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ABSTRACT 

The complex neuropathology of traumatic brain injury (TBI) is difficult to dissect in the 

hippocampus considering the convoluted hippocampal cytoarchitecture. As a major casualty of 

TBI, hippocampal dysfunction results in cognitive decline that may escalate to other neurological 

disorders, and the molecular basis is hidden in the genomic programs of individual hippocampal 

cells. Using the unbiased single cell sequencing method Drop-seq, we uncovered the 

hippocampal cell types most sensitive to concussive mild TBI (mTBI) as well as the vulnerable 

genes, pathways and cell-cell interactions predictive of disease pathogenesis in a cell-type 

specific manner, revealing hidden pathogenic mechanisms and potential targets. Targeting Ttr, 

encoding the thyroid hormone T4 transporter transthyretin, mitigated the genomic and behavioral 

abnormalities associated with mTBI. Single cell genomics provides unique evidence about 

altered circuits and pathogenic pathways, and pinpoints new targets amenable to therapeutics in 

mTBI and related disorders. 
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TBI is common in domestic, sports, and military environments and often leads to long-

term neurological and psychiatric disorders1. The hippocampus is a member of the limbic system 

and plays a major role in learning and memory storage. As a major aspect of the TBI pathology2, 

hippocampal dysfunction leads to memory loss and related cognitive impairment. The 

hippocampal formation encompasses four Cornu Ammonis (CA) subfields largely composed of 

pyramidal cells, and their connections with dentate gyrus cells. The CA - dentate gyrus circuitry 

has served as a model to study synaptic plasticity underlying learning and memory. Glial cells 

are vital to the hippocampal cytoarchitecture, however, their interactions with neuronal cells are 

poorly defined. The heterogeneous properties of the hippocampal cytoarchitecture have limited 

the understanding of the mechanisms involved in the TBI pathology. Mild TBI (mTBI) is 

particularly difficult to diagnose given its broad pathology, such that there are no accepted 

biomarkers for mTBI3. This limitation becomes an even more pressing issue given the 

accumulating clinical evidence that mTBI poses a significant risk for neurological and 

psychiatric disorders within the spectrum of the hippocampus such as Alzheimer’s disease (AD), 

chronic traumatic encephalopathy (CTE), epilepsy, and dementia4. Accordingly, there is an 

urgent need to identify functional landmarks with predictive power within the hippocampus to 

address current demands in clinical neuroscience.  

Given that gene regulatory programs determine cellular functions, scrutiny of large-scale 

genomic changes can reveal clues to the molecular determinants of mTBI pathogenesis including 

cellular dysfunction, injury recovery, treatment response, and disease predisposition. However, 

existing genomic profiling studies of mTBI are based on heterogeneous mixtures of cell 

conglomerates5-9 which mask crucial signals from the most vulnerable cell types. Here, we report 

the results of a high throughput parallel single cell sequencing study, using Drop-seq, to capture 
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mTBI-induced alterations in gene regulation in thousands of individual hippocampal cells in an 

unbiased manner. We focused on concussive injury, the most common form of mTBI, using a 

mild fluid percussion injury (FPI) mouse model which induces identifiable hippocampal-

dependent behavioral deficits despite minimal cell death10. We examined the hippocampus at 

24h post-mTBI, as this is a pivotal timeframe for pathogenesis and is generally used for 

diagnostic and prognostic biomarker discovery11.  

To our knowledge, this is the first parallel single cell sequencing study to investigate the 

mTBI pathogenesis in thousands of individual brain cells, offering a cell atlas of the 

hippocampus under both physiological and pathological conditions. In doing so, we provide 

novel evidence about the cellular and molecular remodeling in the hippocampus at the acute 

phase of TBI, and help answer critical longstanding questions. Which cell types are the most 

vulnerable to mTBI at the acute phase? Within each cell type, which genes have altered 

transcriptional activities that are induced by mTBI? Which molecular pathways are perturbed by 

mTBI in each cell type and how do they relate to mTBI pathology and pathogenesis of secondary 

brain disorders such as AD and PTSD? Which cell-cell communications are disrupted in mTBI? 

Through answering these questions, the identified sensitive cell types and associated gene 

markers can serve as signatures of mTBI pathology that inform on the stage, functional 

alterations, and potential clinical outcomes. Since the cell is the elementary unit of biological 

structure and function, we reveal fundamental information that can lead to a better understanding 

of the mechanistic driving forces for mTBI pathogenesis and identify potential novel therapeutic 

targets in an unbiased manner. As a proof of concept, we used the data-driven single cell 

information to prioritize Ttr, encoding transthyretin, as a plausible target and show for the first 
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time that modulating Ttr improves behavioral phenotypes and reverses the molecular changes 

observed in mTBI. 

 

RESULTS 

Unbiased identification of cell identities in hippocampus 

 Using Drop-seq12, we sequenced 2,818 and 3,414 hippocampal cells from mTBI and 

Sham animals, respectively. A single-cell digital gene expression matrix was generated using 

Drop-seq Tools12 and subsequently projected onto two dimensions using t-distributed stochastic 

neighbor embedding (t-SNE)13 to define cell clusters (Methods). We detected 15 clusters each 

containing cells sharing similar gene expression patterns (Fig. 1a). The cell clusters were not due 

to technical or batch effects (Supplementary Fig. 1). 

 To resolve the cell-type identities, we obtained cluster-specific gene signatures 

(Supplementary Table 1) and compared them to known signatures of hippocampal cell types 

derived from Fluidigm-based single cell studies14, 15 (Methods). We recovered all known major 

cell types including neurons, oligodendrocytes, microglia, mural cells, endothelial cells, 

astrocytes, and ependymal cells (Fig. 1b). Previously known cell markers, such as Aqp4 for 

astrocytes, Mog for oligodendrocytes, and C1qc for microglia, all showed distinct cluster-

specific expression patterns, confirming the reliability of our data-driven approach in 

distinguishing cell types (Fig. 1c-e; additional known marker examples in Supplementary Fig. 

2). Beyond retrieving known cell markers, our Drop-seq paradigm also enabled us to identify 

novel marker genes for each cell type, such as Calml4 for ependymal, Vcan for 

oligodendrocytes, and Ly6a for endothelial cells (Fig. 1f; Supplementary Table 1). We 
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confirmed the cellular identity and localization of many novel marker genes using the in situ 

hybridization (ISH) images from the Allen Brain Atlas (Fig. 2; Supplementary Fig. 3-9). 

