the degree of ITH of 3,700 proteins in prostate 324 

tissues. Although some of these proteins are widely used in clinic, their expression pattern in prostate 325 

tumors was unclear. We found PSA preferentially variable in BPH, while GDF15 tended to vary in 326 

different tumor regions. This finding, together with the ITH pattern of eight more clinically relevant 327 

protein biomarkers, were further investigated and confirmed in an independent cohort of 83 PCa patients 328 

using TMA technology. This additional cohort analysis not only confirm that the PCT-SWATH 329 

technology is a valid and practical extension of IHC and TMA for proteome-scale ITH analysis of clinical 330 

tissue samples, but also consolidated the spatial variability of these proteins in prostate tissues, providing 331 

guidance for clinical application of these proteins as biomarkers. We found protein ITH patterns to vary 332 

between tissue types due to their biological functions and interplay with the microenvironment. 333 

Second, the data also shed light on the heterogeneity of multiple biochemical pathways. 334 

Interestingly, benign tissue displayed a high degree of variability in immunity-related signaling pathways, 335 

whereas tumor tissues, characterized by enhanced proliferation and DNA-damage, exhibited high degree 336 

of heterogeneity in several DNA damage response pathways, suggesting that spatially variable DNA 337 

repair pathways probably contributed to genomic heterogeneity during the evolution of prostate cancers. 338 

Further, we found that the degree of intra-tissue variability of multiple pathways was slightly higher in 339 

benign specimens compared to malignant tissues (Fig. 4), which may be due to the more complex 340 

structure of healthy tissues involving a larger number of distinct cell types, while in tumorous tissues 341 

most cell types are replaced by tumor cells.  342 
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The observed intra-tissue protein variability patterns have implications that extend beyond the 343 

present study to protein biomarker studies in general and have specific significance for biomarker studies 344 

in the context of personalized medicine, where sample availability is generally sparse. Our data suggest 345 

that the variation of some protein levels between patients is similar in magnitude to the variation within a 346 

single prostate. These findings underline the significance of low intra-tissue variability as an important 347 

property of a clinical protein biomarker. In fact, the observed variability patterns provide a rational 348 

explanation why some previously published tissue biomarker studies did not produce concordant results. 349 

Similar conclusions were drawn in an earlier study, in which the abundance variability of plasma proteins 350 

was analyzed in a twin cohort (Liu, Buil et al., 2015). The data indicated that those biomarker candidates 351 

that were proposed in the literature and eventually approved for clinical use showed low levels of 352 

variability derived from genetic differences in a population. In contrast, biomarker candidates proposed in 353 

the literature that showed a high degree of genetically caused abundance variation in a population were 354 

rarely validated. Our data add a new perspective to this problem: a candidate biomarker may show high 355 

variability between patients when quantified using single needle biopsies per patient. However, the 356 

tumor-wide average concentrations may not be substantially different, and the true cause of the apparent 357 

inter-patient variability may be ITH, rather than rooted in the biochemical difference between normal and 358 

tumor tissues. Therefore, we suggest that intra-tissue variability of a protein or a pathway be used as an 359 

important criterion for the assessment of protein biomarker candidates, in addition to other parameters 360 

such as expression level and biochemical function. Including more biological replicates per patient to 361 

average out protein ITH or increasing patient numbers to account for variability may not always be 362 

possible. Thus, our work provides an important lead as to how ITH can be tackled even for small patient 363 

and sample numbers in clinically realistic scenarios.   364 
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MATERIALS & METHODS 365 

 366 

Patients and samples for PCT-SWATH analyses 367 

The prostates from three patients after prostatectomy were cut into tissue sections (thickness: 368 

about 3 mm). Fresh BPH and ADCA tissue sections were frozen and embedded in O.C.T.. The tissue 369 

were examined by trained pathologists and graded similarly according to the Gleason system as shown in 370 

Fig. 1. Tumorous tissues from each patient contained acinar prostate tumors, while one patient included 371 

an extra ductal prostate tumor. To obtain biopsy-scale tissue samples for PCT-SWTH analysis, we 372 

utilized a needle to punch out tissue cylinders (diameter: 1 mm, length: ~ 3 mm) at the locations as shown 373 

in Fig. 1. Multiple (three or six) punches were obtained from each area. The Ethics Committee of the 374 

