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Abstract 
Background Coronary artery disease (CAD) has substantial heritability and a polygenic 

architecture; however, genomic risk scores have not yet leveraged the totality of genetic information 

available nor been externally tested at population-scale to show potential utility in primary prevention.  

Methods Using a meta-analytic approach to combine large-scale genome-wide and targeted genetic 

association data, we developed a new genomic risk score for CAD (metaGRS), consisting of 1.7 

million genetic variants. We externally tested metaGRS, individually and in combination with 

available conventional risk factors, in 22,242 CAD cases and 460,387 non-cases from UK Biobank. 

Findings In UK Biobank, a standard deviation increase in metaGRS had a hazard ratio (HR) of 1.71 

(95% CI 1.68–1.73) for CAD, greater than any other externally tested genetic risk score. Individuals 

in the top 20% of the metaGRS distribution had a HR of 4.17 (95% CI 3.97–4.38) compared with 

those in the bottom 20%. The metaGRS had higher C-index (C=0.623, 95% CI 0.615–0.631) for 

incident CAD than any of four conventional factors (smoking, diabetes, hypertension, and body mass 

index), and addition of the metaGRS to a model of conventional risk factors increased C-index by 

3.7%. In individuals on lipid-lowering or anti-hypertensive medications at recruitment, metaGRS 

hazard for incident CAD was significantly but only partially attenuated with HR of 2.83 (95% CI 2.61–

3.07) between the top and bottom 20% of the metaGRS distribution. 

Interpretation Recent genetic association studies have yielded enough information to meaningfully 

stratify individuals using the metaGRS for CAD risk in both early and later life, thus enabling targeted 

primary intervention in combination with conventional risk factors. The metaGRS effect was partially 

attenuated by lipid and blood pressure-lowering medication, however other prevention strategies will 

be required to fully benefit from earlier genomic risk stratification. 

Funding National Health and Medical Research Council of Australia, British Heart Foundation, 

Australian Heart Foundation.  
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Introduction 
 
Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide, and early 

identification of individuals at high risk of CAD is essential for primary prevention. While conventional 

CAD risk factors, such as lipids, blood pressure, and smoking, become predictive in middle life, their 

predictive ability is weaker at a younger age. The heritability of CAD has been estimated to be 40–

60% and thus genetic predisposition is a risk factor of significant potential for earlier risk prediction 
1,2. Over the last 10 years, genome-wide association studies have begun elucidating the genetic 

architecture of CAD and laid the foundation for developing genomic risk scores (GRSs) for estimating 

an individual's underlying genomic risk	3-9. However, previous GRSs for CAD have not facilitated 

fundamental change in early CAD risk screening strategies as they have not reached a sufficient 

level of predictive power, e.g. by outperforming conventional cardiovascular risk factors, nor have 

they established general applicability via large-scale external testing in representative population-

based samples. A likely reason is that the polygenicity of CAD has not been sufficiently reflected in 

the predictive genetic models, together with imprecision in the effect size estimates driven by limited 

sample sizes 10-12. Previously published GRSs have utilised only genetic variants of genome-wide 

significance 4,5,8 or were based on arrays that focus on pre-selected loci 3; thus, they have not fully 

utilised genome-wide variation, and have not been able to accurately estimate the relative 

contribution of each genetic variant to CAD risk. Furthermore, the generalisability of previous GRSs 

has been limited by lack of external testing in truly large-scale cohorts that represent a diversity of 

ancestries	3,13, and a wide spectrum of the CAD burden, e.g. not only myocardial infarction	14,15. A 

more powerful and generalisable genome-wide GRS for CAD would likely have far reaching 

implications for early screening at a population level, prioritisation for lifestyle and therapeutic 

intervention, and targeted clinical trials. 