We identified two novel cell clusters whose gene expression signatures did not 

significantly overlap with any of the known cell types that we were expecting in the 

hippocampus, and were hence named “Unknown1” (totaling 113 cells and representing 1.8% of 

all cells tested) and “Unknown2” (totaling 74 cells and representing 0.9% of all cells examined; 

Fig. 1a). Unknown1 has markers indicative of cell growth and migration such as Ndnf, Nhlh2, 

Reln, and Igfbpl1, as well as endothelial markers (Fig. 1b), suggesting that these clusters may 

represent migrating endothelial cells. This is consistent with the role of endothelial cells as main 

components of the blood brain barrier which is disrupted after mTBI16, with proliferation and 

migration of endothelial cells being an intrinsic aspect of new vessel formation17. Unknown2 

expresses unique markers indicative of cell differentiation such as Pcolce, Col1a2, Asgr1, 

Serping1, and Igf2, along with markers of endothelial, mural, and ependymal cells (Fig. 1b), 

suggesting that these may be progenitor cells differentiating into multiple lineages. To further 

resolve the identities of these unknown clusters, we examined the expression patterns of their 

signature genes identified by our single cell sequencing in the ISH images in the Allen Brain 

Atlas. Using this method, the marker genes of the Unknown2 cluster colocalized to a population 

of cells in the choroid plexus distinct from the ependymal cells (Fig 2; Supplementary Fig. 8). 

This localization to an area known to house stem cells and progenitor cells taken in conjunction 

with the functions of the marker genes strengthens the claim that this cell population may 

represent progenitor cells. These unknown cell clusters illustrate cell types that have been left 

undetected by classical morphological categorization, and may represent potentially novel 

functional entities within the hippocampal formation. Additionally, we were able to categorize 
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oligodendrocyte progenitor cells (Fig. 1a) which were undetected in previous lower-throughput 

single cell studies14, 15. 

To further characterize neuronal diversity within the hippocampus, we detected nine 

neuronal subclusters using the BackSPIN biclustering method14 (Fig. 3a). Annotation with 

known neuronal markers helped resolve GABAergic interneurons, dentate gyrus (DG) granule 

cells, and 4 subtypes of CA pyramidal neurons (Fig. 3b). However, two clusters (“Neuronal 

Subtype1”, “Neuronal Subtype 2”) remained unannotated, representing potential novel neuronal 

subtypes or states. Based on the functions of their markers (Fig. 3b) it is possible that these 

clusters may contain neurons with the potential to differentiate or self-renew. The unique ability 

of Drop-seq to catalog cells based on unbiased genomic parameters was also instrumental in 

unveiling novel neuronal markers14, 15 including Ptn in CA1 neurons, Ly6e in CA3 neurons, and 

Sema5a in DG granule cells (Fig. 3b; full marker list in Supplementary Table 1). We 

confirmed the subtype-specific expression patterns in specific hippocampal subregions and cell 

types (Fig. 3c-e) and further verified the expression specificity of several novel markers using 

ISH data from the Allen Brain Atlas (Fig. 2, Supplementary Fig. 3-9). The Allen Brain Atlas 

ISH data also helped resolve the identity of the CA Subtype2 cells to be from the Subicular 

Complex, which is located proximal to the CA1 region (Fig. 2) and mediates the main output of 

signals from the hippocampus. Like the CA subregions, the Subicular Complex is also comprised 

of pyramidal neurons, which explains the expression of CA neuronal signature genes in addition 

to the genes specific to this cell cluster. It has been reported that CTE and associated dementia 

involves damage to the subiculum4, which is in general agreement to the proposed involvement 

of subiculum in the pathology of Alzheimer’s Disease18. 
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These results indicate that our transcriptome-driven, unbiased Drop-seq approach has the 

unique ability to uncover new cell types, states, and markers based on genomic features that 

determine function, an undertaking not possible with traditional morphology-based approaches 

or bulk tissue sequencing. These novel findings provide valuable resources for future studies of 

the hippocampal circuitry under homeostatic and/or pathological conditions. 

Identification of most vulnerable cell types to mTBI based on transcriptomic profile 

To retrieve hippocampal cell types vulnerable to mTBI, we first compared the cell 

population proportions between mTBI and Sham animals. We found that ependymal cells are 

more abundant in mTBI compared to Sham animals (89% of ependymal cells from mTBI 

samples vs 11% from Sham samples, Fig. 1a). This large shift in relative abundance of 

ependymal cells at 24 h post-surgery implicates them as key acute responders to mTBI. This is 

consistent with the reported role of ependymal cells in acute post-injury processes such as circuit 

repair and scar formation19, 20. In addition to the visible increase in the relative abundance of 

ependymal cells in mTBI, DG granule cells are clearly separated into two clusters, one almost 

exclusively (94%) from the Sham animals and another primarily (86%) from the mTBI samples 

(Fig. 1a, Fig. 3a). Post-traumatic epilepsy is a major concern in TBI and is attributable to DG 

dysfunction21. Other hippocampal cell types that demonstrate weaker yet visible transcriptomic 

shifts between mTBI and Sham include oligodendrocytes, astrocytes, microglia, and multiple 

neuronal subpopulations such as CA1 neurons and CA subtype2 neurons clusters (Fig. 1a, Fig. 

3a). 

The identification of specific cell types particularly sensitive to mTBI, like the 

ependymal cells, astrocytes, and neuronal clusters such as DG granule cells and CA pyramidal 

cells, opens the possibility for investigating the specific roles of each cell type in mTBI 
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pathology and for designing targeted treatments. For example, the genomic markers of the DG 

granule cells highly sensitive to mTBI can be used for the design of treatments that target 

specific DG subpopulations responsible for post-traumatic epilepsy to avoid the side effects of 

classical epilepsy treatments targeting broad populations of cells.  

mTBI disrupts cell-cell interaction within the hippocampal circuitry 

Emerging evidence in the neuroimaging field suggests that changes in the interaction 

patterns among cells in circuits can contribute to reduced cognitive capacity in TBI22. We used 

the co-regulation patterns between genes of different cell types to infer interactions among cells, 

as gene co-expression can infer functional connectivity23, 24. Specifically, we focused on marker 

genes encoding secreted peptides from each cell type (source cells), which have the potential to 

interact with genes in other cell types (target cells) (Methods). This gene co-expression analysis 

showed extensive reorganization in the pattern of interaction among cells in response to mTBI. 

For example, the interaction from astrocytes and ependymal cells to neurons and from microglia 

to oligodendrocytes was enhanced in mTBI (Fig. 4). We also found in mTBI, decreased 

interaction between microglia and neurons, and decreased interaction from oligodendrocytes to 

neurons. These shifts in the pattern of interactions may reflect a unique and novel property of 

hippocampal cells to reorganize the working flow in response to mTBI challenge. The changes in 

the interaction were also reflected in changes in the association pattern among single genes. For 

instance, the correlation of Bdnf from neurons with cell metabolism genes in microglia was lost 

in mTBI. Notably, only in mTBI, the known AD risk gene Apoe in astrocyte and ependymal cells 

(source cells) showed strong correlations with mitochondrial metabolism genes in neurons 

(target cells). These results suggest the potential of mTBI to alter the interactive patterns at the 

level of circuits and genes in the hippocampus, with cell metabolism involved in the interactions.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/250381doi: bioRxiv preprint 

https://doi.org/10.1101/250381


 11 

Identification of genes and pathways vulnerable to mTBI in individual cell types 

To determine specific genes and pathways that may confer mTBI pathogenesis in each 

cell type and to further refine the vulnerable cell types, we identified differentially expressed 

genes (DEGs) between Sham and mTBI within each cell cluster (Table 1; all DEGs in 

Supplementary Table 2) at false discovery rate (FDR) <0.05. Astrocytes, oligodendrocytes, and 

neurons had the largest numbers of DEGs between mTBI and Sham samples (Table 1). 

