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Abstract
Establishing a connection between intrinsic and task-evoked brain activity is critical because it
would provide a way to map task-related brain regions in patients unable to comply with such
tasks. A crucial question within this realm is to what extent the execution of a cognitive task
affects the intrinsic activity of brain regions not involved in the task. Computational models can
be useful to answer this question because they allow us to distinguish task from non-task
neural elements while giving us the effects of task execution on non-task regions of interest at
the neuroimaging level. The quantification of those effects in a computational model would
represent a step towards elucidating the intrinsic versus task-evoked connection. Here we used
computational modeling and graph theoretical metrics to quantify changes in intrinsic
functional brain connectivity due to task execution. We used our Large-Scale Neural Modeling
framework to embed a computational model of visual short-term memory into an empirically
derived connectome. We simulated a neuroimaging study consisting of ten subjects performing
passive fixation (PF), passive viewing (PV) and delay match-to-sample (DMS) tasks. We used the
simulated BOLD fMRI time-series to calculate functional connectivity (FC) matrices and used
those matrices to compute several graph theoretical measures. After determining that the
simulated graph theoretical measures were largely consistent with experiments, we were able
to quantify the differences between the graph metrics of the PF condition and those of the PV
and DMS conditions. Thus, we show that we can use graph theoretical methods applied to
simulated brain networks to aid in the quantification of changes in intrinsic brain functional
connectivity during task execution. Our results represent a step towards establishing a

connection between intrinsic and task-related brain activity.
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INTRODUCTION

Recently, there has been significant interest in investigating the relationship between intrinsic
and task-evoked brain activity. This interest is driven by the potential to discover information
contained in intrinsic brain activity that would reveal the repertoire of functional brain

networks used to execute goal-directed tasks (Cole, Bassett, Power, Braver, & Petersen, 2014).

Intrinsic and task-evoked activity are strongly interdependent (Bolt, Anderson, & Uddin, 2017)

and understanding this interdependence holds the promise of providing a link between resting

state and task-based empirical findings (Cole et al., 2014). Furthermore, the establishment of a

clear relationship between intrinsic and task brain activity would allow the mapping of task-

related brain areas in patients unable to comply with such tasks (Branco et al., 2016; Liu et al.,

2009)

Neuroimaging studies have shown that performance of a cognitive task alters the intrinsic

functional connectivity in non-task related brain regions (Bluhm et al., 2011; Tommasin et al.,

2017; Vatansever, Menon, Manktelow, Sahakian, & Stamatakis, 2015). Bluhm and colleagues,

for example, found increases in functional connectivity between two “default network” brain
regions (posterior cingulate / precuneus and medial prefrontal cortex) and the rest of the brain
during a visual working memory task as compared to a passive fixation task. In another study,
Tommasin and colleagues found reductions in functional connectivity between brain regions
within the “default mode network” (DMN) during an auditory working memory task as

compared to an eyes-open resting state (RS) task. Similarly, Vatansever and colleagues found


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

aCC-BY-NC-ND 4.0 International license.

reductions in functional connectivity within DMN brain regions during a motor task as
compared to a RS task.
A very powerful tool that has been used to quantify changes in intrinsic functional connectivity

due to task execution employs graph theoretical methods (Adams, Shipp, & Friston, 2013; Bolt,

Nomi, Rubinov, & Uddin, 2017; Cohen & D'Esposito, 2016; Fuertinger, Horwitz, & Simonyan,

2015; Krienen, Yeo, & Buckner, 2014; Moussa et al., 2011). Graph theoretical metrics have been

used in the last decade to study functional and structural brain networks as they provide ways

to quantify both global network organization and local network properties (Bolt, Nomi, et al.,

2017; Rubinov & Sporns, 2010).

A recent computational study (Lee, Bullmore, & Frangou, 2017) demonstrated the reliability of

graph theoretical metrics obtained from simulated intrinsic brain activity. Lee and colleagues
modeled brain regions as Kuramoto oscillators coupled by weights extracted from a structural

connectome (Hagmann et al., 2008). After finding an optimal functional connectivity matrix

(one that resembled the RS empirical connectivity matrix), they set out to compute global and
local network metrics and compared them to empirically-obtained graph metrics during the
resting state. They found that simulated brain activity can be reasonably used to model graph

theoretical metrics of brain organization.