Canton of Zurich approved all procedures involving human fresh frozen material. All three patients were 375 

part of the Zurich prostate cancer outcomes cohort study (ProCOC, KEK-ZH-No. 2008-0040) (Umbehr, 376 

Kessler et al., 2008, Wettstein, Saba et al., 2017), and each patient signed an informed consent form.  377 

 378 

PCT-SWATH 379 

The tissue samples were first washed to eliminate O.C.T., followed by PCT-assisted tissue lysis 380 

and protein digestion, and SWATH-MS analysis, as described previously (Guo et al., 2015b). Briefly, 381 

each tissue punch was washed with 70% ethanol / 30% water (30 s), water (30 s), 70% ethanol / 30% 382 

water (5 min, twice), 85% ethanol / 15% water (5 min, twice), and 100% ethanol (5 min, twice). 383 

Subsequently, the tissue punches were placed in PCT-MicroTubes with PCT-MicroPestle and 30 µl lysis 384 

buffer containing 8 M urea, 0.1 M ammonium bicarbonate, Complete protease inhibitor cocktail (Roche) 385 

using a barocycler (model NEP2320-45k, PressureBioSciences, South Easton, MA) which offers cycling 386 

alternation of high pressure (45,000 p.s.i., 50 s per cycle) and ambient pressure (14.7 p.s.i., 10 s per cycle) 387 

for 1 h. The extracted proteins were then reduced and alkylated prior to lys-C and trypsin-mediated 388 

proteolysis under pressure cycling. Lys-C (Wako; enzyme-to-substrate ratio, 1:40) -mediated proteolysis 389 

was performed under 45 cycles of pressure alternation (20,000 p.s.i. for 50 s per cycle and 14.7 p.s.i. for 390 

10 s per cycle), followed by trypsin (Promega; enzyme-to-substrate ratio, 1:20)-mediated proteolysis 391 

using the same cycling scheme for 90 cycles. The resultant peptides were cleaned by SEP-PAC C18 392 

(Waters Corp., Milford, MA) and analyzed, after spike-in 10% iRT peptides, using SWATH-MS 393 

following the 32-fixed-size-window scheme as described previously with a 5600 TripleTOF mass 394 

spectrometer (Sciex) and a 1D+ Nano LC system (Eksigent, Dublin, CA). The LC gradient was 395 

formulated with buffer A (2% acetonitrile and 0.1% formic acid in HPLC water) and buffer B (2% water 396 

and 0.1% formic acid in acetonitrile) through an analytical column (75 μm × 20 cm) and a fused silica 397 

PicoTip emitter (New Objective, Woburn, MA, USA) with 3-μm 200 Å Magic C18 AQ resin (Michrom 398 
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BioResources, Auburn, CA, USA). Peptide samples were separated with a linear gradient of 2% to 35% 399 

buffer B over 120 min at a flow rate of 0.3 μl min−1. Ion accumulation time for MS1 and MS2 was set at 400 

100 ms, leading to a total cycle time of 3.3 s.  401 

 402 

SWATH assays for prostate tissue proteome 403 

We also analyzed unfractionated prostate tissue digests prepared by the PCT method using Data 404 

Dependent Acquisition (DDA) mode in a tripleTOF mass spectrometer over a gradient of 2 hours as 405 

described previously (Röst et al., 2014). We spiked iRT peptides (Escher, Reiter et al., 2012) into each 406 

sample to enable retention time calibration among different samples. We then combined this library with 407 

the DDA files from pan-human library (Rosenberger, Koh et al., 2014). All together we analyzed 422 408 

DDA files using X!Tandem (MacLean, Eng et al., 2006) and OMSSA (Geer, Markey et al., 2004) against 409 

a target-decoy, non-redundant human UniProtKB/Swiss-Prot protein database (Oct 21, 2016) containing 410 

