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Abstract 

Transcriptional reprogramming of cellular metabolism is a hallmark feature of cancer. However, a 

systematic approach to study the role of transcription factors (TFs) in mediating cancer metabolic 

rewiring is missing. Here, we chart a genome-scale map of TF-metabolite associations in human using 

a new combined computational-experimental framework for large-scale metabolic profiling of 

adherent cell lines, and the integration of newly generated intracellular metabolic profiles of 54 cancer 

cell lines with transcriptomic and proteomic data. We unravel a large space of dependencies between 

TFs and central metabolic pathways, suggesting that the regulation of carbon metabolism in tumors 

may be more diverse and flexible than previously appreciated. This map provides an unprecedented 

resource to predict TFs responsible for metabolic transformation in patient-derived tumor samples, 

opening new opportunities in designing modulators of oncogenic TFs and in understanding disease 

etiology. 

 

Introduction 

Transcription factors (TFs) are at the interface between the cell’s ability to sense and respond to 

external stimuli or changes in internal cell-state1. In cancer2 as well as other human diseases3, 

alterations in the activity of TFs can remodel the cellular signaling landscape and trigger metabolic 

reprogramming4 to meet the requirements for fast cell proliferation and cell transformation5,6. 

However, evidence linking alterations of cancer metabolism to TF dysfunction is often based on TF-

binding sites upstream of metabolic enzymes4, without reporting on functional consequences of 

detected interactions. Mass-spectrometry based metabolomics approaches are powerful tools for the 

direct profiling of cell metabolism and to uncover mechanisms of transcriptional (in)activation of 

metabolic pathways7–10. Because of the limitations imposed by commonly used workflows, such as 

coverage, scalability and comparability, simultaneously quantifying the activity of TFs and metabolic 
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pathways at genome- and large-scale remains a major challenge. Here, we develop a unique 

experimental workflow for the parallel profiling of the relative abundance of more than 2000 

putatively annotated metabolites in morphologically diverse adherent mammalian cells. This approach 

overcomes several of the major limitations in generating large-scale comparative metabolic profiles 

across cell lines from different tissue types or in different conditions, and was applied here to profile 

54 adherent cell lines from the NCI-60 panel11. To understand the origin of variance in the metabolome 

among different cancer cell types, we implemented a robust and scalable computational framework 

that integrates metabolomics profiles with previously published transcriptomic and proteomic 

datasets to resolve the flow of signaling information across multiple regulatory layers in the cell. This 

computational framework enables (i) systematically exploring regulation of metabolic pathways by 

TFs, (ii) reverse-engineering TF activity from in vivo metabolome profiles and (iii) predicting post-

translational regulatory interactions between metabolites and TFs. Beyond contributing to the 

understanding of tumor-induced metabolic changes, this new systematic platform for charting 

genome-scale functional associations of metabolites with TFs in humans can introduce a new paradigm 

in the analysis of patient-derived metabolic profiles and the development of alternative strategies to 

counteract upstream reprogramming of cellular metabolism. 

 

 

Results 

Large-scale metabolic profiling of cancer cells reveals the interplay between transcriptional 
and metabolic heterogeneity. 

Tumor cells, in spite of similar genetic background or tissue of origin, can exhibit profoundly diverse 

metabolic phenotypes12–14. To systematically investigate the origin of heterogeneity in tumor 

metabolism we exploit  the naturally occurring variability among a diverse set of cancer cell lines from 

the NCI-60 panel of tumor-derived cell lines11, representative of eight different tissue types. In spite of 

significant advancements in the rapid generation of high-resolution spectral profiles of cellular 

samples15,16, the accurate comparative profiling of intracellular metabolite abundances across large 

panels of different cell types is still a major challenge. Here, we present an innovative and robust 

workflow to enable large-scale metabolic profiling in adherent mammalian cells alongside with a 

scalable computational framework to compare molecular signatures across cell types with large 

differences in morphology and size. In contrast to classical metabolomics techniques17,18 employing 

small-scale cultivation formats, laborious and time-consuming extraction procedures, and additional 

quantification of cell numbers/volume, we use a 96-well plate cultivation format, rapid in situ 

metabolite extraction, automated time-lapse microscopy and flow-injection time-of-flight mass 

spectrometry15 (FIA-TOFMS) for high-throughput profiling of cell extract samples (Figure 1a). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2018. ; https://doi.org/10.1101/250399doi: bioRxiv preprint 

https://doi.org/10.1101/250399
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

We optimized each step, from cultivation and extraction to MS analysis to be compatible with parallel 

96-well processing. Different cell lines are seeded in triplicates at low cell density in 96-well microtiter 

plates, and are grown to confluence within 5 days (37°C, 5% CO2). Growth is continuously monitored 

by automated acquisition of bright-field microscopy images in 1.5-hour intervals. Using an in-house 

developed software for large-scale image analysis, for each cell line we can estimate average adherent 

cell size (i.e. the area covered on average by a single cell during adherent growth) and cell numbers at 

sampling time (see Supplementary Figure S1 and Supplementary Note). Replicate 96-well plates are 

sampled for metabolome analysis in 24-hour intervals. To facilitate sampling, increase the throughput 

and reduce the risk of sample processing artifacts, we collect metabolomics samples directly in the 96-

well cultivation plate without any prior cell detachment (Supplementary Figure S1). Cell extracts were 

analyzed by FIA-TOFMS15, allowing rapid full-spectral acquisition within less than one minute per 

sample. 

Normalization of large-scale non-targeted metabolomics profiles is a fundamental aspect of data  

analysis19, which becomes particularly challenging when comparing  mammalian cell lines with large 

differences in cell size. We propose a two-fold approach: (i) measure metabolome profiles from the 

same cell line at different cell densities, enabling a multiple regression approach to decouple cell line-

specific metabolic signatures from differences in extracted cell amount, plate-to-plate variance and 

background noise (Supplementary Figure S2), (ii) image analysis of bright-field microscopy images to 

correct for differences in cell volume between cell lines (Supplementary Figures S1-2). Notably, by 

integrating MS readouts at multiple cell densities and time points during growth, the resulting 

estimates of relative metabolite abundances are invariant to incubation time and cell densities, 

enabling the direct comparison between cells of different types and/or in different conditions. A 

detailed description of the workflow and our systematic multivariate approach to normalize 

metabolome data is provided in the Online methods.  