However, there is a need to test the use of graph theoretical metrics on simulated intrinsic
activity during task execution. We aimed to use computational modeling and graph theoretical

metrics to quantify differences in intrinsic functional brain connectivity of non-task-related
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brain regions due to increasing task demands. We used a large-scale computational model of

visual processing (Horwitz et al., 2005; Tagamets & Horwitz, 1998; Ulloa & Horwitz, 2016)

embedded in a structural connectome (Hagmann et al., 2008) to examine differences in

intrinsic neural activity between three conditions: passive fixation (PF), passive viewing (PV),
and a visual delayed match-to-sample (DMS) task. Specifically, we set out to investigate
whether computational modeling and graph theoretical metrics could be used to quantify and
understand intrinsic neural activity changes in non-task brain regions due to increasing task

demands.

RESULTS
To perform the current study, we embedded a biologically realistic model of visual short-term

memory (Tagamets & Horwitz, 1998), shown in Figure 1, into an anatomical skeleton defined by

a 998-node structural connectome (Hagmann et al., 2008), shown in Figure 2, using a blend of

our large-scale neural model (LSNM) simulator (Ulloa & Horwitz, 2016) and the Virtual Brain

(TVB) simulator (Sanz Leon et al., 2013). The visual short-term memory model comprises brain

regions that are directly involved in performing a delayed match-to-sample (DMS) task for
visual objects. The structural connectome was added to provide neural noise to the simulated
neural activity during the DMS task, and in return, to receive inputs back from the DMS task

nodes. We have described our framework in a previous paper (Ulloa & Horwitz, 2016) where

we focused on the fMRI BOLD signal generation during the DMS task. In the current work, we
sought to analyze the FC configurations in brain regions not driving task execution. These ‘non-

task’ brain regions exhibit intrinsic activity and because of their reciprocal connections with
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task-specific brain regions, their neural activity can potentially be modulated during task

execution.

We generated ten virtual subjects by randomly varying the connection weights among brain
regions in the structural visual model (see Methods section for details). We created three
experimental conditions: passive fixation (PF), during which simulated subjects with a low “task

III

signal” (roughly equivalent to subjects’ attention level during task execution, but see Methods
for definition of this parameter) are fixating on a small dot; passive viewing (PV), during which
subjects passively look at visual shapes; and a DMS task, during which subjects compared two
shapes presented within 1.5 seconds of each other and responded whether the second shape
matched the memory of the first. Each simulated subject performed one 198-second

experiment that consisted of 3-trial blocks interspersed with rest blocks (see Methods section

for details).

Changes in BOLD activity of non-task brain regions due to different task conditions.

Figure 3 shows typical (averaged across neuronal populations within each brain region)
neuronal activity for each condition for task-related brain regions during one trial. Figure 3
shows the task regions increasing activity due to both stimuli presentation (V1, V4, IT, PF),
short-term memory maintenance (D1, D2), and response (FR). This increase occurs in the PV
and DMS conditions (green and red lines) but not in the PF condition (blue line). Thus, the
stimulus used in the PF condition (a small dot) does not generate visible changes in the

neuronal activity of task regions. The details of the task-related responses shown in Figure 3
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have been discussed in detail in previous papers (Horwitz et al., 2005; Ulloa & Horwitz, 2016).

Figure 4 shows the BOLD signal averaged across those brain regions with direct anatomical
connections to task regions. Figure 2 shows a graphical depiction of the non-task nodes that are
directly connected to task nodes. Notice how BOLD activity increases during the task blocks
(shaded areas) and how they do so more prominently during DMS than during PV and during PV
than during PF. Also notice how that BOLD activity change is larger for some of the brain
regions with direct connections to IT, FS, D1, D2, FR than those regions with direct connections
to V1 and V4. This is due to variations in the strength of the connecting weights from task-
related nodes to non-task nodes. As we can see in Figure 4, changes in all task-related brain
regions correlate with BOLD signal changes in non-task brain regions directly connected to

them.

Intrinsic FC differences between PF, PV and DMS conditions.

We computed FC matrices for the three simulated conditions and for all subjects. Figure 5
shows across-subject averages of FC matrices for the three conditions. Figure 6 shows scatter
plots between PF and PV and between PF and DMS conditions. As shown in Figure 6, the
correlation coefficients between PF and both PV and DMS were high (0.90 and 0.83,
respectively), demonstrating only small differences in the pair-wise consistency of functional
connections across conditions. As noted above, these correlation matrices consist only of
connectome nodes (e.g., no LSNM task-based nodes were used to construct these matrices). In
summary, there were small changes in the pair-wise functional connectivity between PF and PV

and between PF and DMS conditions.
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Graph theoretical metrics of PF, PV, and DMS conditions.