Annotation of the DEGs with curated biological pathways from KEGG25, Reactome26, 

BIOCARTA, and Gene Ontology27 databases identified key pathways that could explain 

fundamental aspects of the mTBI pathology and the main cell types involved (Table 1; full 

pathway list in Supplementary Table 3). For example, the DEGs were enriched for diverse 

pathways encompassing energy and metabolism (astrocytes, neurons), inflammation and immune 

response (microglia, oligodendrocyte PCs), myelination (oligodendrocytes), amyloids 

(endothelial and ependymal cells), neurogenesis and synaptic signaling (neurons), cell migration 

(GABAergic interneurons), glutamate transport (CA1 pyramidal cells), and dendrite 

morphogenesis (“Unknown 1” cluster). Many of the pathways identified agree with the known 

roles of the specific cell types in mTBI. For example, the over-representation of inflammation 

and immune pathways in microglia is consistent with the role of microglia in inflammatory 

processes and the efficacy of anti-inflammatory treatments targeting microglia at one-day post-

mTBI28. Nevertheless, the identified cell type specific genes and pathways vulnerable to mTBI 

also offered novel insights into the functions of individual cell types in mTBI pathogenesis, as 

detailed below. 

TBI is followed by a stage of metabolic dysfunction29 which reduces the capacity of the 

brain for activity-dependent plasticity 30; however, the molecular and cellular underpinnings 
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remain poorly understood. Consistent with the metabolic crisis typical of mTBI, we found down-

regulation of mitochondrial metabolic genes in astrocytes and CA1 pyramidal cells. Astrocytes 

supply energy substrates to neurons and are essential for neuronal function. Interestingly, our 

results indicate that CA1 pyramidal cells also experience metabolic suppression at this early 

stage of mTBI pathogenesis (24 h). In addition, DEGs in CA1 pyramidal cells informed on 

increased expression of various glutamate transporters, which could explain the altered capacity 

to sustain long-term potentiation after TBI31.  

The risks posed by mTBI on development of other neurological disorders is a pressing 

issue in clinical neuroscience; however, the molecular and cellular bases for this occurrence 

remain undetermined. DG granule cells, which function to interact with CA pyramidal cells, 

showed alterations in genes involved in cell-cell signaling (Npy, Penk, Ptprn, Ihnba) as well as 

neuroplasticity genes such as Bdnf and Ntf3. These pathways may underlie the mTBI sensitivity 

of DG granule cells and post-traumatic epilepsy occurring after mTBI. Pathways informed by 

DEGs from the endothelial and ependymal cells implicate the importance of these cell types in 

the potential for amyloid buildup, as indicated by the upregulation of the known pro-amyloid 

deposition gene B2m and down-regulation of inhibitors of beta-amyloid aggregation and fibril 

deposition (Apoe, Itm2a, Itm2b, and Itm2c) in these cell types. As dysregulated metabolism and 

amyloid deposition are key features in AD, CTE, and PD32, our study provides detailed 

information on the specific cell types such as astrocytes, CA1 pyramidal cells, endothelial and 

ependymal cells that could be the starting loci for the wave of post-mTBI amyloid buildup in 

chronic mTBI. 

mTBI alters gene expression programs in a cell-type specific manner 
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We found that many of the DEGs were significantly altered by mTBI in only one cell 

type (Fig. 5a-b) and showed clear cell type-specific shifts in expression patterns (Fig. 5c-e), 

supporting the capacity of mTBI to modulate gene expression in a cell-type specific manner. 

Importantly, >50% of the DEGs identified at the single cell level were masked in bulk tissue 

analysis (Fig. 5f; bulk tissue-level DEGs in Supplementary Table 2). Notably, the unique cell-

level DEGs were primarily from cell types of low abundance such as neurons, and the common 

DEGs between single-cell and tissue-level analyses were mainly from abundant cell types such 

as astrocytes and oligodendrocytes. These findings highlight the value of extracting genomic 

information in individual cell types that otherwise would be masked in bulk tissue studies. 

 Cell-type specific DEGs may serve as selective biomarkers or therapeutic targets that can 

trace or normalize specific abnormalities of mTBI pathology (Figure 6a). For instance, Id2, a 

gene previously described to be upregulated by seizures in the DG33, is specifically upregulated 

by mTBI in DG granule cells and thus could serve as a potential target to temper post-traumatic 

epilepsy after TBI. We also found that P2ry12, a gene previously reported as a marker for brain 

resident microglia34, is specifically downregulated in microglia after mTBI, suggesting the 

potential utility of P2ry12 to be used as a marker of the early inflammatory response to TBI. 

Several of the cell-type specific DEGs are related to amyloid deposition and AD, including Apoe 

- an ependymal-specific DEG and known for its effects on AD and TBI35, and Itm2a – an 

endothelial specific DEG and an inhibitor of amyloid-beta production and deposition36. These 

results indicate that the putative action of TBI in amyloid deposition involves different genes 

across different cell types. Interestingly, Trf, encoding transferrin for iron transport was 

upregulated in oligodendrocytes, suggesting a possible involvement of Trf on the described 

association between iron deposition and cognitive deficits in mTBI37, 38. 
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We also found several cell-type specific mTBI target genes that have not been implicated 

in mTBI previously. For instance, a CA1 pyramidal cell-specific DEG Klhl2, which encodes an 

actin binding protein, was recently implicated in human neuroticism39, 40. Increased neuronal 

Klhl2 expression post-mTBI (Fig. 6a) was confirmed at the protein level in the CA1 

hippocampal subregion using immunohistochemistry (Supplementary Fig. 10). Khlh2 in CA1 

pyramidal cells may serve as a novel link between mTBI and the increased tendency for 

neuroticism post-TBI. Arhgap32 is a CA3 pyramidal cell-specific up-regulated gene in mTBI. It 

encodes a neuron-associated GTPase-activating protein that may regulate dendritic spine 

morphology and strength41. As it is known that CA3 pyramidal cells play an important role in the 

relay of information to the rest of the hippocampus, the action of Arhgap32 may be critical for 

supporting transmission of information across hippocampal cells. The endothelial-specific gene 

Fxyd5 encodes a glycoprotein that functions to enhance chemokine production and inhibit cell 

adhesion by downregulating E-cadherin42. It was upregulated in mTBI. The functions of Fxyd5 

in endothelial cells suggest that it may play a role in neuroinflammation and blood-brain-barrier 

dysfunction associated with TBI.  