Here, we compared the intracellular metabolomes of 54 adherent cell lines from eight different tissue 

types in the NCI-60 cancer cell line panel. Consistent with large differences in physiology14,20 and 

growth rates (Supplementary Data Table S1), we observed highly heterogeneous metabolome profiles 

across cell lines from the same tissue type (Figure 1d). Differences in growth rate correlated with the 

intracellular abundance of several intermediate metabolites in amino acid biosynthesis (Spearman |R| 

> 0.35, Supplementary Figure S3), reflecting essential biochemical requirements for rapid cancer cell 

proliferation14. Differently from metabolome profiles, analysis of previously published 

transcriptomics21 and proteomics22 data sets on the 54 cell lines revealed a stronger molecular 

signature associating with the tissue of origin (Figure 1b-d , Supplementary Data Table S2). The two 

major components of metabolic variance across the 54 cell lines (38% explained variance) were 
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enriched for metabolites in nucleotide- and fatty acid metabolism as well as several signaling pathways 

(q-value < 0.05, Supplementary Figure S3), and correlated (Spearman |R| > 0.37) with the abundance 

of transcripts in signal transduction pathways regulating cell proliferation, adaptation, cell adhesion 

and migration (e.g. MAPK, HIF-1, PI3K-Akt, AMPK, Supplementary Figure S3). Altogether, these 

observations suggest metabolite abundances as closer readouts of cell physiology than mRNA or 

protein profiles, whilst pointing to a marked interplay between transcriptional regulation and the cell’s 

metabolic state. 

 

Mapping TF activity to metabolic phenotypes 

To study the flow of signaling information between transcriptome and metabolome, we sought to 

quantify the functional interplay between different transcriptional programs and metabolic 

phenotypes. TFs can directly regulate metabolic fluxes by modulating enzyme abundance, thereby 

changing maximum flux capacity, or can indirectly affect substrate availability of proximal metabolic 

reactions, which can in turn result in local changes of fluxes and/or distal changes of reaction kinetics 

via post-translational regulatory mechanisms23,24. To gain insight into the functional regulatory role of 

TFs in metabolism, we aimed to establish correlations between TF activity and metabolite abundances 

across 53 cell lines, using metabolite abundances as reporters of the impact of TF activity on metabolic 

reactions13,25 (see Supplementary Figure S4 and Supplementary Discussion). 

Because TF activity is a complex function of post-transcriptional and post-translational mechanisms, 

monitoring TF gene expression or protein levels is an inadequate proxy of TF activity26,27 

(Supplementary Figure S4). Instead, we derived a relative measure of TF activities by integrating 

previously published transcript abundance data21 for 53 cell lines with a genome-scale network of TF-

target gene interactions in human28 using Network Component Analysis (NCA)29 (Figure 2a, 

Supplementary Figure S4, Supplementary Data Table S3). By systematically correlating the activity of 

728 TFs to relative levels of individual metabolites across cell lines (Figure 2a), we generated a network 

of TF-metabolite associations (Supplementary Data Table S4, Supplementary Figure S4). While in 

human cells most of the known TF binding sites in enzyme-encoding genes map to disease-related 

signaling pathways, our TF-metabolite network unraveled a complementary large space of associations 

involving intermediates in central metabolic pathways (Figure 2b). To functionally characterize the role 

of individual TFs in regulating distinct metabolic pathways, we tested TF-metabolite associations for 

an overrepresentation of intermediates in KEGG metabolic pathways (Figure 2c, Supplementary Figure 

S5, Supplementary Data Table S4). We discovered a significant enrichment (q-value < 0.05) for 677 TFs 

(mean: 8, median: 7 pathways per TF). Because of the characteristic difference in carbon metabolism 

(e.g. Warburg effect) between cancer- and normal cells30,31, oncogenic TFs that associate with central 
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metabolic pathways are of particular interest (Figure 2c). A set of 38 oncogenic TFs showed significant 

associations with glycolysis, pentose phosphate pathway, tricarboxylic acid (TCA) cycle and/or 

oxidative phosphorylation (q-value < 0.05, Supplementary Figure S5), potentially reflecting a large 

space of regulatory interactions that can mediate the adaptation to diverse micro-environmental 

conditions and nutrient availability. For example, several TFs in the NF-κB signaling pathway (RelA, NF-

κB2 and Bcl-3) exhibit a significant association with the pentose phosphate pathway (q-value < 0.05, 

Figure 2c), possibly reflecting the role of NF-κB complex as a mediator of redox homeostasis32 (see 

Supplementary Discussion). 

The inferred associations between metabolic pathways and TFs are complementary to TF-gene 

regulatory networks. While the latter report on the regulatory capability of TFs to change enzyme 

abundance, coordinated changes between multiple metabolic intermediates and TFs can reveal the 

direct functional impact of TFs on pathway activity, and a TF’s potential in mediating the 

reprogramming of specific metabolic pathways in cancer cells. An emblematic example is tumor 

protein 53 (p53), one of the most well-studied tumor suppressor proteins33,34, for which significantly 

correlated metabolic intermediates in purine, arginine, proline- and nucleotide metabolism (q-value < 

0.05) directly point to the functional role of the TF in sensing and allocating metabolic resources for 

cell division and DNA replication33–35. Even in cases where the role and target genes of TFs have been 

extensively characterized, the herein-proposed TF-metabolite associations can refine the condition-

specific functional role of TFs in metabolism. For example, hypoxia-inducible factor 1 (HIF-1)36 is 

reported to act on regulatory elements upstream of nearly hundred enzymes in central metabolic 

pathways (Figure 2c). Here, we find a significant association with TCA cycle intermediates (q-value < 

0.05), suggesting that changes in HIF-1 activity can directly transmit to TCA cycle. The predicted direct 

regulatory role is consistent with experimental evidence for a HIF-1-mediated activation of pyruvate 

dehydrogenase kinase (PDK) that actively represses TCA cycle activity37,38. In the following, we test the 

inferred TF-metabolite associations in an in vivo context, exploring the role of HIF-1 as a key oncodriver 

in clear-cell renal cell carcinoma. 

 

Inferring TFs mediating in vivo cancer metabolome rearrangements 

Here, we ask whether the map of TF-metabolite associations found in vitro recapitulates metabolic 

rearrangements in an in vivo setting. To this end, we developed a computational framework that 

searches for TFs potentially responsible for metabolic differences between healthy and tumor tissue. 