Using graph theoretical methods (Rubinov & Sporns, 2010), we computed eight network

metrics (see Methods section for definition of each metric): global and local efficiencies,
average clustering coefficient, characteristic path length, eigenvector centrality, betweenness
centrality, participation coefficient, and modularity. We calculated these metrics using

weighted FC matrices for a range of plausible threshold densities (Di, Gohel, Kim, & Biswal,

2013). Figure 7 shows across-subject averages of those metrics for a range of network densities
(Di et al., 2013). Figure 7 shows that as the task changed from PF to PV to DMS, there was an
increase in global efficiency, local efficiency, average clustering coefficient and average
betweenness centrality (mostly at the lowest threshold studied, 5%), and modularity.
Conversely, as the task changed from PF to PV to DMS, there was a decrease in average

characteristic path length, average eigenvector centrality, and average participation coefficient.

Differences in graph metrics between PF and PV and between PF and DMS.

For each graph metric obtained, we computed the relative difference (see Methods section for
details) between PF and PV and between PF and DMS (see Figure 8). We observed significant
differences between PF and PV and between PF and DMS in modularity (54.2 £ 8% and 81.3 +
11.6%, respectively), eigenvector centrality (16.3 + 1.7% and 22.1 £+ 1.8%, respectively) and
clustering coefficient (7.9 £ 1.3% and 12.7 £ 2%); smaller changes in global efficiency (1.7 +

0.2% and 2.4 £ 0.3), local efficiency (2.2 £ 0.3% and 3.2 = 0.4%), characteristic path length (1.7
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+0.1% and 2.3 £ 0.3%), betweenness centrality (1.6 £ 0.3% and 2.6 + 0.4%), and participation

coefficient (0.2 £0.1% and 0.4 £ 0.1%).

Differences in modularity between conditions.
To further visualize the large differences in modularity configurations during the three
simulated conditions, we rendered the binary FC network in each condition as connection space

graphs using Gephi (Bastian, Heymann, & Jacomy, 2009); www.gephi.org). We used the

algorithm of Blondel et al (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) to find the

modularity at a density threshold of 10%. Figure 10 shows connection space graphs displayed
on a radial axis layout (axis have a slight spiral to improve visualization of inter-module
connectivity). Nodes that belong to the same module are represented by the same color and
group together on the same radial axis. The connections between nodes have the color of the
node where those connections originate. We can see a decrease in the number of modules,
from 8 in PF to 6 in PV to 3 in DMS and an increase in modularity (see increase in modularity
graph in Figure 7). The increase in modularity from PF to PV to DMS means that the functional
network rearranges itself into fewer modules with more functional connections between nodes
within the same module (compare the very clearly defined modules in DMS versus PF and DMS

versus PV in Figure 10). We emphasize again that these results refer to non-task related nodes.

DISCUSSION
Using a large-scale computational model of visual short-term memory embedded into an

anatomical connectome, we compared simulated intrinsic brain activity of non-task related
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brain regions during three tasks: passive fixation (PF), during which simulated subjects with a
low “task signal” or “attention” level are fixating on visual stimuli (a small dot); passive viewing
(PV), during which subjects passively watch changing visual shapes but take no action; and a
DMS task, during which subjects compared two shapes presented within 1.5 seconds of each
other and responded whether the second shape matched the memory of the first. The PF
condition may be considered equivalent to a resting state condition as a passive fixation task
has been often used in RS fMRI studies. The key difference between the PF and the PV
conditions was that the stimulus during the PF condition was an unchanging small dot whereas
in the PV condition several different and larger stimuli were presented. The key difference
between the PV and the DMS conditions was the level of the “task” or attention signal, which
was set to a low level in the PV condition and to a high level during the DMS condition. As
discussed in the Methods section, the task signal level determines whether an input stimulus is

going to be retained in short-term memory (Horwitz et al., 2005). Additionally, because of

feedback connections from D1 in prefrontal cortex to IT and V4 (see model diagram in Figure 1),
the task signal level indirectly influences neuronal activity in V1, V4, and IT (compare neuronal

activity in V1, V4, and IT during different conditions in Figure 3).