Prioritization of potential targets based on the effects of mTBI on single cells 

 The aforementioned cell-type specific genes perturbed by mTBI provide unique 

information about the microcircuits underlying the mTBI pathophysiology. These can be 

leveraged for the design of therapeutic interventions to target specific cell types driving 

pathological manifestations if their causal roles in pathogenesis are confirmed. For example, the 

DG granule cell-specific DEG Id2 may be targeted for seizure treatment, the CA1 pyramidal 

cell-specific Klhl2 can be modulated for personality disorders, the ependymal-specific Apoe can 

be targeted for AD, and the oligodendrocyte-specific Trf can be used for iron control. 
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Conversely, identifying DEGs that are affected across multiple cell types by mTBI has the 

potential to pinpoint the most vulnerable genes that are responsible for the broad symptomology 

of mTBI. Such genes cannot be retrieved without examining multiple cell types individually to 

confirm the widespread effect across cell types. Targeting such pan-hippocampal DEGs may 

offer broader therapeutic effects by normalizing the functions of multiple cell types. 

 Notably, the gene Ttr represents the most robust DEG across hippocampal cell types in 

that it was a top DEG with increased expression post-mTBI in 7 of the 10 major cell types and 6 

of the 8 neuronal clusters, with the highest expression and strongest induction seen in ependymal 

cells (Fig. 6b). Ttr encodes transthyretin, the transport protein that carries the thyroid hormone 

thyroxine, preferentially T4, across the blood brain barrier43. It also functions as an amyloid beta 

scavenger44. Moreover, several additional multi-cell type DEGs are related to beta amyloid and 

AD, including mt-Rnr2 – encoding the neuroprotective mitochondria factor humanin45 which is 

protective against AD, Itm2b – an inhibitor of beta amyloid deposition46, and Apba2 (Mint2) – a 

stabilizer of amyloid precursor protein APP47. These pan-hippocampal DEGs along with some of 

the cell-type specific DEGs previously discussed strongly implicate pathways related to post-

mTBI AD pathogenesis and can be targeted for post-mTBI AD prevention. Slc17a7 is a pan-

neuronal DEG across CA1 pyramidal cells, CA3 pyramidal cells, and DG granule cells. It 

encodes a sodium-dependent phosphate transporter in neuron-rich regions of the brain and 

functions in glutamate transport48. Interestingly, human genetic polymorphisms in this gene have 

been associated with recovery time and severity of outcomes after sport-related concussion in 

humans49. 

Our single cell data demonstrates Ttr as the most robust DEG post-mTBI across 

hippocampal cell types, which provides a strong rationale for testing Ttr as a novel target to 
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modulate mTBI response. As a proof of concept, we examined the possibility that the pan-

hippocampal upregulation of Ttr might indicate a compensatory need for thyroxine T4, the major 

brain-specific substrate of transthyretin. Given the strong implication of altered cell metabolism 

in various cell types discussed above, the critical role of thyroid hormone in regulating 

metabolism could serve as a platform to mitigate the metabolic crisis after mTBI. We first 

confirmed, using immunohistochemistry, that Ttr protein was mainly localized to the CA 

hippocampal subregion (Fig. 7a), and the choroid plexus (Supplementary Fig. 10) - a reservoir 

of ependymal cells and important for regulating the passage of substances to the brain through 

the blood-brain barrier. Acute intraperitoneal injection of T4 post-mTBI protected learning (Fig. 

7b) and memory (Fig. 7c) one week post-mTBI as determined by the Barnes Maze test. This is 

the first time that T4 treatment was found to mitigate cognitive deficits in a mouse model of 

concussive injury. A recent study using cortical impact injury suggested a potentially protective 

action of T4 by measuring a handful of candidate genes related to hypoxia and neurogenesis50. In 

contrast, our study indicates that T4 ameliorates mTBI-induced cognitive dysfunction by 

engaging the main transporter Ttr, and identified a cascade of genes and pathways associated 

with cell metabolism through whole transcriptome profiling. We found that T4 treatment 

affected 121 DEG genes that were also altered by mTBI (Fig. 7d). Among the 121 overlapping 

DEGs, T4 reversed the direction of 93 mTBI signature genes, including Ttr (T4 target), Wdr72 

(implicated in cognitive processing speed51), and Tpx2 (protective of neurocyte apoptosis in an 

AD model52) (Fig. 7e). To test whether T4 treatment preferentially affects Ttr among the known 

T4 transporters, we examined the expression pattern of the other T4 transporters in mTBI and in 

T4 treatment. We found much weaker or lack of alterations in the other transporters by mTBI 

and/or T4 treatment (Fig. 7f). These results suggest that Ttr was indeed the preferential T4 
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transporter and the effects of T4 treatment was most likely mediated by Ttr. The 93 genes 

normalized by T4 (Fig. 7g) were enriched for hormone response and metabolic pathways (Fig. 

7h). These results are significant in the face of the metabolic depression caused by TBI, and that 

T4 reverses the direction of most mTBI signature genes related to metabolism.  

 

DISCUSSION 

High throughput parallel single cell sequencing analysis proved its utility to unveil key 

aspects of the molecular and cellular adaptations within the complex cytoarchitecture of the 

hippocampus in response to mTBI. To our knowledge, this is the first report showing the effects 

of mTBI on gene regulatory mechanisms in single cells which is crucial to dissect the early 

events of the mTBI pathology. Our study reveals specific vulnerable cell types including 

previously undefined cell populations, cell-type specific genes and pathways, and the 

reorganization of cell-cell interactions, which could be responsible for directing the course of 

mTBI pathogenesis. Our results on the numerous alterations in cell types, genes, and pathways in 

response to a single episode of mTBI are remarkable considering that concussive brain injury is 

difficult to diagnose using conventional neuroimaging examinations3. Single cell genomic 

information is critical for tracing mTBI pathology as the transcriptome can instruct the functions 

of individual cells and circuits involved in the processing of high order information. Our results 

suggest the central role of cell metabolism in guiding cell interactions, and we prioritize the cell 

types and genes involved. The single cell information was indispensable for the prioritization of 

numerous potential therapeutic targets, including transthyretin, a metabolic regulator affected by 

mTBI in numerous cell types. The encouraging results from the use of T4 thyroid hormone to 

intervene Ttr and the disrupted metabolic pathways to improve cognitive behavior support the 
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potential of using single cell approaches to identify targets of therapeutic applications. It is 

important to note that such signals across multiple cell types can only be derived from studying 

all cell types individually as done in the current study. 