 

Here, we utilise a meta-analytic strategy to construct a GRS for CAD (metaGRS) that captures the 

totality of information from the largest previous genome-wide association studies, and then 

investigate the external performance of this metaGRS in stratifying CAD risk in >480,000 individuals 

from the UK Biobank (UKB) 16. Furthermore, we assess the effects of several conventional risk 

factors (smoking, blood pressure, BMI, diabetes) on different genomic risk backgrounds, with the 

aim of identifying subsets of individuals who are likely to benefit from earlier and more intensive 

screening, or who may not benefit from screening until later life. Finally, to assess the potential 

therapeutic implications of genomic risk scores, we test the impact of blood pressure and lipid 

lowering medication on the performance of metaGRS.  
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Methods 
 
Study design and participants 
Details of the design of the UKB have been reported previously 12. Participants were members of the 

UK general population aged between 40–69 years at recruitment, identified through primary care 

lists, who accepted an invitation to attend one of the 22 assessment centers that were serially 

established across the UK between 2006 and 2010. At recruitment, detailed information was 

collected via a standardised questionnaire on socio-demographic characteristics, health status and 

physician-diagnosed medical conditions, family history and lifestyle factors. Selected physical and 

functional measurements were obtained including height, weight, waist-hip ratio, and systolic and 

diastolic blood pressures. The UKB data were subsequently linked to Hospital Episode Statistics 

(HES) data, as well as national death and cancer registries. The HES data available for the current 

analysis covers all hospital admissions to NHS hospitals in England and Scotland from April 1997 to 

March 2015, with the Scottish data dating back as early as 1981. HES uses International 

Classification of Diseases ICD 9 and 10 to record diagnosis information, and OPCS-4 (Office of 

Population, Censuses and Surveys: Classification of Interventions and Procedures, version 4) to 

code operative procedures. Death registries include all deaths in the UK up to January 2016, with 

both primary and contributory causes of death coded in ICD-10.  

 

CAD was defined as fatal or non-fatal myocardial infarction (MI) cases, percutaneous transluminal 

coronary angioplasty (PTCA), or coronary artery bypass graft (CABG). The age of event in prevalent 

cases was determined by self-reported age and calculated age based on the earliest hospital record 

for the event; if both self-reported age and calculated age were available, the smaller value was 

used. For incident cases, hospital and/or death records were used to determined age of event. 

Prevalent vs incident status was relative to the first UKB assessment. In UKB self-reported data, 

cases were defined as having heart attack diagnosed by doctor (data field #6150) or 'non-cancer 

illnesses that self-reported as heart attack' (data field #20002) or self-reported operation including 

PTCA, CABG, or triple heart bypass (data field #20004). In HES hospital episodes data and death 

registry data, MI was defined as hospital admission or cause of death due to ICD9 410–412, ICD10 

I21–I24, or I25.2; CABG, PTCA were defined as hospital admission OPCS-4 K40–K46, K49, K50.1, 

or K75. 

 

We defined risk factors at the first assessment as follows: diabetes diagnosed by doctor (field 

#2443), body mass index (BMI; field #21001), current smoking (field #20116), and hypertension. For 
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hypertension we used an expanded definition including self-reported high blood pressure (either on 

blood pressure medication, data fields #6177, #6153; or systolic blood pressure >140 mmHg, fields 

#4080, #93; or diastolic blood pressure >90 mmHg, data fields #4079, #94). For the analyses of the 

number of elevated risk factors, we considered diagnosed diabetes (Y/N), hypertension at 

assessment (Y/N), BMI >30 kg/m2, and smoking at assessment (Y/N). 

 

Genotyping of UK Biobank participants was undertaken using a custom-built genome-wide array 

(the UK Biobank Axiom array: http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UK-

Biobank-Axiom-Array-Datasheet-2014.pdf) of ~826,000 markers. Genotyping was done in two 

phases. 50,000 subjects were initially typed as part of the UK BiLEVE project 13. The rest of the 

participants were genotyped using a slightly modified array. Imputation to ~92 million markers was 

subsequently carried out using the Haplotype Reference Consortium (HRC) 17 and 

UK10K/1000Genomes haplotype resource panels, however at the time of analysis, known issues 

existed with the imputation using the latter panel.  

 

Data processing and quality control 
Only autosomal genetic variants imputed using the HRC panel and which had MAF >0.1% were 

included in our analyses, totalling 14.5 million variants. We converted the imputed dosages to 

PLINK18 genotype calls with minimum probability 0.9 (otherwise the call was set to missing; we 

removed variants with >1% missingness across individuals). To control for population structure, we 

utilised the genetic principal components (PCs) as given by the UKB19. 