To quantify differences between PF, PV and DMS conditions, we used pair-wise temporal
Pearson correlations (FC matrices) and graph theory metrics of fMRI FC matrices. Whereas we
found small differences between the FC matrices of the simulated conditions, these differences
we not particularly impressive. However, we found clear-cut differences in each of the graph

theory metrics: Graded increases from PF to PV to DMS in global efficiency, local efficiency,

10
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clustering coefficient, betweenness centrality and modularity; and graded decreases in the
from PF to PV to DMS in characteristic path length, eigenvector centrality, and average
participation coefficient. Our simulated graph theory results largely agreed with empirical

studies.

In our computer simulations, the intrinsic brain activity across different conditions is modulated
by ongoing neural activity in brain regions engaged in each task (task brain regions). This
modulation happens through the strength of the anatomical connections of those brain regions

to the rest of the brain (non-task brain regions, see Figure 2).

When the brain engages in a behavioral task, the activity in neuronal populations driving the
task has the potential of reverberating throughout the brain, thereby altering the intrinsic
neural activity of neuronal populations not involved in the task. A crucial question is whether
one can quantify those changes in intrinsic functional connectivity. Computational modeling
can be useful in this regard, as it allows us to isolate non-task from task neuronal populations
and to convert simulated synaptic activity into neuroimaging time-series which in turn can be

converted to FC matrices.

A commonly used method to simulate the resting state is by modeling local neuronal
populations with oscillators and using the structural connections obtained from diffusion
tractography as connection weights between the model neuronal populations. A parameter

search is then conducted to find a global coupling parameter and a white matter conduction

11
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speed producing a simulated FC matrix that best matches an empirical FC matrix (Cabral

Hugues, Sporns, & Deco, 2011; Ghosh, Rho, Mclntosh, Kotter, & Jirsa, 2008; Gilson, Moreno-

Bote, Ponce-Alvarez, Ritter, & Deco, 2016; Hansen, Battaglia, Spiegler, Deco, & Jirsa, 2015;

Honey et al., 2009; Lee et al., 2017; Roy et al., 2014; Sanz-Leon, Knock, Spiegler, & Jirsa, 2015).

This is the method we used to generate intrinsic activity in the “rest of the brain” of our

simulations.

Consistency of pair-wise functional connectivity across task conditions

There was a high correlation between the pairs in the FC connectivity matrices between PF and
PV and between PF and DMS (Figure 6). Several researchers have used pair-wise spatial
correlations between functional connectivity (FC) matrices to compare intrinsic to task-evoked

conditions (Bolt, Nomi, et al., 2017; Buckner et al., 2009; Cohen & D'Esposito, 2016; Cole et al.,

2014; Di et al., 2013; Krienen et al., 2014; Smith et al., 2009). Generally, there is a relatively high

spatial correlation (i.e., 0.64 — 0.9) between a passive condition (such as visual fixation or eyes
closed, which are often used to study intrinsic brain activity) and a task condition. Despite such
high correlations, differences do exist between passive and task FC, and those differences may
be attributable to functional modifications that allow the brain to focus on performing a given

task (DeSalvo, Douw, Takaya, Liu, & Stufflebeam, 2014; Di et al., 2013; Tomasi, Wang, Wang, &

Volkow, 2014).

Bolt and colleagues (Bolt, Nomi, et al., 2017) recently showed that one can have largely

consistent FC between passive and task conditions, and at the same time have largely different

12
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whole-brain graph theoretical metrics between passive and task conditions. However, a
description of the mechanisms behind those seemingly divergent results has not yet been

provided.

Increases in Global Efficiency

Our study resulted in higher global efficiency for DMS than for PV and for PV than for PF. During
the simulated PF condition, the stimuli used is small and mostly activates V1/V2 and V4 and IT
areas to a small degree (blue lines in Figure 3), During the PV condition, the larger stimuli used
causes an increase of neuronal activity in V1/V2, V4, IT, FS, D1, D2, FR (as shown in the trial
time-series of Figure 3, green lines), thereby contributing to an increase in neuronal activity of
non-task nodes directly connected to task nodes (see green lines in the shaded areas of the
time-series in Figure 4). During the DMS condition, the neuronal activity across the task brain
regions is higher than during the PV condition (red lines in Figure 3). This increase in neuronal
activity of task brain regions contributes to an increase in neuronal activity of several of the
non-task brain regions with direct connections to task regions during PV and DMS conditions as
compared to PF condition (see Figure 4). As shown in the FC matrices of Figure 5, there is an
increase in the correlation of several pair-wise connections from PF to PV to DMS. This increase
in functional connectivity contributed to a consistent increase in global efficiency from PF to PV

to DMS (Figure 7).