20,160 protein sequences and the iRT peptide sequences. Reversed protein sequences were used as decoy 411 

sequences. We allowed maximal two missed cleavages for fully tryptic peptides, and 50 p.p.m. for 412 

peptide precursor mass error, and 0.1 Da for peptide fragment mass error. Static modification included 413 

carbamidomethyl at cysteine, while variable modification included oxidation at methionine. Search 414 

results from X!Tandem and OMSSA were further analyzed through Trans-Proteomic Pipeline (TPP, 415 

version 4.6.0) (Deutsch, Mendoza et al., 2010) using PeptideProphet and iProphet, followed by SWATH 416 

assay library building procedures as detailed previously (Guo et al., 2015b, Schubert, Gillet et al., 2015). 417 

Altogether, we identified 160,442 peptides with <1% FDR.  418 

 419 

Peptide quantification using OpenSWATH 420 

 SWATH files were analyzed using the prostate tissue proteome assay library described above and 421 

OpenSWATH software as described previously (Röst et al., 2014). Briefly, wiff files were converted into 422 

mzXML files using ProteoWizard  msconvert v.3.0.3316, and then mzML files using OpenMS (Sturm, 423 

Bertsch et al., 2008) tool FileConverter. OpenSWATH was performed using the tool 424 

OpenSWATHWorkflow with input files including the mzXML file, the TraML library file, and TraML 425 

file for iRT peptides. The false discovery rate for peptide identification was below 0.1%. High confidence 426 

peptide features from different samples were aligned using the algorithm TRansition of Identification 427 

Confidence (TRIC) (version r238), which is available from 428 

https://pypi.python.org/pypi/msproteomicstools or https://code.google.com/p/msproteomicstools/. The 429 

following parameters for the feature_alignment.py are as follows: max_rt_diff = 30, method = 430 

global_best_overall, nr_high_conf_exp = 2, target_fdr = 0.001, use_score_filter = 1.  431 

 432 
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Protein quantification 433 

The concentration of each protein was quantified through the simultaneous measurement of 434 

several peptides. To optimize the protein quantification, we developed a new computational method, 435 

which combines maximally consistent peptides for each protein and excludes inconsistent (i.e. 436 

uncorrelated) peptides (Picotti et al., 2013). For example, variation of post-translational modifications 437 

(PTM) would result in peptide level variation that is uncorrelated across samples, because mostly only 438 

one of the two peptides would be affected by the PTM.(Picotti et al., 2013). Given a set of peptides 439 

unambiguously assigned to a single protein, consistent peptides were selected using the following 440 

procedure: all pairwise correlations between all peptides of a protein across the samples were calculated 441 

at first. Peptide pairs with a Pearson correlation coefficient (R) of at least 0.3 were determined, resulting 442 

in clusters of correlated peptides. This procedure yielded one or more peptide clusters per protein. We 443 

used the largest cluster of each protein and we quantified the protein’s concentration as the average 444 

intensity across the peptides in that cluster. The minimum cluster size was set to 2 and proteins without a 445 

cluster of at least two correlated peptides were removed from the subsequent analysis. This procedure 446 

resulted in very robust concentration estimates for 3,700 proteins with high correlation between technical 447 

replicates (R ≥ 0.95) and no missing values.  448 

 449 

Determining the biological variance between punches in a specific tissue (intra-tissue variance) 450 

Measurements of protein abundance differences between individual punches are affected by a 451 

combination of biological and technical factors. Thus, to quantify the biological variation between 452 

punches we need to subtract the technical variance from the total variance, i.e. the combined variance due 453 

to technical and biological factors. Estimating the biological variance of protein levels between punches 454 

therefore requires estimates of the technical variance and the total variance. Intuitively, one would 455 

estimate both variances using a standard approach such as ANOVA in a single statistical model. 456 