 

Two QC schemes were used. For the GRS46K and FDR202 genetic risk scores (defined below), we 

kept variants with MAF >0.1%, however filtering by HWE and imputation quality (INFO) was not 

employed as this led to fewer variants mapping to these scores and thus reductions in predictive 

power. For the 1000Genomes CAD score, we included variants with impute2 INFO >0.01 and HWE 

P>10-12. A lenient HWE threshold was used because HWE was computed over all individuals without 

regard to population structure, thus variants that deviation from HWE at a stringent threshold may 

be needlessly excluded as they may not be indicative of genotyping error. A lenient INFO threshold 

(e.g. relative to the INFO >0.4 used in Nikpay et al 20) was employed as the UKB has a relatively 

large sample size, and an analysis of variants with INFO=0.001 in the UKB has equivalent statistical 

power to an analysis of 0.001 x 500,000 = 500 individuals; thus genetic variants with low INFO score 

can still offer improvements in predictive accuracy. Similarly, bias in odds ratios arising from 

genotyping or imputation error has the effect only of reducing the predictive accuracy of a GRS, but 

this reduction is less than would occur by omitting the marker entirely. After the above quality control 

procedures were implemented, 14,516,436 autosomal markers were available for subsequent 

analyses. For the 1000Genomes CAD score, we only used markers found in both the UKB data and 

the 1000Genomes CAD summary statistics, resulting in 5,176,852 autosomal variants. In the UKB, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2018. ; https://doi.org/10.1101/250712doi: bioRxiv preprint 

https://doi.org/10.1101/250712
http://creativecommons.org/licenses/by/4.0/


	

	 6 

485,629 individuals had matching genetic data and CAD outcome data. We removed individuals with 

(i) diagnoses in one of ICD9 414.1, ICD10 I25.0, I25.3, I25.4 or (ii) CAD event but no known age or 

date of CAD. There was no evidence of differential missingness in genetic data between CAD and 

non-CAD individuals. The final dataset consisted of n=485,629 individuals, including 22,242 CAD 

events and 460,387 non-cases.  

 
Construction of metaGRS 
To construct a meta genomic risk score (metaGRS) for CAD, we followed a meta-analysis strategy 

using the largest CARDIoGRAMplusC4D genome-wide association analysis without UKB data 20 

and the CARDIoGRAMplusC4D Metabochip analysis, which focused on variants and regions known 

or thought to be associated with cardiometabolic phenotypes 21. The Metabochip-based GRS46K 

(46,000 genetic variants, excluding ~3,000 A/T and C/G SNPs) was constructed previously 3, while 

the FDR202 and '1000Genomes' CAD GRS derived from the CARDIoGRAMplusC4D genome-wide 

association analysis, are described below. The three GRSs all provide an imperfect measure of an 

individual’s genomic risk of developing CAD, due to incomplete and targeted coverage of the 

genome, finite sample estimates of the marginal effect sizes for each genetic variant, and genotyping 

or imputation uncertainty. Since it is well known that a risk factor measured with error can attenuate 

the association between the risk factor and disease occurrence (regression dilution bias22), we 

reasoned that a ‘meta score’, the weighted average of the three standardised genetic risk scores, 

would provide a more precise estimate of an individual’s genomic risk of developing CAD. 

 

To create the metaGRS, we used the meta-analysis summary statistics 20, consisting of dbSNP rsid, 

risk allele, and effect size (log odds ratio). We used the existing GRS46K 3 and FDR202 20 scores. 

For the GRS46K, we could map 45,810 variants (98%) in the UKB imputed dataset; for the FDR202, 

198 variants or proxies thereof mapped (98%; for proxies, minimum r2 in 1000Genomes CEU+GBR 

was 0.68, the median r2 was 1.0). 

 

Each score s is the sum of the minor allele dosages of each variant multiplied by its marginal effect 

size β (log odds ratio per dosage of minor allele): 

𝑠" = 𝑥"%𝛽%

'

%()

	

where 𝑥"% ∈ 0, 1, 2  is the count of the minor allele for the jth variant in the ith individual. 