Graph theoretical measures in empirical studies have consistently shown higher global

efficiency during task than during passive conditions (although this could depend on the

13
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complexity of the task, but see (Cohen and D’Esposito 2016)). The global efficiency has been

found to be higher during a task than during passive fixation (Bolt, Nomi, et al., 2017; Cohen &

D'Esposito, 2016), higher during a task than during an eyes closed condition (Fuertinger et al.,

2015), greater during a one-back visual memory task than during passive viewing and an eyes

closed condition (Wen et al., 2015), and higher for coactivation studies than during RS (Di et al.,

2013). In our simulations, the global efficiency is higher during DMS than during PV and PV. This
is due to the short-memory task causing an increase of neural activity in brain regions that are

in turn connected to a widely distributed network in the rest of the brain.

Increases in Local efficiency
Our simulations showed a greater local efficiency for DMS than for PV and for DMS than for PF.
This is consistent with empirical studies showing an increase in local efficiency with increasing

task demands (Wen et al., 2015).

Increases in Clustering Coefficient
Our simulations showed a greater clustering coefficient during DMS than during PV and during
PV than during PF. Previous empirical studies have found a clustering coefficient that is greater

for task than during passive fixation (Bolt, Nomi, et al., 2017), lower during a blend of activation

studies than during resting state (Di et al., 2013), and greater during a language task than

during eyes closed (Fuertinger et al., 2015).

Increases in characteristic path length

14
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Our simulations showed smaller characteristic path length during DMS than during PV and
during PV than during PF. This is to be expected because as the global efficiency increases, the

characteristic path length decreases.

Decreases in mean Eigenvector Centrality

Our simulations showed smaller eigenvector centrality during DMS than during PV and during
PV than during PF. The eigenvector centrality metric provides a measure of how well connected
a given node is considering how well connected that node’s neighbors are. Thus, eigenvector
centrality is recursive because a given node’s eigenvector centrality depends on the node’s
neighbors’ eigenvector centrality. To get a more detailed view of the reason behind smaller
mean eigenvector centrality for more complex tasks (Figure 7), we rendered the eigenvector
centrality for each node on axial and sagittal views of the brain (Figure 9A). Figure 9A shows
that as the task complexity increases (from PF to PV to DMS) the eigenvector centrality
increases in a few nodes and decreases in most other nodes. Thus, on average the eigenvector
centrality decreases but the nodal eigenvector centrality in a few nodes increases as the task
complexity increases. Note that several of the nodes in which the eigenvector centrality
increases during PF and DMS are the nodes that are directly connected to task nodes (compare
to Figure 2). The reason the increases are concentrated on the right side of the brain is due to
the task nodes, which are embedded in the right side of the brain, having direct connections
mostly to the right side of the brain (see Figure 2). Compare the changes in eigenvector
centrality with the changes in betweenness centrality (Figure 7) which remain almost the same

during PF, PV and DMS (Figure 9B).

15


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

aCC-BY-NC-ND 4.0 International license.

Increases in Betweenness Centrality

Our simulations show a higher betweenness centrality at the lower density threshold (5%) but
the average betweenness centrality is very similar across all the other density thresholds
(Figure 7). As mentioned above, the betweenness centrality at each individual node (Figure 9B)
remains relatively constant across conditions. Previous empirical studies have shown a

difference in nodal centrality when resting state and task are compared (Di et al., 2013).

Decreases in Participation Coefficient

Our simulations showed greater participation coefficient (in a predefined set of modules) for PF
than for PV and for PV than for DMS (Figure 7). Participation coefficient measures each node
participation in a set of predefined modules. We used the modules defined by Hagmann et al

(Hagmann et al., 2008). Previous studies have shown a higher participation coefficient

(between-module connectivity) during passive fixation than during a semantic task (DeSalvo et

al., 2014).