However, technical replicates are paired because they come from the same punch and thus they are not 457 

independent, whereas the total variance needs to be estimated across punches, i.e. involving partially 458 

independent measurements. 459 

Therefore we decided to separately estimate technical and total variances. Here, technical 460 

variance was estimated from the dispersion of measurements between paired technical replicates and total 461 

variance was estimated from the dispersion of measurements between independent punches from the 462 

same specimen. Compared to an approach estimating both technical and total variance in a single 463 

statistical model, our approach has the caveat that the two variance estimates can be inconsistent in the 464 

sense that the estimated total variance can be smaller than the estimated technical variance. Obviously, 465 

this happens only for those proteins where the technical noise is large compared to the biological 466 
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variance, in which case it is anyways impossible to reliably estimate the true biological variance (no 467 

matter which statistical approach is taken). We therefore conservatively accept that in those cases we 468 

cannot provide an estimate of the biological variance. However, we assume that in most of those cases the 469 

biological variance will be small compared to the other proteins for which we could estimate a biological 470 

variance. 471 

In detail, the variances were estimated in the following way. 472 

First, the protein concentrations (computed from peptide intensities as described above) were 473 

log10-transformed. Next, protein concentrations were quantile normalized per sample. As the signal 474 

distributions between non-tumorous (benign) and tumorous tissue (malignant: acinar and ductal) differed 475 

significantly, the normalization was performed separately for each tissue type. For each protein, we 476 

computed the technical variation for each sample and averaged the inter-replicate variance across all 30 477 

samples (Tukey, 1977). Since technical replicates are (obviously) paired, the technical variance was 478 

estimated as the dispersion of the two replicates from their sample mean averaged across all punches (n = 479 

30). Thus, the technical variance VARTECH of protein i was estimated as: 480 

𝑉𝐴𝑅𝑇𝐸𝐶𝐻𝑖 =
1

𝑛
∑

(𝑥𝑖,𝑗𝑎 − 𝑥𝑖,𝑗𝑏)
2

2

𝑛

𝑗=1

 481 

with 𝑥𝑖,𝑗𝑎 and 𝑥𝑖,𝑗𝑏 being the two technical replicates (a and b) of the protein level measurements 482 

from punch j. In this case, no batch correction was performed, because batch correction would reduce the 483 

technical variance (technical replicates were always in different batches), which might lead to 484 

underestimation of the technical variance. The final estimate of technical variances was computed after 485 

removing outliers above and below the 1.5*IQR of 30 samples based on Tukey’s method (Tukey, 1977).  486 

The total variances between punches (i.e. the combined variance from technical noise and 487 

biological variance) were initially computed for each batch separately. Thus, variation among punches 488 

from the same specimen (same patient p and same tissue type t) were averaged. Finally, total variances 489 

VARTOT between punches were averaged across batches.  490 

𝑉𝐴𝑅𝑇𝑂𝑇𝑖(𝑝, 𝑡) =
1

2
[𝑉𝐴𝑅 (𝑥𝑖,𝑗𝑎 , 𝑗 ∈ 𝑃(𝑝, 𝑡)) + 𝑉𝐴𝑅(𝑥𝑖,𝑗𝑏 , 𝑗 ∈ 𝑃(𝑝, 𝑡))] 491 

Where 𝑃(𝑝, 𝑡) denotes all punches j from patient p and tissue t (i.e. either benign, acinar, or 492 

ductal). The indices a and b denote the two technical replicates, as above. Thus, total variances were 493 

estimated purely from deviations within batches and are (unlike technical variances) not affected by 494 

batch-to-batch variation. As a consequence, technical variances are biased towards larger values 495 

compared to total variances. This approach is conservative in the sense that it minimizes the number of 496 

proteins that are falsely classified as having variable concentrations within tissues. Thus, this approach 497 

will likely underestimate the true number of proteins with large biological intra-tissue variance. Given the 498 
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total variance and technical variance, the biological variance VARBIO of protein i was computed as 499 

follows: 500 

𝑉𝐴𝑅𝐵𝐼𝑂𝑖(𝑝, 𝑡) = 𝑉𝐴𝑅𝑇𝑂𝑇𝑖(𝑝, 𝑡) − 𝑉𝐴𝑅𝑇𝐸𝐶𝐻𝑖 501 

This scheme generated seven independent estimates of total variance per protein: four for the 502 

patients no. 1 and no. 2 (benign and malignant acinar tissues) and three for patient no. 3 (benign, acinar, 503 

and ductal). The intra-tissue variance shown in Figure 4 is the average biological variance of a given 504 

protein across all patients and tissue types. The tissue-specific variances used for Figure 5 are the average 505 

variances across the patients for the respective tissues (benign, acinar, ductal). The biological variance in 506 

tumor was estimated as the average of all acinar and the ductal (patient 3) tumor regions. 507 