 

To derive a new genomic risk score based on the CARDIoGRAMplusC4D 1000Genomes-imputed 

GWAS summary statistics 20, we split the UKB data into a training set (n=3000) and a validation set 

(n=482,629). For the training set, we randomly selected 1000 prevalent CAD cases and 2000 non-

CAD individuals. We then used PLINK random linkage disequilibrium (LD) pruning to create different 

scores, based on SNP sets with varying levels of LD and corresponding CARDIoGRAMplusC4D 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2018. ; https://doi.org/10.1101/250712doi: bioRxiv preprint 

https://doi.org/10.1101/250712
http://creativecommons.org/licenses/by/4.0/


	

	 7 

summary statistics, and evaluated their performance on the n=3000 training set, in terms of hazard 

ratio (HR) per standard deviation (s.d.) of the score (age-as-time-scale Cox regression, stratified by 

sex and adjusting for BiLEVE genotyping array and 10 genetic PCs). The score with the highest HR 

corresponded to the r2 thinning threshold of 0.9 and consisted of ~1.7 million variants 

(Supplementary Figure 1). 

 

The correlation between the three GRSs was moderate (Pearson’s correlation r=0.11 for FDR202-

GRS46K, r=0.19 for FDR202-1000Genomes, r=0.27 for GRS46K-1000Genomes), indicating partial 

but imperfect overlap of the genetic signals captured by each, likely due to shared genetic loci, LD, 

and partial overlap of individuals in the cohorts used for deriving these summary statistics20,21. Such 

correlation is accounted for in the weighting below. 

 

We derived a meta score (‘metaGRS’), consisting of a weighted average of the standardised scores 

GRS"3456 =
𝛽)𝑍") + 𝛽9𝑍"9 + 𝛽:𝑍":

𝛽)9 + 𝛽99 + 𝛽:9 + 2𝛽)𝛽9𝜌),9 + 2𝛽)𝛽:𝜌),: + 2𝛽9𝛽:𝜌9,:
	

where 𝑍"), 𝑍"9, 𝑍":	are the (zero-mean and unit-variance standardised) GRS46K, FDR202, and 

1000Genomes CAD risk scores for the ith individual, respectively, 𝛽),	𝛽9, 𝛽: are the univariate log 

HRs for each score (estimated using Cox regression in the training set), and 𝜌",% is the Pearson 

correlation between the ith and jth scores (in the training set). The univariate log HRs were 0.1278, 

0.2359 and 0.2400 per 1-s.d. for the GRS46K, FDR202, and 1000Genomes CAD scores, 

respectively. To convert this meta-score to a SNP-level score, we used the weighted sum over all m 

=	1,745,180 SNPs (the union of the SNPs in the three scores, and ignoring constant terms), 

GRS"3456 ∝ 𝑥"%
𝛽)
𝜎)
𝛼%) +

𝛽9
𝜎9
𝛼%9 +

𝛽:
𝜎:
𝛼%: ,

'

%()

 

where 𝜎), 𝜎9, 𝜎: are the empirical s.d.'s of the scores (GRS46K, FDR202, and 1000Genomes CAD) 

in the training data, 𝛼%), 𝛼%9, 𝛼%: are the SNP effect sizes (log odds ratios from the published summary 

statistics) for the jth SNP in each of the three scores, respectively, and 𝑥"% is the genotype for the ith 

individual’s jth SNP. A SNP’s effect size 𝛼%? was considered to be zero for the kth score if the SNP 

was not included in that score. 

 

Statistical analysis 
All scores were standardised to zero-mean and unit-variance. All scores were evaluated using 

logistic regression or age-as-time-scale Cox proportional hazards regression, with censoring at 75y, 

as well as with Kaplan-Meier estimates of cumulative incidence (censored at 75y). Unless otherwise 

noted, analyses using only genetic risk scores include both prevalent and incident CAD cases 

(germline DNA variation being determined prior to any disease); to avoid reverse causation, 

analyses that included conventional risk factors (measured at the UKB assessment) used only 
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incident CAD. The Cox models were stratified by sex and adjusted for genotyping array (BiLEVE vs 

UKB) and 10 genetic PCs. C-indices for the Cox models were sex stratified, using age as time scale. 