The approach is based on a scoring function that evaluates the dot product between the TF-metabolite 

correlation matrix derived in vitro, and in vivo metabolite fold-changes between normal and cancer 

tissues (Supplementary Figure S6). Here, we applied this approach to analyze differences in metabolite 
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abundances between clear-cell renal cell carcinoma (ccRCC) and proximal normal tissue samples in a 

cohort of 138 patients7. For each patient, we estimated the significance of a TF in explaining the 

observed metabolic changes, and ranked the 728 TFs according to the median of q-values across 

patients (Figure 3).  

Loss-of-function mutations in van Hippel Lindau (VHL) TF gene are the most frequent and specific 

genetic event observed in ccRCC39, entailing a hyper-activation of hypoxia-inducible factors (HIF-1, HIF-

2 and HIF-3)40. In agreement with the genetic basis of ccRCC, we identified VHL and HIF-1α among the 

top 1% of TFs that potentially mediate metabolic rearrangement in ccRCC (Figure 3). Other top-ranking 

TFs include YY1 that can further stabilize HIF levels in VHL-null renal carcinoma41, and TFAP2A, whose 

gene is frequently hyper-methylated in ccRCC42 (see also Supplementary Discussion and 

Supplementary Figure S6). These results support the relevance of the previously inferred in vitro map 

of TF-metabolite associations and its potential clinical value in the interpretation of in vivo 

metabolome profiles of tumor tissue samples.  

To further illustrate the potential of TF-metabolite associations in aiding  the interpretation of tumor 

specific metabolic changes, we collected data from two additional studies monitoring tumor metabolic 

reprogramming in cohorts of 10 and 21 patients with colon13 and lung cancer43, respectively. In 

contrast to ccRCC, the most recurrent genetic events in colon and lung cancers are mutations in 

p5344,45, shared across many different tumor types. In such cases, our approach can dissect specific 

TFs, possibly effectors up- or downstream of p53, that can more directly explain tumor-specific 

metabolic changes. In colon cancer, we predicted an involvement of Mllt10, a downstream effector of 

Wnt signaling that is activated in many colorectal cancers46, as well as RelB, an NF-κB subunit which 

contributes to the rewiring of cancer metabolism through crosstalk with p53 and is involved in colitis-

associated cancers47 (Figure 3 and Supplementary Discussion). Similarly, the metabolic changes 

observed in the lung cancer cohort highlight AATF, an upstream regulator of p5348, as well as NF-Y, a 

putative regulator of cancer metabolism that can act in complex with gain-of-function mutant p53 to 

increase DNA synthesis49 (Figure 3 and Supplementary Discussion). Taken together, in vitro 

associations between TFs and metabolites not only provide a means to functionally characterize the 

role of TFs across diverse cancer types, but could also complement genomic information and guide the 

analysis, molecular classification and interpretation of metabolome profiles from large patient cohorts. 

 

Systematic mapping of TF activity modulators  

While we have shown that metabolic rearrangements in cancer can be described by changes in TF 

activity, the origin of such changes often remains elusive. Mutations in genes encoding TFs can be 

directly responsible for altered TF functionality, and in some cases even explain disease etiology. 
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However, the activation of new transcriptional programs is often an indirect response to changes in 

the abundance of internal effectors of cell signaling50,51. In silico models have proven extremely 

powerful in finding new allosteric interactions that can regulate enzyme activity52 and in testing their 

in vivo functionality53, but little progress has been made in the systematic mapping of effectors of TF 

activity. Here, we integrated three layers of biological information to obtain first insights into how TFs 

could be embedded in a regulatory network allowing the cell to activate distinct transcriptional 

programs in response to changes in the abundance of specific intracellular metabolites. 

Besides mutations in TF-encoding genes, interactions with other proteins (co-factors or 

kinases/phosphates) and metabolites (e.g. allosteric binding) within the cell can repress or enhance TF 

activity. Despite the increased interest in metabolites as signaling molecules and their potential role in 

driving cellular transformation50,54–56, resolving the influence of metabolites on TF activity has 

remained a daunting task57. Here, we established an in silico framework for generating hypotheses on 

regulatory interactions between TFs, metabolites and kinases (Figure 4a). To that end, we used model-

based fitting analysis to integrate TF activity and metabolome profiles with proteome data22 measuring 

the abundance of 100 TFs and 64 kinases/phosphatases across 53 cell lines. For each TF, we applied 

nonlinear regression analysis to determine whether variation in TF activity across the 53 cell lines could 

be modeled as a function of TF protein abundance and the activating or inhibiting action of individual 

metabolites and/or kinases. In total we tested 6,753,600 models, and found 1,888 interactions which 

significantly (FDR <= 0.1%) improved the explained variance in the activity of 96 TFs. Most of the 

inferred regulatory interactions (93%) involved the combined action of a kinase and a metabolite, while 

only few metabolites or kinases could alone significantly improve model-fitting (Figure 4b, 

Supplementary Data Table S5). This observation suggests that multiple coordinated regulatory 

mechanisms underlie the post-transcriptional regulation of TF activity. On average, each metabolite 

engaged in 8 interactions (median: 3), while kinases on the other hand were predicted to be more 

ubiquitous effectors (13-125 interactions per kinase) (Supplementary Figure S7).  

This blueprint interaction map can serve as a new resource for generating hypotheses and designing 

target-oriented experimental approaches for in-depth mechanistic studies identifying metabolic 

regulators of transcriptional reprogramming. The most highly connected metabolite is choline (118 

interactions with 36 TFs), substrate of the first step in the biosynthesis of phosphatidylcholine, a key 

component of eukaryotic cellular membranes. Recent studies have revealed a deep interplay between 

oncogenic signaling and choline metabolism, such that altered choline levels have become a metabolic 

hallmark of malignant transformation58. Our results support this key role, suggesting that choline 

availability could be sensed and can trigger a wide range of transcriptional adaptive processes. Further 

examples of predicted regulatory interactions are provided in the Supplementary Discussion. 
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Overall, our approach opens the door for a systematic investigation of a previously largely unexplored59 

interaction space between transcriptional regulators and signaling effectors in human cells. The 

herein-presented experimental workflow for large-scale comparison of metabolomes in different 

cancer types, and in silico modeling of regulatory actions of metabolites and/or kinases can become 

an invaluable methodology in finding unique effectors that can trigger changes in the cell’s 

transcriptional program.  