 508 

Grouping of proteins and pathways based on their variability 509 

In cases where the estimated technical variance is greater than the estimated total variance, 510 

subtracting the technical from the total variance yields a negative ‘variance estimate’ (Supplementary 511 

Fig 4). Because these negative ‘variances’ are the result of our imperfect variance estimates, the 512 

distribution of these values can be used to quantify the inherent uncertainty in our estimates of the 513 

biological variance. Thus, we can use the distribution of the absolute values (the ‘mirror distribution’ into 514 

the positive range) as a background distribution for the Null hypothesis that the true biological variance is 515 

indistinguishable from zero (or: that the total observed variance is exclusively due to technical variance). 516 

Based on this approach, 797 proteins had p-values below 0.01 and were thus classified as biologically 517 

variable proteins (i.e. significantly variable within the same specimen). These797 variable proteins were 518 

further sub-classified as follows: if the ratio of biological variance in benign to biological variance in 519 

tumor was above 2 they were classified as "variable in non-tumor" (339 proteins); if the ratio of 520 

biological variance in tumor to biological variance in normal was above 2, proteins were classified as 521 

"variable in tumor" (93 proteins); 365 proteins with similar variances in both tissue types (i.e. not 522 

different by more than a factor of 2) were classified as “variable in non-tumor and tumor”. Stable proteins 523 

were defined by choosing the 100 proteins with the lowest biological variance. Remaining proteins, which 524 

were not assigned to any of the above four groups, were classified as “medium heterogeneity” proteins. 525 

Note that our computation of empirical p-values for determining variable proteins is not critical 526 

for the conclusions. If we had simply chosen the top 200 most variable proteins (as the basis for groups 1-527 

3) and compared them to the 200 most stable proteins (group 4) the conclusions would be virtually 528 

identical. 529 

 530 

Gene Set Enrichment Analysis 531 
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Gene Ontology (GO) enrichment of proteins was performed using topGO, which takes the 532 

topology of the ontology into account. The enrichment analysis was carried out by using Fisher’s exact 533 

test with the background of measured proteins in this study. We excluded GO terms with less than 10 534 

proteins and with more than 300 proteins from the analysis (the former are too small, the latter are too 535 

generic). Further, we reported only GO terms that had at least 4 proteins enriched (overlapping). 536 

Intra-tissue heterogeneity of entire biochemical pathways was determined according to the 537 

protein level variance. Pathway variability was calculated by averaging the biological variances of all 538 

proteins annotated for a given ConsensusPathDB pathway. We required that each pathway contained at 539 

least five quantified proteins. ConsensusPathDB combines pathway annotations from different sources. 540 

Thus, in some cases the same pathway is reported more than ones. In such case the pathway variant with 541 

the largest number of quantified proteins was used.  542 

 543 

Determining the variance between tissues (inter-tissue variance) and between patients (inter-patient 544 

variance) 545 

Batch effects were corrected by centering each protein’s concentration per batch. In our 546 

experimental design, batches were balanced in the sense that each batch had the same number of benign 547 

and malignant samples (3 of each) and each batch had the same number of samples from the same patient 548 

(2 patients per batch, 3 samples from each patient).  549 

Inter-tissue variances were estimated using concentrations centered per patient (subtracting 550 

patient mean). Inter-patient variances were estimated using concentrations centered per tissue type 551 

(subtracting tissue mean across patients). All of those computations were based on batch-corrected 552 

concentrations and after averaging technical replicates. Batch-corrected values were also used for Figure 553 

2. 554 

 555 

Patient cohort and tissue microarray (TMA) 556 

The Ethics Committee of the Kanton St. Gallen, Switzerland approved all procedures involving 557 

human materials used in this TMA, and each patient signed an informed consent. For the study, patients 558 

with BPH and matching ADCA were included, whereas advanced prostate cancer, infectious or 559 

inflammatory diseases, or other malignancies fulfilled exclusion criteria as described previously (Cima, 560 