The use of functional expression patterns instead of traditional morphological 

characteristics enabled us to characterize novel cell types, subtypes, and gene markers that are 

likely more accurate and functionally relevant. The cross-validation of the novel cell markers in 

independent Allen Brain Atlas datasets supports the reliability of our findings. We acknowledge 

that we may have missed cell types that are rare or less compatible with the Drop-seq 

experimental procedures. Nevertheless, the molecular profiles of thousands of single cells of 

diverse hippocampal cell types under both physiological and pathological conditions represent a 

rich resource for the neuroscience community to study hippocampus-related processes and 

diseases.  

The transcriptome patterns in individual cell types sensitive to mTBI point to the cellular 

origins of processes likely guiding mTBI pathogenesis such as metabolic dysfunction, amyloid 

deposition, and neuronal signaling loss, and contain the gene program regulating and predicting 

susceptibility to post-mTBI neurological disorders such as AD, PD, PTSD, neuroticism, and 

epilepsy. The information also has the added potential to guide treatments to improve mTBI 

outcome by targeting either specific cell types or broad cell interactions. For instance, the fact 

that genes involved in cell metabolism and amyloid processes were recurring findings across cell 

types and analytical approaches (cell-type specific DEGs, pan-hippocampal DEGs, pathways, 

and cell-cell communications) suggests that these are core processes in mTBI pathogenesis. Our 

single cell study opens new avenues to deconvolute the pathogenic processes involved in mTBI 

in individual brain cell populations and prioritize cell-type specific (such as Klhl2 in neurons and 
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Apoe in ependymal cells) and pan-hippocampal targets (such as transthyretin and humanin). 

Concussive brain injury is the most common form of brain injury in sports, domestic, and 

military settings and has been associated with numerous long-lasting and debilitating 

neurological consequences. The identified genes, processes, and cell types vulnerable to acute 

concussive injury will form the foundation for mechanistic studies and for the development of 

novel therapeutic strategies for mTBI and related neurological disorders. 

  

Methods 

Animals and mild fluid percussion injury (FPI) 

 Male C57BL/6J (B6) mice of 10 weeks of age (Jackson Laboratory, Bar Harbor, ME, 

USA) weighing between 20 and 25g were group housed in cages (n=3-4/group) and maintained 

in environmentally controlled rooms (22–24 °C) with a 12h light/dark cycle. Mice were 

randomized to receive either FPI or Sham surgeries. FPI was performed as previously 

described53. Briefly, with the aid of a microscope (Wild, Heerburg, Switzerland), a 1.5-mm 

diameter craniotomy was made 2.5 mm posterior to the bregma and 2.0 mm lateral (left) of the 

midline with a high-speed drill (Dremel, Racine, WI, USA). A plastic injury cap was placed over 

the craniotomy with silicone adhesive and dental cement. When the dental cement hardened, the 

cap was filled with 0.9% saline solution. Anesthesia was discontinued and the injury cap was 

attached to the fluid percussion device. At the first sign of hind-limb withdrawal to a paw pinch, 

a mild fluid percussion pulse (1.5-1.7 atm, wake up time greater than 5 min) was administered. 

Sham animals underwent an identical preparation with the exception of the lesion. Immediately 

following response to a paw pinch, anesthesia was restored and the skull was sutured. Neomycin 

was applied on the suture and the mice were placed in a heated recovery chamber for 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/250381doi: bioRxiv preprint 

https://doi.org/10.1101/250381


 20 

approximately an hour before being returned to their cages. After 24h, the mice were sacrificed 

and fresh hippocampal tissue was dissected for use in Drop-seq (n=3/group). All experiments 

were performed in accordance with the United States National Institutes of Health Guide for the 

Care and Use of Laboratory Animals. 

Tissue dissociation for Drop-seq 

 The protocol by Brewer et al.54 was used to suspend cells at a final concentration of 100 

cells/µl in 0.01% BSA-PBS by digesting freshly dissected hippocampus tissue with papain 

(Worthington, Lakewood, NJ, USA). Briefly, hippocampi were rapidly dissected from the 

ipsilateral side of the brain on ice. The hippocampi were transferred into 4 ml HABG (Fisher 

Scientific, Hampton, NH, USA) and incubated in water bath at 30°C for 8 min. The supernatant 

was discarded and the remaining tissue was incubated with papain (12 mg in 6 ml HA-Ca) at 

30 °C for 30 min. After incubation, the papain solution was removed from the tissue and washed 

with HABG three times. Using a siliconized 9-in Pasteur pipette with a fire-polished tip, the 

solution was triturated approximately ten times in 45 sec. Next, the cell suspension was carefully 

applied to the top of the prepared OptiPrep density gradient (Sigma Aldrich, St. Louis, MO, 

USA) and floated on top of the gradient. The gradient was then centrifuged at 800g for 15 min at 

22 °C. We aspirated the top 6 ml containing cellular debris. To dilute the gradient material, we 

mixed the desired cell fractions with 5 ml HABG. The cell suspension containing the desired cell 

fractions was centrifuged for 3 min at 22°C at 200g. We discarded the supernatant, which 

contained the debris. Finally, the cell pellet was loosened by flicking the tube and the cells were 

re-suspended in 1 ml 0.01% BSA (in PBS). This final cell suspension solution was passed 

through a 40-micron strainer (Fisher Scientific, Hampton, NH, USA) to discard debris and cells 

were then counted. 
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Drop-seq single cell barcoding and library preparation 

 Barcoded single cells, or STAMPs (single-cell transcriptomes attached to microparticles), 

and cDNA libraries were generated following the drop seq protocol from Macosko et al.12 and 

version 3.1 of the online Drop-seq protocol (http://mccarrolllab.com/download/905/). Briefly, 

single cell suspensions at 100 cells/µl, EvaGreen droplet generation oil (BIO-RAD, Hercules, 

CA, USA), and ChemGenes barcoded microparticles (ChemGenes, Wilmington, MA, USA) 

were co-flowed through a FlowJEM aquapel-treated Drop-seq microfluidic device (FlowJEM, 

Toronto, Canada) at recommended flow speeds (oil: 15,000µl/hr, cells: 4,000µl/hr, and beads 

4,000µl/hr) to generate STAMPs. The following modifications were made to the online 

published protocol to obtain enough cDNA as quantified by a high sensitivity BioAnalyzer 

(Agilent, Santa Clara, CA, USA) to continue the protocol: 1). The number of beads in a single 

PCR tube was 4,000. 2). The number of PCR cycles was 4+11 cycles. 3). Multiple PCR tubes 

were pooled. The libraries were then checked on a BioAnalyzer high sensitivity chip (Agilent, 

Santa Clara, CA, USA) for library quality, average size, and concentration estimation. The 

samples were then tagmented using the Nextera DNA Library Preparation kit (Illumina, San 

Diego, CA, USA) and multiplex indices were added. After another round of PCR, the samples 

were checked on a BioAnalyzer high sensitivity chip for library quality before sequencing. A cell 

doublet rate of 5.6% was obtained by running the microfluidic device without the lysis buffer 

and counting the percentage of cell doublets through three separate runs. 