Increases in Modularity

Our simulations showed a smaller modularity for PF than for PV and for PF than for DMS. Some
empirical studies have found a greater modularity metric during RS than during a blend of
activation studies (Di et al., 2013), and a greater modularity during passive fixation than during

an n-back task using visually-presented phonemes (Cohen & D'Esposito, 2016). However, Cohen

et al (Cohen & D'Esposito, 2016) found a similar modularity during passive fixation and a finger
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tapping task. Other empirical studies have found that that the modularity varies as a function of
performance, but here the evidence is also inconsistent. For example, Stevens et al (Stevens,

Tappon, Garg, & Fair, 2012) found a positive correlation between RS modularity and visual

working memory capacity and Meunier et al (Meunier et al., 2014) found a negative correlation

between modularity and memory scores in an odor recognition task. Additionally, Yue et al (Yue

et al., 2017) have found significant individual variability in modularity during resting state.

Related computational studies comparing resting state and task-based functional
connectivity.

Two previous computational approaches have compared the intrinsic brain activity obtained
during resting state versus the one obtained during task; however, none of those models was
specifically concerned with quantifying intrinsic activity differences between different task
conditions (which is the goal of our paper). The first one of those studies, by Ponce-Alvarez and

colleagues (Ponce-Alvarez, He, Hagmann, & Deco, 2015) simulated RS using a set of mean field

equations (excitatory-inhibitory pairs) interconnected by the anatomical connections of a 66-
node connectome. A visual task was approximated by applying external stimulation (stationary
inputs) to visual nodes during the RS simulation. Ponce-Alvarez’s model revealed a decreased

synaptic activity variability during the visual task as compared to the RS condition.

The second computational study comparing task versus rest (Cole, Ito, Bassett, & Schultz, 2016)

similarly applied stationary inputs to a set of neighboring nodes in a simplified computational

model to simulate six different tasks. Cole and colleagues used the FC strengths during a

17
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passive task to predict the fMRI task activation of a held-out brain region. They did this for each
one of the brain areas simulated to produce a prediction of the fMRI activity in each one of the

brain areas simulated given a passive task FC matrix.

Caveats and limitations of our study
Different passive experimental conditions have been used in neuroimaging to study intrinsic

brain activity (also referred to as the “resting state (RS)”) (Biswal, Yetkin, Haughton, & Hyde,

1995; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; Greicius, Krasnow, Reiss, & Menon,

2003). Three of the conditions most commonly used as a resting state condition are passive

fixation (PF), eyes open with no fixation, and eyes closed. Yan and colleagues (Yan et al., 2009)

found significantly higher FC in Default Mode Network (DMN) brain areas during eyes open
than during eyes closed condition. It is also important to emphasize that the functional
magnetic resonance (fMRI) results can vary depending on several other factors including: how a

RS task is defined (Van Dijk et al., 2010; Yan et al., 2009), which task instructions are given to

subjects (Benjamin et al., 2010), and whether subjects were engaged in a task prior to RS

(Waites, Stanislavsky, Abbott, & Jackson, 2005). Thus, whereas one can compare (within the

limitations outlined below) the results of our study with empirical studies using passive fixation,

our results cannot be directly extrapolated to all RS-fMRI studies.

One way in which the simulations presented here are different from our previous paper (Ulloa

& Horwitz, 2016) is that the model response units have been relocated from prefrontal cortex

to PreSMA. The relocation of the response units to PreSMA is based on an fMRI study by
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(Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002), who found an increase in BOLD fMRI in

the PreSMA area at the end of the delay period during a visual working memory task.

Additionally, a study by (Petit, Courtney, Ungerleider, & Haxby, 1998) has also demonstrated

BOLD fMRI activity in the PreSMA area during a working memory task. The relocation from
previous studies from our lab of the model response units to PreSMA makes biological sense as
it better reflects the complexity of the task we are trying to simulate. The identification of
realistic locations within the brain for each one of the model units is crucial as different
locations of task-related modules will modulate different non-task nodes in the connectome,

thereby producing different FC configurations.

One of the limitations of our study is that our model connectome does not have other sensory
systems apart from the visual system. Therefore, one should exercise caution when comparing
FC matrices of our simulation to empirical ones as the empirical ones would contain higher FC
that are the result of other sensory systems being activated by either intrinsic or extrinsic
processes. For example, in an fMRI scanner room, there is significant auditory stimulation
(scanner noise) as well as somatosensory input, which we have not simulated in the present

work.