 

Discussion 

In recent years, increasing efforts have been made to understand the signals driving metabolic changes 

in cancer13. Transcriptional regulation is at the basis of the decision-making process of a cell and its 

ability to allocate resources necessary for cell transformation and proliferation. Genome sequencing 

and transcriptome technologies have revealed an intricate network of transcription factor–target gene 

interactions in which TF mutations often associate to disease states and aberrant metabolic 

phenotypes7,60,61. However, it is important to emphasize that gene regulatory interactions between 

enzymes and TFs per se are not sufficient to functionally regulate the activity of metabolic pathways. 

Key to unambiguously resolving regulatory circuits at the intersection with metabolism are methods 

searching for coordinated behavior between the different levels. Here, we integrate biological 

information across three layers: the transcriptome, the proteome, and the metabolome of 53 

phenotypically diverse cell lines from the NCI-60 panel of human tumor cell lines. Key to this approach 

was the development of a combined experimental and computational framework (Figure 1a) that 

overcomes important limitations in large-scale metabolome screenings, including (i) the limited 

throughput and laborious sample preparation of classical metabolomics approaches in mammalian cell 

cultures17,18, (ii) the lack of scalable methods to adequately normalize metabolomics data across 

morphologically diverse cell types, and (iii) the need for systematic data integration strategies.  

Here, by integrating cross-sectional omics data from diverse tumor cell lines, we constructed a global 

network model across three layers of biological information, exploiting the naturally occurring diversity 

in an in vitro cell line system. By analyzing the coordinated changes in baseline transcriptome, 

proteome and metabolome with the aid of a gene-regulatory network and model-based fitting 

analysis, we investigated the information flow from TFs to metabolic pathways and vice versa. The 

herein-constructed network of TF-metabolite associations provides an unbiased metabolic 

characterization of TF functions in human, and a more systematic understanding of functional 

regulatory interactions that can mediate metabolic adaptation in cancer cells. For many TFs, we found 

new regulatory associations with central metabolic pathways, suggesting a large space of 

transcriptional solutions by which cells can fulfill the anabolic and catabolic requirements for rapid 
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proliferation62 and adaptation to nutrient limitations63,64. Secondly, we constructed a map of 

functionally relevant modulatory interactions between transcription factors, cell metabolism and cell 

signaling (kinases). Most interactions included the combined action of a metabolite and a kinase, acting 

as allosteric effectors or post-translational modifiers of TFs. An extensive network of these two types 

of physical interactions has emerged in model organisms such as E. coli or Yeast 24,65,66, and based on 

our findings we expect a similar picture to hold true in humans59. However, the identity and condition-

dependent relevance of such interactions is much harder to determine experimentally in human cells 

than in unicellular model organisms. As a result, discoveries of TF-metabolite interactions in human 

cells have been sporadic67. The analysis and predictions proposed in this study offer new opportunities 

for a more systematic and exploratory discovery of TF post-translational regulatory interactions. The 

experimental and computational components of our approach are scalable and should in the future 

be applied to include a direct readout of kinase activity (e.g. phosphoproteomics data), broader protein 

coverage, larger cohorts of cell lines and more diverse environmental conditions. The relevance of TF-

activity modulators extends beyond cancer metabolism, to the general understanding of how 

fluctuating micro-environments trigger coordinated responses of signaling pathways and culminate in 

the adaptive rewiring of the cell’s functional landscape.  

In light of the central regulatory role of TFs in cellular organization, targeting TFs is an extremely 

attractive way to counteract global gene expression changes that underlie cancer development68–70. 

Endogenous metabolites capable of modulating TF activity could become invaluable chemical scaffolds 

to design new therapeutic molecules targeting oncogenic TFs, with the potential to overcome 

shortcomings related to targeting kinase-mediated signaling cascades70. The herein proposed 

workflow for large-scale metabolome profiling is directly applicable to the study of dynamic metabolic 

responses to external stimuli, and can scale to larger cohorts that are now within reach of other 

molecular profiling platforms71. Altogether, our work also suggests that, while clearly far from typical 

in vivo conditions, in vitro cell line systems represent an invaluable discovery tool to investigate 

metabolic regulatory mechanisms that can still generalize to in vivo conditions and clinical settings. 

The experimental and computational framework proposed in this study is applicable to other systems 

or diseases, providing us with an unprecedented tool to investigate the origin of metabolic 

dysregulation in human diseases. 
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Materials and Methods 

Cell cultivation. The NCI-60 cancer cell lines were obtained from the National Cancer Institute (NCI, 
Bethesda, MD, USA). After thawing, the adherent cell lines were expanded in cell culture flasks (Nunc 
T75, Thermo Scientific) at 37°C and 5% CO2 in RPMI-1640 (Biological Industries, cat.no. 01-101-1A) 
supplemented with 5% fetal bovine serum (FBS, Sigma Aldrich, F6178), 2 mM L-glutamine (Gibco, 
cat.no. 25030024), 2 g/L D-glucose (Sigma Aldrich, cat.no. G8644), and 100 U/mL 
penicillin/streptomycin (P/S, Gibco, cat.no. 15140122). After two passages, the cells were transferred 
to fresh medium where FBS was replaced by dialyzed FBS (dFBS, Sigma Aldrich, cat.no. F0392) with a 
reduced content of low molecular weight compounds, to improve accuracy of metabolite 
quantification. Cells were maintained in medium with dFBS throughout all experiments. The starting 
cell density for metabolomics experiments was determined for each cell line. To this end, cells were 
plated in triplicates at eight different starting cell densities and incubated at 37°C and 5% CO2 for 3 
days. On the third day, the medium was changed in all wells by aspirating the spent medium using a 
multi-channel aspirator, washing once with phosphate-buffered saline solution (PBS, pH 7.4, Gibco, 
cat.no. 10010015 at 37°C) using a multi-channel dispensing pipet, and finally filling each well again 
with 150 µL of fresh medium. The plate was imaged to determine the confluence (see below) 
immediately before and after media change, and after 72 hours. The starting cell density for 
metabolomics experiments was then chosen to guarantee a minimum of 20-30% cell confluence 
before media change, and approx. 80% confluence after 72 hours. 

Cell imaging and image analysis. We monitor cell growth by measuring cell confluence (i.e. area of the 
well covered by cells in percentage) directly from 96-well plates using automated time-lapse 
microscopy imaging. Every 1.5 hours, bright-field microscopy images of each well were acquired using 
a TECAN Spark 10M plate reader. In addition, we developed an image analysis framework to segment 
cells and determine the characteristic cell size area (i.e. average surface area of single adherent cells) 
for each cell line (Supplementary Figure S1). To quantify the number of extracted cells, confluence was 
divided by the characteristic cell size (Supplementary Figure S1). A detailed description and validation 
of the algorithm used for estimating cell numbers from bright-field microscopy images is provided in 
the Supplementary Note, alongside with a Matlab code. Of note, this approach has several important 
advantages, in that it is non-destructive, and allows quantifying cell growth and cell numbers without 
any manual sample manipulation.  