A competing risk analysis, using the Aalen-Johansen estimator (three states: CAD, non-CAD death, 

and censored), was conducted using the R package ‘survival’23. 

 

 

 

 

Results 
 

The characteristics of the UKB subjects in the external validation set (n=482,629) are shown in Table 
1, comprising 22,242 CAD cases before age 75y and 460,387 non-cases in total. There were 9,729 

prevalent cases of CAD at the time of recruitment and a further 12,513 incident cases of CAD during 

a mean follow-up of 6.2 years, at the censoring age of 75 years in 2017. Our meta-analysis approach 

resulted in a 'metaGRS' comprising 1,745,180 genetic variants. A comparison of the metaGRS with 

its individual components and previously published GRSs from Tikkanen et al 6 and Tada et al 8 is 

given in Figure 1, showing the metaGRS had substantially greater association with CAD risk, in 

terms of hazard ratio as well as positive predictive value (PPV) at any given sensitivity.  

 

In the external UKB validation set, the metaGRS was accurate at classifying CAD cases vs non-

cases with an area under the ROC curve (AUC) of 0.79 (+2.8% over the reference logistic model 

consisting of sex, age at assessment, genotyping array, and 10 PCs). The metaGRS offered greater 

PPV at any given sensitivity and thus greater Area under the Precision-Recall Curve (APRC) 

compared to the reference model (0.161 vs 0.123; Figure 2a). The distributions of the metaGRS 

amongst prevalent CAD cases, incident CAD cases and non-CAD were each approximately 

Gaussian and revealed a trend of increasing genomic risk (Supplementary Figure 2), with prevalent 

cases more easily differentiable as they comprise individuals at higher genomic risk who have earlier 

CAD events.  

 

In sex-stratified Cox regression models for CAD, the metaGRS had an HR of 1.71 (95% CI 1.68–

1.73) per s.d. of metaGRS (P<0.0001) (Figure 1). The metaGRS was significantly but weakly 

associated with body mass index (BMI) at assessment (0.0044 log(kg/m2) per s.d., 95% CI 0.0039–

0.0049, P<0.0001), diagnosed diabetes (OR=1.14 per s.d., 95% CI 1.13–1.16, P<0.0001), 

hypertension at assessment (OR=1.19 per s.d., 95% CI 1.18–1.20, P<0.0001), and current smoking 

at assessment (OR=1.06 per s.d., 95% CI 1.04–1.07, P<0.0001). No evidence for competing risk 

effects was observed (Supplementary Figure 3). In Cox regression of incident CAD (Figure 2b), 

models based on the metaGRS had higher C-index (C=0.623, 95% CI 0.615–0.630) than any of the 

individual conventional risk factors, with the second-best factor being hypertension at baseline 
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(C=0.590, 95% CI 0.583–0.598). A model combining the four conventional risk factors had only 

slightly better performance (C=0.639, 95% CI 0.632–0.647) than the metaGRS individually. 

Combining the metaGRS with all four conventional risk factors led to a model with C-index of 0.676 

(95% CI 0.669–0.684), an increase of 3.7% over the model consisting of the four conventional risk 

factors. 

 

To investigate the potential role of the metaGRS in earlier life genetic screening, we compared the 

sex-stratified cumulative incidence of CAD across quintiles of the metaGRS (Figure 3). In UKB men, 

we observed that CAD risk in the highest metaGRS quintile began exponentially increasing shortly 

after age 40, reaching a threshold of 10% cumulative risk by 61 years of age (Figure 3). By 

comparison, CAD risk for men in the lowest metaGRS quintile did not begin increasing until age 50 

and on average did not reach 10% by the censoring age of 75. In UKB women, the metaGRS results 

were similar but delayed given the lower absolute CAD risk overall compared to men. For women in 

the highest metaGRS quintile, CAD risk began increasing at age 49 and reached 10% at age 75; 

while women in the lowest metaGRS quintile were at extremely low levels of risk, reaching 2.5% 

CAD risk by the censoring age of 75. There was no evidence for a statistical interaction of the 

metaGRS with sex. Overall, on average UKB individuals in the top metaGRS quintile were at 4.17-

fold (95% CI 3.97–4.38) higher hazard of CAD than those in the bottom metaGRS quintile (Figure 
3). 