Schiess et al., 2011). A TMA was constructed using formalin-fixed, paraffin-embedded tissue samples 561 

derived from 83 patients (BPH, n = 35; ADCA, n = 48). 562 

 563 

Immunohistochemical staining and evaluation 564 
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The following primary antibodies were used to stain 4µm slides of the TMA using the Ventana 565 

Benchmark (Roche Ventana Medical Systems, Inc., Tucson, AZ, USA) automated staining system: 566 

ACTR1B (1:400; Abcam, 60 min pretreatment), Desmin/DES (1:20; DAKO A/S, 16 min pretreatment), 567 

KLK3/PSA (1: 10000; DAKO A/S) and GDF15 (1:50; biorbyt, 30 min pretreatment), ACPP (1:2000; 568 

DAKO A/S), ABCF1 (1:50; Novus Biologicals, 90 min pretreatment), NUP93 (1:50; NovusBiologicals, 569 

60 min pretreatment), CUTA (1:100; LifespanBiosciences, 60 min pretreatment), CRAT (1:100; Atlas 570 

Antibodies, 30 min pretreatment), and FSTL1 (1:100; Atlas Antibodies, 16 min pretreatment). Detection 571 

was performed with ChromoMap Kit (Ventana) for ABCF1, PCP4, CUTA and OptiView DAB Kit 572 

(Ventana) for the others (Desmin, KLK3/PSA, NUP93, CRAT, FSTL1,PAP) using the heat-induced 573 

epitope retrieval CC1 solution. Slides were counterstained with hematoxylin (Ventana), dehydrated and 574 

mounted. For GDF15 4µm slides were stained using the Leica Bond (Leica Biosystems, Muttenz, 575 

Switzerland) automated staining system. For detection the Bond Polymer Refine Detection kit and heat-576 

induced epitope retrieval HIER2 solution (Leica Biosystems) following Hematoxylin counterstaining was 577 

used. Staining intensities for each antibody were evaluated in a semi-quantitative, 4-tier manner (negative 578 

= 0, weak = 1, moderate = 2 and strong = 3), along with the occupied area (in 1%, 3%, 5% and above 579 

10% steps), by one pathologist (N.J.R.). An immunoreactivity score (IRS; staining intensity multiplied by 580 

percentage of spot; similar to the recommendations by Remmele & Stegner (Remmele & Stegner, 1987) 581 

consisting of "staining intensity x area (%)" was calculated.  582 

 583 

Data deposition 584 

The SWATH raw data and analyzed data as well as assay library are deposited in PRIDE 585 

(Vizcaino et al., 2014). For the SWATH data of the three patients: Project accession: PXD003497; 586 

Username: reviewer45594@ebi.ac.uk;  Password: Vvl6EFPj. For the SWATH data of the 27 patients: 587 

Project accession: PXD004589; Username: reviewer29994@ebi.ac.uk;  Password: 1zHGceA9. 588 
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FIGURE LEGENDS 779 

Figure 1. Study design. (A) H&E staining of the fresh frozen prostate tissue from three individuals who 780 

have contributed BPH (non-tumorous) and matching acinar or ductal adenocarcinoma. Green, orange, and 781 

blue lines depict regions diagnosed by a pathologist as BPH, acinar and ductal tumors, respectively. Black 782 

circles indicate where the punches were made. (B) Overall measured variation of protein expression was 783 

partitioned into biological and technical variation including inter-patient variation, inter-tissue variation, 784 

intra-tissue variation and technical variation from MS analysis and batch variation. Three or six punches 785 

were sampled from each tissue type, followed by PCT-SWATH analyses in technical duplicate. The 786 

samples were shuffled and analyzed in 10 batches of six samples.  787 

 788 

Figure 2. Consistency of technical and total variance. (A) Correlation of technical variances estimated 789 

independently for different samples. Technical variance is estimated from technical replicates. (B) 790 

Correlation of total variances (between punches) estimated independently from punches from different 791 

tissue samples (different patients, different tissue types).  792 

 793 

Figure 3. Correlation of biological variance between patients and tissue types. Each dot represents 794 

one protein. (A) Distributions of biological variance estimates. Inter-patient variances and inter-tissue 795 

variances are based on averaging the measurements of at least three punches. Intra-tissue variance was 796 

first determined independently per patient and tissue type, and then averaged. (B) Biological variance 797 

between tissue of the same patient versus variance between punches of the same patient and tissue. (C) 798 