Metabolomics experiments. Cells were plated in triplicates in 150 µL of RPMI1640 medium (5% dFBS, 
2 g/L glucose, 2 mM glutamine, 1% P/S) in 96-microtiter well plates. After an initial growth phase, the 
medium in each well was renewed on the third day, and the cultures were subsequently monitored 
for four more days (96 hours). Ten replicate plates were prepared in each experiment to allow for 
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generating metabolomics samples at five different time-points (immediately before media change, and 
at 24, 48, 72 and 96 hours after media change), and one additional plate for continuous growth 
monitoring (TECAN Spark 10M, 37°C, 5% CO2). 

At each sampling time point, two replicate 96-well plates were processed (plates A and B). Plate A was 
used to generate cell extracts, by (1) removing the spent medium, (2) washing once with 75 mM 
ammonium carbonate (pH 7.4), and (3) adding ice-cold extraction solvent (40% methanol, 40% 
acetonitrile, 20% water, 25 µM phenyl hydrazine72). Finally, the plate is sealed, incubated at -20°C for 
one hour, and subsequently stored at -80°C until MS analysis. Plate B undergoes the same processing 
steps, except for the last one, where each well is filled with 37°C PBS (pH 7.4), and the plate is 
immediately imaged to determine cell confluence for subsequent normalization of MS spectra. 

Immediately prior to MS analysis, the plates were thawed on ice, and the extracted cells were scraped 
off the bottom of each well using a multi-channel pipet with wide-bore tips. Next, the cell extracts 
were transferred to 96-well plates with conical bottom and centrifuged at 4°C, 4000 rpm for 5 min to 
separate cell debris. Finally, pooled cell extracts for each experiment (“master mixes”, pooled from 
five cell lines processed within the same experiment) as well as aliquots of unused extraction solvent 
were added to each measurement plate as control samples, and the plates were sealed and stored at 
4°C until injection. 

Metabolome profiling using FIA-TOFMS. Cell extract samples were analyzed by flow-injection analysis 
time-of-flight mass spectrometry (FIA-TOFMS) on an Agilent 6550 iFunnel Q-TOF LC/MS System 
(Agilent Technologies, Santa Clara, CA, USA), as described by Fuhrer et al15. This method allows the 
generation of high-resolution spectral profiles in less than one minute per sample, allowing for 
sensitive high-throughput profiling of large sample collections. In brief, a defined sample volume of 5 
µL is injected using a Gerstel MPS2 autosampler into a constant flow of isopropanol/water (60:40, v/v) 
buffered with 5 mM ammonium carbonate (pH 9), containing two compounds for online mass axis 
correction: 3-Amino-1-propanesulfonic acid, (138.0230374 m/z, Sigma Aldrich, cat. no. A76109) and 
hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine (940.0003763 m/z, HP-0921, Agilent Technologies, 
Santa Clara, CA, USA). The sample plug is delivered directly to the ion source for ionization in negative 
mode (325°C source temperature, 5 L/min drying gas, 30 psig nebulizer pressure, 175 V fragmentor 
voltage, 65 V skimmer voltage). Mass spectra were recorded in the mass range 50-1000 m/z in 4 GHz 
high-resolution mode with an acquisition rate of 1.4 spectra per second. Raw MS profiles were 
processed to align spectra and pick centroid ion masses using an in-house data processing environment 
in Matlab R2015b (The Mathworks, Natick).  

Metabolite annotation. Measured ions were putatively annotated by matching mass-to-charge ratios 
to a reference list of calculated masses of metabolites listed in the Human Metabolome Database 
(HMDB) and the genome-scale reconstruction of human metabolism73 (Recon2) within 0.003 amu 
mass accuracy. The reference mass list was generated from the respective sum formulae, considering 
deprotonation as the most prevalent mode of ionization in the chosen acquisition conditions. To allow 
for the annotation of α-keto acid derivatives formed in presence of phenyl hydrazine in the extraction 
solvent72, sum formulae for the phenylhydrazone derivatives (+C6H8N2 -H2O) of a total of 30 α-keto acid 
compounds (selected via KEGG SimComp search http://www.genome.jp/tools/simcomp/) were added 
to the metabolite list for annotation. The final list of putatively annotated metabolites consisted of 689 
and 5949 unique compound IDs from Recon2, and HMDB, respectively. 

Data normalization. We corrected for systematic errors using a two-step regression model to 
disentangle the contributions of extracted cell numbers, plate-to-plate variance, instrumental and  
background noise from the actual variance in metabolite abundances between cell types 
(Supplementary Figure S2). To this end, raw data were first corrected for instrument drift by 
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normalizing for possible batch/plate effects. Each plate contains 12 pooled cell extract samples 
prepared from the 5 different cell lines in each experiment (i.e. batch). Measured intensities for each 
annotated ion are modeled as follows: 

𝐼𝐼𝑖𝑖,𝑗𝑗,𝑝𝑝 =  𝛾𝛾𝑝𝑝 ∙  𝑀𝑀𝑖𝑖,𝑗𝑗   (Eq. 1) 

log�𝐼𝐼𝑖𝑖,𝑗𝑗,𝑝𝑝� =  log (𝛾𝛾𝑝𝑝) + log (𝑀𝑀𝑖𝑖,𝑗𝑗)   (Eq. 2) 

Where Ii,j,p is the measured intensity for ion I, in pooled sample j and plate p, γp is the scaling factor 
associated to each plate and Mi,j represents the actual abundance of metabolite i in sample j. By using 
a linear regression scheme we can estimate both parameters (γp and Mi,j) within an unknown scaling 
factor. After correcting for possible instrumental artifacts, we implemented a second step in order to 
derive comparative measurements of metabolite abundance for each cell line. Here, we follow each 
cell line along the linear growth phase, sampling every 24 h across 5 days. We typically obtain 25 data 
points for each cell line at different cell densities. The expectation is that the signal measured for any 
ion of biological origin (i.e. a genuine metabolite) would increase linearly as the number of cells in the 
sample increases. The proportionality (i.e α parameter) between ion intensity and extracted cells 
depend on the intracellular concentration of the metabolite. Here, by implementing a multiple 
regression scheme, we estimate the relative abundance of a given metabolite in each of the cell lines, 
α (Supplementary Figure S2), alongside with its standard error. A linear regression model describes 
variation in ion intensity as a linear function of cells extracted (α) and a constant parameter (β) that 
capture MS background noise. For each ion, the α values are specific of each cell line while the constant 
term in the model is fixed (i.e. expected ion signal at zero confluence that is independent of the cell 
line). 