 

We next assessed the differences in incident CAD risk across metaGRS quintiles when combined 

with conventional risk factors (current smoking, diabetes, high blood pressure, and high BMI) 

individually (Supplementary Figures 4–7) or as an unweighted score, the number (0–4) of 

conventional risk factors per individual (Figure 4). Broadly, the patterns were similar across all the 

analyses. Genomic risk and lifestyle/clinical factors combined to increase risk in both men and 

women; however, in most instances this was additive rather than interactive. In Cox regression 

models of incident CAD, adjusting for current smoking, diagnosed diabetes, hypertension, log BMI, 

genotyping array, and 10 genetic PCs, there was no strong evidence of statistical interactions 

between the metaGRS and either diabetes (P=0.051 for interaction), smoking (P=0.086 for 

interaction), or hypertension (P=0.85 for interaction), but there was some evidence for interaction 

with log BMI (HR=0.85, 95% CI 0.76–0.5, P=0.0037). From a clinical perspective, it was notable that 

men in the highest metaGRS quintile who had no conventional risk factors still reached 10% 

cumulative incidence of CAD by age 69, with a similar cumulative incidence as men in the lowest 

metaGRS quintile who had 2 or more conventional risk factors (Figure 4). Men in the highest 

metaGRS quintile and with 3 or more conventional risk factors were at extremely high levels of CAD 

risk, reaching the 10% threshold by age 48. Approximately 82% of women did not reach 10% CAD 

risk before age 75, even if they had 2 conventional risk factors, due to compensation by low or 
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moderate metaGRS risk. Even amongst women in the highest metaGRS quintile, only those with 2 

or more conventional risk factors achieved 10% risk before age 75 (Figure 4). 

 

To assess the impact of use of treatments (lipid lowering and anti-hypertensive medication) that have 

been proven to lower CAD risk on the performance of the metaGRS, we analysed the predictive 

capacity of the metaGRS for incident CAD in those taking one or both of these classes of drugs at 

baseline. The hazards ratios for each s.d. in GRS were reduced but not negated by these therapies, 

with HRs of 1.44 (95% CI 1.40–1.48), 1.46 (95% CI 1.42–1.50) and 1.42 (95% CI 1.37–1.47) for 

those individuals on lipid lowering, anti-hypertensives treatments or both treatments, respectively. 

Accordingly, the HRs between those in the top versus bottom metaGRS quintiles were also reduced 

but remained substantial with HRs of 2.71 (95% CI 2.47–2.98), 2.81 (95% CI 2.56–3.09), and 2.55 

(95% CI 2.28–2.86), for those individuals on lipid lowering, anti-hypertensives treatments or both 

treatments, respectively (Figure 5).  

 

 

 

 
 

Discussion 
 
Using data from almost half a million people across the UK, we demonstrate that a combined 

genomic risk score (metaGRS) built from summary statistics of the largest previous genome-wide 

association studies of CAD performs better than any other individual GRS based on selected SNPs 

and provides substantial stratification for individual risk of developing CAD. The metaGRS is largely 

independent of established risk factors for CAD and improves risk prediction using established 

factors alone or in combination. Importantly, the metaGRS can identify both individuals who are at 

high risk of premature CAD as well as those who are unlikely to ever reach a life-long risk level 

requiring intervention. The findings indicate that treatment of modifiable risk factors in those at high 

risk can partially offset genomic risk, while also highlighting the need to develop additional 

approaches to address the residual risk. The metaGRS provides valuable additional predictive 

information at any age, however its unique property of being able to distinguish markedly different 

lifelong trajectories of individual risk at an early age, before atherosclerosis is initiated, provides the 

possibility of true primary prevention in those at increased genomic risk, and a potential paradigm 

shift in how we evaluate risk of and prevent CAD. 