Biological variance between different patients but same tissue type versus variance between punches of 799 

the same patient and tissue. (D) Biological variance between the same tissue types in different patients 800 

versus variance between different tissue types of the same patient.  801 

 802 

Figure 4. Intra-tissue heterogeneity in tumorous and non-tumorous tissue. (A) Biological variance 803 

among punches from the same tissue region was considered as the degree of intra-tissue heterogeneity for 804 

the respective tissue type. Degree of intra-tissue heterogeneity for each protein in benign versus malignant 805 

tissue are shown and colored according to classification. (B) GO enrichment analysis of four protein 806 

categories from (A). Length of horizontal bars indicates the significance of the enrichment. (C) Intra-807 

tissue heterogeneity of biochemical pathways. Each triangle is the average biological variance (intra-808 

tissue heterogeneity) of all quantified proteins from the respective pathway. Degree of intra-tissue 809 

heterogeneity for each pathway in benign versus malignant tissue are shown. Pathways were grouped 810 

according to their variability in benign and malignant tissue. 811 

 812 
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Figure 5. Immunohistochemical validation of representative proteins. The top proteins from four ITH 813 

groups in BPH and malignant (ADCA) prostate tissue were validated using a TMA with two 814 

representative tissue spots of each patient.  815 

 816 

Figure 6. Correlation between mass spectrometry-based (MS) variance estimates and TMA 817 

homogeneity. A shows benign tissues while B depicts tumor tissues. The concentrations of CRAT and 818 

NUP93 were almost zero in the benign tissue samples. Thus, it is virtually impossible to estimate their 819 

intra-tissue variation in benign tissues. The correlation between MS-based variance and TMA 820 

homogeneity was however computed without excluding these two proteins. NUP93 was slightly off the 821 

regression curve because its signal in IHC was relatively weak.   822 
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SUPPLEMENTARY FIGURES 823 

Supplemental Figure 1. Benign and malignant prostate tissue from three individuals. H&E staining 824 

of the fresh frozen prostate tissue used in this study. Amplified views of representative region in each area 825 

were shown in B – I as indicated. 826 

 827 

Supplementary Figure 2. Unsupervised clustering of 3700 proteins quantified with at least two 828 

concordant peptides. 829 

 830 

Supplementary Figure 3. Dependence of technical variance on protein intensity. Proteins are divided 831 

into eight bins with roughly the same number. X-axis shows the mean intensity value of each bin, and Y-832 

axis shows the log10 technical variance.  833 

 834 

Supplementary Figure 4. Density curves of biological variance. Occasionally, our estimate of the 835 

technical variance was larger than the variation between punches, after technical replicates were averaged 836 

per punch. This resulted in a negative estimate of the biological variance, which is of course infeasible. 837 

We assumed that those proteins have a biological variance close to zero, thus the total variance is mostly 838 

reflecting technical variance. Therefore, we used the distribution of negative scores as a background 839 

distribution (Null distribution) for the Null hypothesis that there is no biological variance between 840 

punches. The blue curve shows the negative part of the distribution mirrored on the positive side. The 841 

distribution of observed biological variance estimates (red) is clearly above that background distribution. 842 

 843 

Supplementary Figure 5. Staining images of protein expression for the tissue microarray. Six 844 

proteins (ACPP; ABCF1; NUP93; CUTA; CRAT; FSTL1) were measured using immunohistochemistry 845 

in a TMA containing tissue samples from 83 patients from an independent cohort, including 35 patients 846 

with BPH and 48 patients with prostate ADCA.  847 

 848 

Supplementary Table 1. Annotations of the 60 prostate tissue samples used for the PCT-SWATH 849 

analysis. 850 

Supplementary Table 2. Batch design of the 60 prostate tissue samples in the PCT-SWATH analysis. 851 

Supplementary Table 3. Peptides identified in the 60 prostate tissue samples. 852 

Supplementary Table 4. Proteins quantified in the 60 prostate tissue samples. 853 

Supplementary Table 5. Biological variance of proteins in the 60 prostate tissue samples. 854 
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