Because of the large number of measurements for each cell line at different cell densities, we can apply 
a multiple regression analysis (fitlm function in Matlab) to infer all model parameters αs and β at once, 
by minimizing the Euclidian distance between measured metabolite intensities and model predictions. 
For each metabolite, we solve the following linear model, including all 54 cell lines: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,1
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,2
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,3

…
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2,1
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2,2
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2,3

…
𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,1 0 … 0 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,2 0 … 0 1
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,3 0 … 0 1

… … … … …
0 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2,1 … 0 1
0 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2,2 … 0 1
0 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2,3 … 0 1
… … … … …
0 0 … 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ∙  [𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 … 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽]  (Eq. 3) 

Where Icell c,s is the measured metabolite intensity in sample s of cell line c, Ncell c,s is the number of cells 
extracted in sample s of cell line c, and αs (for each cell line) and β are the unknown parameters to be 
fitted. The number of cells per sample is derived from the confluence measurements at sampling, 
divided by the average cell size area determined using our image segmentation analysis (see 
Supplementary Figure S2 and Supplementary Note). After this step, we retained 2181 ions with a 
regression p-value below a threshold value of 3.4e-7 (adjusted by the number of cell lines and ions) in 
at least one cell line, and that showed a significant dependency with the extracted cell number in more 
than 80% of cell lines (Supplementary Figure S2). Of note, we found that prior to normalization, the 
variance across three biological replicates at the same time-point was equally low in cell confluence 
(median: 7.4% CV) and raw ion intensities (median: 13%, Supplementary Figure S2), reflecting the high 
quality of MS measurements.  
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In the third and last step, we take into account systematic changes in metabolite abundances related 
to differences in cell size (i.e. cell volume) between the 54 cell lines  to derive comparative estimates 
of intracellular metabolite concentration. Principal component analysis of relative metabolite 
abundance per cell revealed a strong trend across the 54 cell lines (PC1, 58.9% explained variance, 
Supplementary Figure S2), which strongly correlates with cell line volumes derived from cell diameters 
measured in 74 as well as with the herein determined adherent cell size area (Supplementary Figure 
S2, see Supplementary Note). The transitive correlation between adherent cell size and the spherical 
cell volume in suspension indicates that adherent cell height can be approximated as a constant. To 
correct MS data for differences in cell line volumes, we selected 987 ions that showed a significant and 
strong correlation (Pearson’s r > 0.8, p < 0.05, Supplementary Figure S2) with PC1. KEGG pathway 
enrichment analysis showed that these putatively annotated metabolites were strongly 
overrepresented in fatty acid metabolism (Supplementary Figure S2), consistent with the expected 
linear dependency between cell membrane surface (i.e. phospholipid content) and cell volume of 
adherent cells. For each ion, cell line-specific α-values of the selected metabolites across all 54 cell 
lines were used to calculate a consensus correction factor for each cell line by taking the mean across 
the 987 ions. To apply the cell volume correction to the full data set, we divided the cell line-specific 
α-values for each ion by the consensus correction factor. 

Finally, the corrected α-values were normalized using Z-score normalization: 

( )

( )∑ −

−
=

n

Cell
Cell

Cell

n

Z
21 αα

αα
α

,  (Eq. 4) 

where n is the number of cell lines (i.e. 54). 

The final normalized data set is provided in Supplementary Data Table S1 alongside with p-values and 
standard errors derived from regression analysis. Missing values (‘NaN’) correspond to cases where 
the measured ion abundance for the annotated metabolite was close to the background level in the 
cell line, and can be considered as zero for further analysis. In cell lines where a significant dependency 
(p < 3.4e-7) of given metabolite’s abundance with cell number could be robustly determined and 
exceeded the background noise, relative standard errors of α calculated during fitting analysis were 
below 20% (median: 11%, Supplementary Figure S2). 

Analysis of tissue signature in transcriptomics, proteomics, metabolomics and drug sensitivity data 
sets. Principal component analysis (PCA) was used to dissect each data set into major trends, and 
quantify the extent of variance explained by each of these principal components (Supplementary 
Figure S3). The PC scores obtained for the different cell lines in each principal component and data set 
were then analyzed for signatures of individual tissue types based on the pairwise Euclidean distance 
between cell lines. For each cell line, the enrichment of cell lines from the same tissue type among its 
nearest neighbors (i.e. smallest distance scores) was tested using a hypergeometric test. The resulting 
probabilities (p-values) from enrichment analysis were subjected to receiver-operator-characteristic 
(ROC) curve analysis to evaluate the performance of a given principal component as a predictor of the 
tissue type (Supplementary Table S2). A principal component was assigned a tissue signature when the 
area under the ROC curve (AUC) exceeded a value of 0.8 for any tissue type, and the fraction of 
explained variance was summed up to obtain the overall percentage of variance explained by tissue 
type in each data set (Figure 1c).  