 

Our construction of the metaGRS leveraged the strengths of previous genetic association studies to 

provide greater predictive power and generalisability than any previous genetic risk score. The 

metaGRS was stronger than any conventional risk factor available for CAD, largely independent of 
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these risk factors, and substantially increased the predictive power of models combining 

conventional risk factors. If substantiated once a full set of conventional risk factors has been 

examined, the metaGRS will have major ramifications for CAD screening, including both 

identification of individuals at high CAD risk who may benefit from earlier intervention(s) and/or more 

intensive screening with traditional clinical risk factors, and identification of those individuals at 

exceptionally low CAD risk who may not reach a clinically relevant level of risk before age 75. Our 

findings suggest that men in the highest metaGRS quintile, regardless of the number of traditional 

clinical risk factors, would likely benefit from more intensive interventions; indeed, those with one or 

more conventional risk factors would likely benefit from statin prescription at an early age. Similar 

suggestions have been made for Caucasian individuals at high polygenic risk where, using a GRS 

optimised on a large subset of the UKB, they appeared to have levels of coronary disease risk on 

par with the risk conferred by familial hypercholesterolemia 13. For risk stratification it was notable 

that approximately 80% of women (i.e. those not in the top metaGRS quintile) could effectively 

receive minimal screening for traditional risk factors before age 75. Under this scenario, health 

systems may benefit from more efficient deployment of resources away from individuals at low 

genomic CAD risk. 

 

The finding that increased genetic risk can at least partly be attenuated by lipid lowering and/or anti-

hypertensive medication suggests a potential immediate clinical value to identifying individuals at 

high metaGRS risk. Those individuals at high genetic risk may gain maximally from early initiation of 

these therapies and provide more cost-effective primary prevention 16. However, the finding that 

even for individuals on these medications at baseline, the metaGRS can still stratify those at 

increased risk of CAD, emphasises the need to develop further therapies to realise the full potential 

of early genetic risk stratification.  

 

The clinical implementation of the metaGRS is straightforward. Each individual's DNA can be run on 

one of many common genome-wide genotyping arrays which, together with quality control and 

genotype imputation, can be combined with a list of genetic variants and their corresponding weights; 

a simple algorithm then calculates a metaGRS score for that individual. When compared to a large 

reference group from a similar population, such as the UK Biobank, the individual's genomic risk of 

CAD can be determined. Importantly, the genotyping has a one-time cost (approximately US$50 at 

current prices) and can be used to calculate updated genetic risk scores for CAD as further more 

powerful association data emerges or, indeed, risk scores for other diseases. To facilitate future 

development and translation, we have made the metaGRS freely available 24. 

 

There are several limitations to our study. Importantly, the UKB does not yet have lipid and other 

biochemical data available, thus the relationship between the metaGRS and lipids or traditional 

clinical risk scores (e.g. Framingham Risk Score, QRISK, etc) could not be assessed. However, 
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previous studies have investigated the correlation and added value of genetic risk to clinical risk 

scores, finding significant improvements in C-index, hazard ratios, and reclassification indices 3,8. 

Another limitation is that the cumulative genomic risk of CAD is likely an underestimate of the 

population-level lifetime risk due to the likelihood that more individuals at higher genetic risk are 

more likely to have died from CAD prior to enrolment. Similarly, to avoid reverse causation, incident 

CAD analyses necessitated the exclusion of individuals with prevalent CAD; however, this also 

preferentially removed those with early CAD onset and high genomic risk. On the other hand it should 

be noted that UKB participants are healthier than the general UK population 25,26 which could affect 

the generalisability of the findings. Reverse causation concerns also limited our ability to assess the 

effect of medication versus non-medication in individuals at high metaGRS risk, since, without blind 

randomisation, those on medication are already at higher CAD risk. While the UKB captures much 

of the ethnic diversity of Western Europe, the proportion of non-Caucasian individuals is small (< 

5%). We did not exclude these individuals from our analysis, however larger sample sizes and other 

cohorts will be necessary to undertake meaningful ethnicity-specific analyses. Therefore, the 

performance and utility of metaGRS in other ethnic populations remains to be determined. Finally, 

the UKB currently has limited follow-up (median of 6.2 years), therefore both the assessment of 

clinical risk scores and public health modelling of the metaGRS are important areas for future 

studies. 