Illumina high-throughput sequencing of Drop-seq libraries 

 The Drop-seq library molar concentration was quantified by Qubit Fluorometric 

Quantitation (ThermoFisher, Canoga Park, CA, USA) and library fragment length was estimated 

using a Bioanalyzer. Sequencing was performed on an Illumina HiSeq 2500 (Illumina, San 
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Diego, CA, USA) instrument using the Drop-seq custom read 1B primer (IDT, Coralville, IA, 

USA). Paired end reads were generated using custom read lengths of 24 for read 1 and 76 for 

read 2 and an 8bp index read for multiplexing. Read 1 consists of the 12bp cell barcode, 

followed by the 8bp UMI, and the last 4bp on the read are not used. Read 2 contains the single 

cell transcripts. 

Drop-seq data pre-processing and quality control 

 Drop-seq tools version 1.12 was obtained from http://mccarrolllab.com/download/922/ 

and the protocol outlined in the Drop-seq alignment cookbook v1.2 (http://mccarrolllab.com/wp-

content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf) was followed, using 

default parameters. Fastq files were converted to BAM format and cell and molecular barcodes 

were tagged, removing reads corresponding to low quality barcodes. Next, any occurrence of the 

SMART adapter sequence or polyA tails found in the reads was trimmed. These cleaned reads 

were converted back to fastq format to be aligned to the mouse reference genome mm10 using 

STAR-2.5.0c. After the reads were aligned, the reads which overlapped with exons were tagged 

using a RefFlat annotation file of mm10. A percentage of the Chemgenes barcoded beads which 

contain the UMIs and cell barcodes were anticipated to have synthesis errors. We used the Drop-

seq Tools function DetectBeadSynthesisErrors to quantify the Chemgenes beads batch quality 

and estimated a bead synthesis error rate of 5-10%, within the acceptable range. Finally, a digital 

gene expression matrix for each sample was generated where each row is the read count of a 

gene and each column is a unique single cell. The transcript counts of each cell were normalized 

by the total number of UMIs for that cell. These values are then multiplied by 10,000 and log 

transformed. Digital gene expression matrices from the six samples (3 Sham and 3 TBI samples) 

were combined to create three different pooled digital gene expression matrices for: 1) all Sham 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 19, 2018. ; https://doi.org/10.1101/250381doi: bioRxiv preprint 

https://doi.org/10.1101/250381


 23 

samples, 2) all TBI samples and 3) combined Sham and TBI samples. Single cells were 

identified from background noise by using a threshold of at least 500 genes and 900 transcripts. 

Identification of cell clusters 

 The Seurat R package (version 1.4.0.1; https://github.com/satijalab/seurat) was used to 

project all sequenced cells onto two dimensions using t-SNE and density-based spatial clustering 

(DBSCAN) was used to assign clusters. To further refine the neuronal cell clusters, the 

BackSPIN software14 was used to perform biclustering of the single cells identified to be 

neuronal cells to further resolve this cell type. Biclustering has been previously demonstrated to 

differentiate between cell types which cannot be captured by traditional t-SNE-based 

approaches14. BackSPIN was run with default parameters, selecting for the top 2000 most highly 

variable genes and proceeding with 5 levels of biclustering. 

Identification of marker genes of individual cell clusters 

 We defined cell cluster specific marker genes from our Drop-seq dataset using a bimodal 

likelihood ratio test55. To determine the marker genes, the single cells were split into two groups 

for each test: the cell type of interest and all remaining single cells. To be considered in the 

analysis, the gene had to be expressed in at least 30% of the single cells from one of the groups 

and there had to be at least a 0.25 log fold change in gene expression between the groups. 

Multiple testing was corrected using the Benjamini–Hochberg method and genes with an FDR < 

0.05 are defined as marker genes. We explored the gene-gene correlation within-group and 

between-group for each cell type and confirmed the consistency of cell type identification 

between samples (Supplementary Fig. 1). 

Resolving cell identities of the cell clusters 
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 We use two methods to resolve the identities of the cell clusters. First, known cell-type 

specific markers from previous studies were curated and checked for expression patterns in the 

cell clusters. A cluster showing high expression levels of a known marker gene specific for a 

particular cell type was considered to carry the identity of that cell type. Second, we evaluated 

the overlap between known marker genes of various cell types with the marker genes identified 

in our cell clusters. Overlap was assessed using a Fisher’s exact test and significance was set to 

Bonferroni-corrected p<0.05. A cluster was considered to carry the identity of a cell type if the 

cluster marker genes showed significant overlap with known markers of that cell type. The two 

methods showed consistency in cell identity determination. 

 Known markers for major hippocampal cell types and neuronal subtypes were retrieved 

from Zeisel et al.14, Habib et al.15, and the Allen Brain Atlas56. These markers were sufficient to 

define all major cell types as well as GABAergic neurons, dentate gyrus (DG), CA1 and CA3 

pyramidal neurons.  

Identification of differentially expressed genes between Sham and TBI 

 Within each identified cell type, Sham and TBI samples are compared for differential 

gene expression using a bimodal likelihood ratio test55. To be considered in the analysis, the gene 

had to be expressed in at least 30% of the single cells from one of the two groups for that cell 

type and there had to be at least a 0.25 log fold change in gene expression between the groups. 

We correct for multiple testing using the Benjamini–Hochberg method and genes with an FDR < 

0.05 were used in downstream pathway enrichment analyses (unless explictly noted that a p-

value of 0.01 was used instead to retrieve suggestive pathways). Enrichment of pathways from 

KEGG, Reactome, BIOCARTA, GO Molecular Functions, and GO Biological Processes was 
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assessed with Fisher’s exact test, followed by multiple testing correction with the Benjamini–

Hochberg method. 

Comparison of single cell DEGs with those from in silico bulk tissue DEGs  

 To define the advantages gained by employing single cell sequencing, we simulated bulk 

tissue gene expression by averaging the gene expression across all TBI single cells and all Sham 

single cells for each animal. These in silico bulk tissue Sham and TBI samples were then 

compared for differential gene expression using a bimodal likelihood ratio test55. FDR<5% was 

used as the cutoff to determine tissue-level DEGs, which were then compared against those from 

the single-cell analysis. 

Cell-cell interaction analysis 

 We assessed cell-cell interactions based on gene-level correlation patterns between any 

two given cell types (Fig. 6a). To infer directionality of the interactions between two cell types, 

we pointed a cell type whose marker genes encode secreted peptides based on Uniprot 

information as the source cell type, and then correlated the peptide-encoding marker genes from 

the source cell type with genes in the target cell type. To deal with the sparse nature of single cell 

data, we averaged the gene expression of Sham and TBI samples respectively for each cell type. 