Estimating TF activity using Network Component Analysis (NCA). Originally established by Liao et al.29, 
NCA provides a mathematical framework for reconstructing TF regulatory signals (TF activity) from 
gene expression profiles. Here, we adopted sparseNCA implementation by Noor et al.75 (Matlab code 
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downloaded from https://sites.google.com/site/aminanoor/softwares). This methodology adopts a 
mathematical model to approximate TF-target regulatory interactions and integrates prior network 
information with the expression of target genes across multiple conditions to regress the activity of 
the respective TFs, delivering a relative measure of TF activity. We obtained normalized gene 
expression profiles across the NCI-60 cell lines from Gene Expression Omnibus (accession number 
GSE32474), containing 54,675 mRNA probes. TRRUST database28 served as the source of TF-target 
gene interactions relevant in human, including 748 human TFs and 1,975 non-TF gene targets. 
Intersecting these two resources, we assembled a network of 2,209 unique genes corresponding to 
5490 mRNA probes that match target genes of 728 TFs in the TRRUST database (Supplementary Figure 
S4). We implemented a bootstrapping approach to account for incompleteness of the regulatory 
network (i.e. missing regulatory interactions), and the fact that there may be multiple optima in the 
solution space. To this end, for each TF we randomly selected 48 additional TFs and constructed a sub-
network containing the 49 TFs and their target genes. Because growth-rate has a pleiotropic effect on 
gene expression, here reflected in the correlation between first principal component of gene 
expression data and cell line growth rates (Supplementary Figure S4), we decouple TF activity from the 
confounding effect of growth-rate by adding an additional TF that targets all genes. This fictitious TF 
mimics the general effect of proliferation rates on transcription. As a result, each TF is embedded in a 
sub-network of 50 TFs and their target genes from the full network. Ten such sub-networks were 
created randomly for each TF to apply NCA. In this bootstrapping scheme, each TF was sampled in on 
average 490 subnetworks (permutations, min. 423, max. 556 data points per TF). In the final data set, 
we normalized the calculated TF activity to the maximum across all permutations, and finally calculated 
the median TF activity and its standard deviation for each TF and cell line (Supplementary Figure S4). 
It is worth noting that the estimates we obtain with this approach are correct within an unknown 
scaling factor, and hence we determine a relative measure of activity for each of the 728 TFs across 
the NCI-60 cell lines. 

TF-metabolite association network and inferring TF involvement from in vivo metabolic changes. In 
order to find metabolites whose relative abundances correlate with TF activity, we calculated pairwise 
Spearman correlations between all 2181 annotated metabolites and 728 TFs across the 54 cell lines. 
In order to control the false discovery rate (FDR) among network links, we used a bootstrapping 
approach to calculate 99.5 and 99.9% confidence intervals of correlation coefficients after randomizing 
the data set. To that end, the cell lines in the metabolome data set were randomized by resampling 
100 times with replacement, and Spearman correlation coefficients were calculated for each 
randomized data set.  Correlation coefficients yielding 99.5 and 99.9% confidence intervals (0.5 and 
0.1% FDR, respectively) were obtained from the pooled list of absolute correlation coefficients by 
finding the smallest correlation coefficient that exceeds the maximum value among 99.5 and 99.9% 
lowest correlation coefficients, respectively).  

Based on this association network, the procedure used to estimate the contribution of each of the 728 
TFs in mediating metabolic changes observed in vivo, consists of 3 main steps: (i) For each patient log2 
fold-changes of detected metabolites between cancer and adjacent normal tissue are estimated (FCp), 
(ii) The dot product between metabolite fold-changes and the TF-metabolite correlation vector (cTF, 
product of correlation R and –log10 p) estimated from in vitro cell lines is computed for each TF (𝑆𝑆𝑇𝑇𝑇𝑇

𝑝𝑝 ), 
(iii) the significance is estimated using a permutation test, where metabolite order is shuffled 10.000 
times, the dot product is estimated for each random permutation (𝑆̃𝑆𝑇𝑇𝑇𝑇

𝑝𝑝 ) and p-values are estimated as 
follows: 

𝑆𝑆𝑇𝑇𝑇𝑇
𝑝𝑝 = 𝐶𝐶𝑇𝑇𝑇𝑇∙𝐹𝐹𝐹𝐹𝑝𝑝

‖𝐶𝐶𝑇𝑇𝑇𝑇‖1
  (Eq. 5) 
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𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇 = ∑ �𝑆̃𝑆𝑇𝑇𝑇𝑇
𝑝𝑝 ≥𝑆𝑆𝑇𝑇𝑇𝑇

𝑝𝑝 �10,000
𝑘𝑘

10,000
  (Eq. 6) 

P-values are corrected for multiple tests by q-value estimation76, and the median across patients is 
calculated. Notably, when analyzing the data published in 7 we excluded all detected metabolites with 
more than 10 missing values across patient samples. 

KEGG enrichment analysis of TF-metabolite correlation signatures. To assess the over-representation 
of TF-metabolite associations in KEGG metabolic pathways, the pairwise correlation between TF 
activity and metabolite relative abundance across cell lines were rank-transformed. A statistical score 
that models the probability of a KEGG pathway to be significantly associated to a TF is based on the 
collective activities of multiple metabolites in a pathway following the approach described in 77. The 
significance of the rank distribution of all metabolites within the same KEGG pathway is tested by 
means of an iterative hypergeometric test, indicating the statistical significance of metabolic 
intermediates of a common metabolic pathway (e.g. TCA cycle) being distributed toward the top 
ranking ones. P-values were corrected for multiple tests by q-value estimation 76. 

Prediction of metabolite-TF effectors. Because of the poor correlation between protein levels and 
NCA estimated TF activities (Supplementary Figure S4), we systematically investigate whether 
variation in TF activities across cell lines could be explained by alternative models. Instead of assuming 
a base model where the TF activity is a simple linear function of protein abundance, we model TF 
activity as a function of TF protein levels and the post-translational regulatory functions of metabolites 
and/or kinases, individually or in combination as follows: 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗 =  𝐾𝐾1

1+𝑀𝑀𝑖𝑖
𝐾𝐾2

∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3 for a metabolite inhibitor, 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 =  𝐾𝐾1∙𝑀𝑀𝑖𝑖

𝑀𝑀𝑖𝑖+𝐾𝐾2
∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3 for a metabolite activator, 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 =  𝐾𝐾1

1+𝑃𝑃𝑥𝑥𝐾𝐾2
∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3 for a kinase inhibitor, 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 =  𝐾𝐾1∙𝑃𝑃𝑥𝑥

𝑃𝑃𝑥𝑥+𝐾𝐾2
∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3 for a kinase activator, 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 =  � 𝐾𝐾1∙𝑃𝑃𝑥𝑥

𝑃𝑃𝑥𝑥+𝐾𝐾2
+ 𝐾𝐾1

1+𝑀𝑀𝑖𝑖
𝐾𝐾4

� ∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3  for a kinase activator & metabolite inhibitor, 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 =  � 𝐾𝐾1

1+𝑃𝑃𝑥𝑥𝐾𝐾2
+ 𝐾𝐾1

1+𝑀𝑀𝑖𝑖
𝐾𝐾4

� ∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3  for a kinase inhibitor & metabolite inhibitor, 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 =  � 𝐾𝐾1∙𝑃𝑃𝑥𝑥

𝑃𝑃𝑥𝑥+𝐾𝐾2
+ 𝐾𝐾1∙𝑀𝑀𝑖𝑖

𝑀𝑀𝑖𝑖+𝐾𝐾4
� ∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3  for a kinase activator & metabolite activator, 

𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 =  � 𝐾𝐾1

1+𝑃𝑃𝑥𝑥𝐾𝐾2
+ 𝐾𝐾1∙𝑀𝑀𝑖𝑖

𝑀𝑀𝑖𝑖+𝐾𝐾4
� ∙ 𝑃𝑃𝑇𝑇𝑇𝑇𝑗𝑗 + 𝐾𝐾3  for a kinase inhibitor & metabolite activator. 