 

In conclusion, our results show that an individual's genomic risk of CAD, which together with sex is 

set before birth in germline DNA, is a stable risk factor which can provide the most advanced warning 

of disease. While genetics is not destiny for CAD, advances in genomic prediction have brought the 

long history of CAD risk screening to a critical juncture, where we may now be able to predict, plan 

for, and possibly avoid a disease with substantial morbidity and mortality. 
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Tables 
 
Table 1: Study characteristics 

 UK Biobank 
(n=482,629) 

Male 
n=220,284 

(45.6%) 

Female 
n=262,345 

(54.4%) 

Age at assessment, years [mean (sd)] 56.5 (8.1) 56.7 (8.2) 56.4 (8.0) 

Current smoker (%) 50,664 (10.5%) 27,391 

(12.4%) 

23,273 

(8.9%) 

Blood pressure, systolic, mm Hg [mean (sd)] 139.8 (19.7) 142.8 (18.5) 137.3 

(20.3) 

Diabetes diagnosed by doctor (%) 24,920 (5.2%) 15,336 (7.0%) 9,887 

(4.5%) 

Hypertension (%) 254,564 (52.7%) 133,013 

(60.4%) 

121,533 

(46.3) 

Prevalent CAD events before age 75y (%) 9,729 (2.0%) 7950 (3.6%) 1779 

(0.7%) 

Incident CAD events before age 75y (%) 12,513 (2.6%) 9320 (4.2%) 3193 

(1.2%) 

On blood-pressure lowering medication 99,454 (20.6%) 53,535 

(24.3%) 

45,939 

(17.5%) 

On lipid-lowering medication 82,493 (17.1%) 49,459 

(22.5%) 

33,028 

(12.6%) 

Follow-up time, years [mean (sd)] 6.2 (2.1) 5.9 (2.6) 6.4 (1.4) 
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Figure Legends 
 
Figure 1: Relative performance of individual genomic risk scores for CAD compared to the 
metaGRS 
In the UKB testing set (n=482,629), (a) hazard ratios per s.d. of each score for all CAD (n=22,242), 

censored at 75y, from Cox regression stratified by sex and adjusted for genotyping array 

(BiLEVE/UKB) and 10 genetic PCs; (b) Positive predictive value vs sensitivity for a logistic regression 

for each GRS, adjusted for sex, age, genotyping array (BiLEVE/UKB) and 10 genetic PCs. 
 
 
Figure 2: Predictive measures of CAD using the metaGRS and conventional risk factors 
(a) Positive predictive values vs sensitivity for the reference model (sex + age + array + 10 genetic 

PCs) and when adding the metaGRS to the model for all CAD in the UKB testing set. APRC is Area 

under the Precision-Recall Curve. (b) C-index for sex-stratified age-as-time-scale Cox regression of 

incident CAD for conventional risk factors individually and in combination with the metaGRS, 

including genotyping array and 10 genetic PCs as covariates.  

 
Figure 3: Cumulative incidence of CAD by quintiles of metaGRS in men and women 
 
Figure 4: Cumulative incidence of CAD for increasing numbers of conventional risk factors 
stratified by metaGRS quintile 
 
Figure 5: Cumulative incidence of incident CAD within individuals on lipid-lowering or BP-
lowering medication at assessment. 
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Figures 
 
Figure 1: Relative performance of individual genomic risk scores for CAD compared to the 
metaGRS  
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Figure 2: Predictive measures of CAD using the metaGRS and conventional risk factors 
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Figure 3: Cumulative incidence of CAD by quintiles of metaGRS in men and women 
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Figure 4: Cumulative incidence of CAD for increasing numbers of conventional risk factors 
stratified by metaGRS quintile 
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Figure 5: Cumulative incidence of incident CAD within individuals on lipid-lowering or BP-
lowering medication at assessment, stratified by quintiles of the metaGRS 
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