An interaction score is calculated from the sum of the correlation p-values for each peptide, 

assuming that a peptide from a source cell type with strong correlations with many genes in the 

target cell type would have a high score and indicate strong interactions. To determine the 

significance of interaction, we use a permutation approach in which a null distribution is drawn 

from the interactions scores generated by the correlations between source peptides and target 

genes where the expression values for each target gene has been shuffled independently. The 

genes correlated with each peptide were tested for pathway enrichment in KEGG, Reactome, 
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BIOCARTA, GO Molecular Functions, and GO Biological processes to infer the key pathways 

mediating the interactions. 

Immunohistochemistry 

 For Klhl2 and Ttr protein immunostaining, Sham and TBI mice were sacrificed and their 

brains were collected 24 h post-injury. Harvested tissue was mounted with Tissue Tek O.C.T. 

and then frozen on dry ice and stored at -80 °C. Frozen brains were cryostat sectioned at 10um. 

Brain sections were fixed in 4% (w/v) paraformaldehyde in phosphate-buffered saline (PBS). 

Hoechst 33342 (Molecular Probes, Eugene, Oregon, USA) was used for the staining of nuclei. 

For observation of Klhl2-immunoreactive cells, brain sections were stained using an anti-Klhl2 

polyclonal antibody (1:200; Abcam, Cambridge, MA, USA). For the observation of transthyretin 

(Ttr)-immunoreactive cells, brain sections were stained using an anti-Ttr polyclonal antibody 

(1:200; Mybiosource, San Diego, CA, USA). For the observation of neuronal nuclei, brain 

sections were stained using an anti-NeuN polyclonal antibody (1:500; Millipore, Billerica, MA, 

USA).  

T4 Treatment 

 L-Thyroxine sodium salt pentahydrate (T4, Sigma Chemical Co., St. Louis, MO, USA) 

dissolved in saline vehicle (154 nM NaCl) was injected i.p. twice at 1 and 6 h after FPI in the 

treatment group (n=6 mice) at 1.2 µg/100 g body weight. Control FPI mice (n=6) received 

vehicle (saline). 

Behavioral tests for T4 treatment experiments 

 Mice from the Sham, TBI, and T4 treatment groups were tested on the Barnes maze 7 

days after injury to assess learning acquisition and memory retention57. For learning, animals 

were trained with two trials per day for four consecutive days, and memory retention was 
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assessed two days after the last learning trial. The maze was manufactured from acrylic plastic to 

form a disk 1.5 cm thick and 120 cm in diameter, with 40 evenly spaced 5 cm holes at its edges. 

The disk was brightly illuminated (900 lumens) by four overhead halogen lamps to provide an 

aversive stimulus to search for a dark escape chamber hidden underneath a hole positioned 

around the perimeter of a disk. All trials were recorded simultaneously by a video camera 

installed directly overhead at the center of the maze. A trial was started by placing the animal in 

the center of the maze covered under a cylindrical start chamber; after a 10s delay, the start 

chamber was raised. A training session ended after the animal had entered the escape chamber or 

when a pre-determined time (5 min) had elapsed, whichever came first. All surfaces were 

routinely cleaned before and after each trial to eliminate possible olfactory cues from preceding 

animals. After the memory test the animals were sacrificed immediately by decapitation and the 

fresh hippocampal tissues were dissected out, frozen in liquid nitrogen, and stored in -80oC for 

bulk tissue RNA-sequencing. 

RNA-seq analysis of T4 treatment experiments 

 Hippocampal tissues were dissected from Sham, TBI untreated, and TBI T4 treated 

animals (n=4/group). QuantSeq 3’ libraries were prepared from cDNA samples using the 

QuantSeq 3’ mRNA-Seq Library Prep Kit (Lexogen, Greenland, NH, USA). Libraries were run 

on a HiSeq 4000. Reads were aligned with STAR and read counts per gene were generated using 

the BlueBee platform. Differentially expressed genes between the different groups (Sham, TBI 

untreated, and TBI T4 treatment) were determined using negative binomial models58. DEGs with 

p < 0.05 were included in gene signatures which were checked for pathway enrichment. DEGs 

between TBI and Sham were compared for overlap with DEGs between T4 treated mice and 

untreated TBI mice.  
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Accession codes 

The NCBI GEO accession number for the Drop-seq data reported in this paper (fastq files and 

digital gene expression matrices) is GSEXXXXXX. 
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Figure Legends 

Figure 1. Determination of major hippocampal cell types and cell type-specific gene markers 

using the unbiased Drop-seq approach. (a) t-SNE plot showing cell clusters. Each colored dot is 

a cell, with blue cells originating from Sham animals and red cells originating from mTBI 

animals. (b) Overlap between Drop-seq defined marker genes of major cell clusters (rows) with 

known cell type markers (columns) derived from a previous Fluidigm-based single cell study14. 

Signature marker numbers are indicated in the parenthesis. Statistical significance of overlap is 

indicated by color (the darker the more significant) and the numbers of overlapping genes 

between our Drop-seq defined markers, and previously known markers are shown in the cells. 

Top cell marker genes determined by our Drop-seq data are listed on the right of the plot. (c-e) 

Cluster-specific expression of known cell markers: Astrocytes - Aqp4, Oligodendrocytes – Mog, 

and Microglia – C1qc. This analysis confirms that each cluster captures a particular cell type. (f) 

Normalized expression values of top cell type-specific marker genes are plotted as violin plots 

with cell types as rows and genes as columns.  

 

Figure 2. Cross-validation of novel marker genes for specific neuronal subpopulations. To 

validate the specificity of novel marker genes for neuronal populations and to help resolve the 

identity of previously unknown cell clusters, we examined the expression patterns of our cell 

markers in the ISH images from the Allen Brain Atlas56. Here, we showcase three select novel 

genes from four cell types: CA1 neurons, CA3 neurons, DG granule cells, and ependymal cells. 

Additionally, we showcase marker genes expressed across multiple cell types, genes which 

clearly resolve the Unknown2 cluster to cells inside the choroid plexus, and genes which help 

resolve CA Subtype2 Neurons to the Subicular Complex. 
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Figure 3. Determination of neuronal cell subtypes and cell type-specific gene markers using the 

unbiased Drop-seq approach. (a) t-SNE plot of neuronal subtypes determined by backspin 

biclustering. Each color indicates a different cell type cluster identified, and cells with a black 

dot at their center from TBI samples. (b) Overlap of Drop-seq defined marker genes of the 

neuronal subtypes (rows) with those of the previously defined hippocampal neuronal cell types 

(columns). Known markers were derived from Alan Brain Atlas (ABA)56 and Habib et al. using 

Div-Seq15. Signature marker numbers are indicated in the parenthesis. Statistical significance of 

overlap is indicated by color (the darker the more significant), and the numbers of overlapping 

genes between our Drop-seq defined markers and previously known markers are shown in the 

cells. Top cell marker genes determined by our Drop-seq data are listed on the right of the plot. 