Where K1,2,3,4 are free parameters in the model, 𝑃𝑃𝑇𝑇𝑇𝑇
𝑗𝑗 is the relative protein abundance associated to TFj, 

Px represents the relative protein abundance of kinase x and Mi the level of metabolite i. 

For models in which we assume the non/inhibitory actions of a single metabolite or kinase, we use a 
non-linear model fitting scheme to find the best set of 3 parameters to describe changes in TF activity 
across cell lines. To minimize the probability of local minima, we adopted the GlobalSearch function of 
Matlab and 50,000 starting points. By using the same approach, we tested all possible combinations 
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between pairs of metabolites and kinases that can act either as activators and/or inhibitors, to find the 
best set of 4 parameters that describe TF activity. For each pair or triplet of TFs and metabolites and/or 
kinases we estimate the Mean Squared Error (MSE) associated to each tested model. In addition, we 
estimated the MSE when fixing the model parameters and randomly permuting TF activity, TF protein, 
metabolite and kinase levels across cell lines (MSEe). For each TF we then repeat model fitting, each 
time by randomly shuffling metabolite and kinases levels. We used this approach to empirically asses 
the significance of each model in better explaining TF activity. To this end, we calculated MSE values 
for each model in which kinases and metabolite levels were randomly permuted (MSERandom and 
MSEe

Random ). Finally we retain only those models in which MSE and MSEe are both above the 0.1% of 
the respective distributions of MSERandom and MSEe

Random. The proteome dataset (ArrayExpress, project 
accession: E-PROT-2) report protein levels for 100 annotated TFs and 63 kinases, and to reduce 
computation time we here consider only differentially abundant metabolites annotated to KEGG 
identifiers. Fitting analysis was performed in Matlab using the “fitnlm” function, on a cluster with 900 
computational nodes. 
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Figure 1. Comparative 
metabolome profiling in 
54 adherent cancer cell 
lines. (a) Schematic 
overview of the combined 
workflow for high-
throughput metabolome 
profiling in adherent cell 
lines. Multiple cell lines are 
cultivated in parallel to 
collect cell extracts for MS-
based metabolome 
profiling (Supplementary 
Figure S1). A new software 
tool for the segmentation 
of bright-field microscopy 
images (Supplementary 
Note) is used for 
automated cell number 
quantification. Raw MS ion 
intensities are normalized 
using a multiple regression 
scheme (Supplementary 
Figure S2). (b) Signatures of 
tissue type in intracellular 

metabolome profiles compared with transcriptome, proteome, drug sensitivity, growth rate and the uptake and 
secretion of 140 metabolites (CORE profiles14). ROC curve analysis quantifies the performance of each of the 
data layers in predicting the tissue of origin (Supplementary Figure S3). (c) Major patterns in each data set were 
extracted by principal component analysis and tested individually for tissue signatures (Supplementary Figure 
S3). Colored bars indicate the sum of explained variance by tissue-associated principal components (AUC ≥ 0.75). 
(d) Pairwise similarity (Spearman correlation) of metabolome profiles among 53 cell lines from the NCI-60 panel. 
The size of circles on the diagonal is proportional to the growth rate (doubling time) of each cell line. 
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Figure 2. Inferring a TF-metabolite association network by integrating transcriptome and metabolome data. 
(a) Schematic overview of the computational framework for finding TF-metabolite associations. The activity of 
728 human TFs was calculated using Network Component Analysis (NCA)29 which estimates TF activity from gene 
expression profiles of the NCI-60 cell lines and the transcriptional regulatory network between TFs and their 
target genes. In the second step, correlation analysis was used to find associations between TFs and metabolites 
(Figure 1). The resulting TF-metabolite association network resembles a scale-free network (Supplementary 
Figure S4). (b) Distribution of links to KEGG pathways in the TF-metabolite association network (left-hand 
section), and in the TF-gene regulatory network (right-hand section), respectively. KEGG pathways were grouped 
into super-pathways. Edge-size connecting the TF hub and a super-pathway reflects the number of links found in 
the network. (c) Metabolites associated with 15 known oncogenic TFs were tested for a significant 
overrepresentation in KEGG metabolic pathways (Supplementary Figure S5). Colored squares indicate the 
significance of the enrichment analysis (q-value < 0.05), while the size of black circles scales with the number of 
known TF-gene targets in the metabolic pathway.  
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Figure 3. Inferring TF as mediators of in 
vivo metabolic changes. Prediction results 
in three previously published data sets 
comprising metabolic profiles of tumor vs. 
proximal healthy tissue from 21, 138 and 
10 patients with lung cancer43 (panel a), 
clear-cell renal cell carcinoma7 (panel b), 
and colon cancer13 (panel c). Each dot 
represents the strength (x-axis, median 
score) and significance (y-axis, Q-value) of 
a TF in mediating in vivo metabolic 
changes. Dot-size indicates the frequency 
of mutations in the TF-encoding gene for 
the respective cancer type, derived from 
the Catalogue Of Somatic Mutations In 
Cancer (COSMIC)78. Gene-name labels are 
shown for the top 1% most significant hits 
(see Supplementary Discussion and 
Supplementary Figure S6). 

 

 

 

 

 

Figure 4. Modeling TF activity using an ensemble of non-linear models. (a) Schematic overview of the 
computational framework. Three layers of biological information are integrated using a model-based fitting 
approach: protein abundance of 100 TFs and 64 kinases, TFs activity derived from transcriptome data and relative 
levels of 230 metabolites across the 53 cell lines (see Online methods). (b) Predicted network of modulatory 
interactions between TFs (red nodes), metabolites (yellow nodes) and kinases (blue nodes). Most interactions 
involve the combined action of a metabolite and a kinase (93% of interactions). In 22 cases, changes in metabolite 
abundance alone were sufficient to improve the description of changes in TF activity (Supplementary Data Table 
S5).  
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