(c-e) Cluster-specific expression of known cell markers: CA1 neurons – Wfs1, DG granule cells 

– Dsp, and GABAergic interneurons – Gad2. (f) Normalized expression values of top neuronal 

subtype-specific marker genes are plotted as violin plots with cell types as rows and genes as 

columns. 

 

Figure 4. TBI alters cell-cell interations, and promotes molecular reorganization in 

hippocampus. (a). Methodology used for cell-cell interaction analysis. Secreted proteins or 

peptides from a source cell can communicate with genes in a target cell, which can be captured 

by strong correlations between the secreted proteins in the source cells and genes in the target 

cells. For each cell cluster, the expression of each gene was summarized to individual TBI or 

Sham animal level, and a correlation matrix between genes of different cell types was 

constructed. The -log10 p-values of these correlations for each secreted peptide are summed to 
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obtain an interaction score of that peptide with a particular target cell type. The cell type gene 

expression matrix is then permuted to generate the null distribution of interaction scores to 

calculate the significance of an observed interaction score. Significant interactions are plotted in 

the circos plots for the Sham group (b) and the TBI group (c) separately. The bottom half of each 

circos plot shows source cell types with secreted peptides (names listed) and the top half are the 

target cell types. Colored lines in the center indicate significant connections between the peptides 

with different cell types. Comparison between (b) and (c) shows reorganization in the 

interactions among different cell types within the hippocampal formation after TBI and the 

associated genes potentially mediating the interactions. As the transcriptome of individual cells 

can instruct cell-cell communication to process high order information, these results suggest 

potential changes in neural circuit organization after an episode of TBI. 

 

Figure 5. Differentially expressed genes (DEGs) induced by TBI in individual hippocampal cell 

types identified using Drop-seq. (a-b) DEGs unique to a cell type are indicated in red and those 

shared between >=2 cell types are indicated by black dots. The histogram above each plot 

indicates the DEG counts for each category. (a) The majority of the DEGs are cell-type specific. 

(b) The majority of the DEGs in neuron subtypes are subtype-specific. (c-e) Heatmaps of DEGs 

in select cell types demonstrate clear differential expression patterns between Sham and TBI 

cells. (f) Many cell-type specific DEGs cannot be captured in the bulk tissue analysis, supporting 

the uniqueness of using single cell genomic analysis.  

 

Figure 6. Top cell-type specific DEGs (a) and pan-hippocampal DEGs (b). The normalized 

expression of cell-type specific and pan-hippocampal DEGs between Sham and TBI samples is 
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displayed as violin plots. Single cells from Sham samples are indicated by the blue plots and 

single cells from TBI samples are indicated by the red plots. *p<0.02, **p<1x10-4, ***p<1x10-6. 

 

Figure 7. Validation of Ttr as a TBI target. (a) Immunofluorescence protein expression of Ttr in 

hippocampal subregions (CA1, CA2, CA3) shows a qualitative increase in staining intensity in 

Ttr labelled cells in spite of a qualitative reduction in the immunostaining of the neuronal marker 

NeuN. (b-c) T4 treatment corrects TBI-induced learning (b) and memory (c) deficiency in 

Barnes Maze test. (d-e) Gene expression profiles of T4 treatment experiments. (d) TBI and T4 

treatment show significant overlap in DEGs. (e) Examples of genes reversed by T4. (f) 

Specificity of Ttr as the T4 thyroid hormone transporter. (g) Heatmap showing T4 reversed the 

expression patterns of 93 TBI-affected genes. (h) Enriched pathways among the 93 DEGs 

reversed by T4. *p<0.05, **p<0.01, ***p<0.001. 
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Tables 

Table 1. Top enriched pathways among DEGs of major cell types (FDR<5%) and representative 

DEGs in the select pathways. DEGs in blue and red show decreased and increased expression in 

TBI, respectively. Cell types shown in red are rare cell types with fewer cells analyzed, and 

hence did not have sufficient numbers of DEGs at FDR<5% (number of DEGs shown in black) 

between Sham and TBI samples to reveal significant pathways. Instead, DEGs reaching a 

threshold of p < 0.01 (number of DEGs shown in red) were used to derive suggestive pathways 

for these rare cell types. 

 
Cell Type Top DEG Pathways Top 5 representative DEGs No. DEGs 
Astrocytes Metabolic Depression Mdh1,Atp5b,Cox4i1,Atp5a1,Ndufs7 

247 
Calcium/Calmodulin Pathways Calm1,Calm2,Camk4,S100a11,Syt1 

Microglia Inflammation/Immune 
Response 

Cebpb,Selplg,Il1b,Cx3cr1,Cxcl1 57 

Oligodendrocytes Myelination Mbp,Mal,Sirt2,Tspan2,Klk6 
115 Oligodendrocyte 

Differentiation 
Gstp1,Cnp,Tspan2,Olig1,Sox10 

Oligodendrocyte PCs Myelination Mbp,Plp1,Sirt2,Mag 
7; 103 Immune Response Prkx,Egr1,Fyn 

Endothelial Amyloids Ttr,Itm2a,Itm2b,B2m 35 
Ependymal Cilia Related Pathways Tmem107,Ift43,Dynll1,Spag17,Spef2 

87; 783 Platelet Degranulation Rarres2,Scg3,Igf2,Clu,Pros1 
Amyloids Itm2c,Apoe,Bace2,Apbb1,Cst3 

Unknown1 Dendrite Morphogenesis Epha4,Stk11,Baiap2,Bhlhb9 1; 52 

Neurons (General) 
  

Neurogenesis Npy,Ndn,Inhba,Adgrl3,Cck 
139 Energy-Related Atp1a1,Atp1b1,Atp1a2,Atp2b2 

Synaptic Signaling Scn1b,Cplx2,Slc17a7,Grik4,Grin2b 

CA1 Neurons 
  

Glutamate Transport Slc17a7,Grin2b,Gria1,Gria2 16; 330 
Metabolic Depression Ndufa4,Atp5d,Atp5g1,Ndufv3,Cox8a 

CA3 Neurons Biosynthesis Mrpl57,Ncan,Eef1a2,Farsb,Rpl15 14; 209 
CA Subtype1 

Neurons 
Neurotransmitter Pathways Camk2a,Ppp1r1b,Grin2b,Cav2,Prkcg 6; 204 

Neuronal Subtype2 Proteosome Rpn1,Psmc6,Psma1 11; 139 

DG Granule Cells Neuroplasticity/Neurotropic Ntf3,Pcp4,Set,Chl1,Bdnf 44 
Cell-cell Signaling Ptprn,Penk,Npy,Inhba,Pcdh8 

GABAergic 
Interneurons 

Cell Migration Wasl,Arpc3,Pik3ca 6; 240 
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Figure 1. 
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Figure 2. 
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Figure 3.  
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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