In our simulations, we only embedded the visual model in the right hemisphere. As a result, the
intrinsic activity was mostly localized to the right hemisphere. Nonetheless, there were
significant intrinsic activity changes in the left hemisphere, and those were caused by structural

connectivity between both hemispheres.
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Another limitation of our study is that the weights of the structural connectome used in this
paper are undirected and we assumed all connection weights to be excitatory. It is well known
that diffusion tractography has serious limitations as it produces a significant number of false

positives (Maier-Hein et al., 2017), has relatively low resolution and measures white tracts only

indirectly (Jbabdi, Sotiropoulos, Haber, Van Essen, & Behrens, 2015). Some researchers have

simulated whole brain activity using connectome datasets obtained from reconstructions of

retrograde tracer injections in macaques (Chaudhuri, Knoblauch, Gariel, Kennedy, & Wang,

2015) or a composite of diffusion spectrum imaging in humans and macaque tracer data (Sanz-

Leon et al., 2015). Despite the low resolution and lack of sign and direction of the human

tractography data, we decided to use it as it allowed the “brain regions” of our task based

simulator to be embedded into plausible locations within the structural connectome.

CONCLUSIONS

In conclusion, we used our large-scale neural modeling framework to quantitatively compare
neural dynamics of non-task brain regions during passive fixation, passive viewing, and a visual
short-term memory task. We were able to obtain quantitative measures of differences in
simulated functional connectivity by using graph theoretical methods. Our simulated graph
theory results largely agreed with experiments. We were also able to relate those network-level
changes to the underlying model mechanisms. We showed that we can use computational
modeling, functional connectivity and graph theoretical metrics to quantify changes in intrinsic

FC of non-task brain regions due to increasing task demands. Our work is relevant to the
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characterization of intrinsic brain activity differences between passive and active task
conditions and to the use of neural modeling in the design of empirical studies and the

comparison of competing hypothesis of brain function.

METHODS
In the present work, we analyzed functional connectivity derived from BOLD fMRI time-series,
calculated from simulated neural activity data using the framework presented in a previous

paper (Ulloa & Horwitz, 2016). Whereas in our previous paper we evaluated the FC between

brain regions directly involved in executing a task, in the present paper we examined the
intrinsic FC in the rest of the brain (brain regions not involved in task execution). To better
address that question, we performed a model parameter search to find a reasonable match
between empirical and model FC. Below we briefly describe the components of the framework
and how it was used to generate the simulated multi-subject experiment presented in this
study. The source code of our modeling work, including simulation, analysis and visualization

scripts, is freely available at https://nidcd.github.io/Isnm _in_python/.

Visual object processing model and The Virtual Brain
a. Visual object processing model

Our in-house visual (Tagamets & Horwitz, 1998) object processing model consists of

interconnected neuronal populations representing the cortical ventral pathway that has been
shown to process primarily the features of a visual object. This stream begins in striate visual

cortex, extends into the inferior temporal lobe and projects into ventrolateral prefrontal cortex
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(Haxby et al., 1991; Mclntosh et al., 1994; Ungerleider & Mishkin, 1982). The regions that

comprise the visual model include ones representing primary and secondary visual cortex
(V1/V2), area V4, anterior inferotemporal cortex (IT), and prefrontal cortex (PFC) (see Fig. 1).
Each of these regions contain one or more neural populations with different functional
attributes (see caption to Fig. 1 for details). This model was designed to perform a short-term
memory delayed match-to-sample (DMS) task during each trial of which a stimulus S1 is
presented for a certain amount of time, followed by a delay period in which S1 must be kept in
short-term memory. When a second stimulus (S2) is presented, the model must respond as to
whether S2 matches S1. The model can also perform control tasks: passive fixation (PF) and
passive perception of the stimuli (PV), in which no response is required. Multiple trials of the
active and passive tasks constitute a simulated functional neuroimaging study.

The key feature used to define a visual object was shape. Model neurons in V1/V2 and
V4 were assumed to be orientation selective (for simplicity, horizontal and vertical orientations
were used). The structural submodels employed were based on known monkey
neuroanatomical data. An important assumption for the visual model, inferred from such
experimental data, was that the spatial receptive field on neurons increased along the ventral

processing pathway (see (Tagamets & Horwitz, 1998) for details).

Each neuronal population consisted of 81 microcircuits, each representing a cortical
column. The model employed modified Wilson-Cowan units (an interacting excitatory and
inhibitory pair of elements for which spike rate was the measure of output neural activity) as

the microcircuit (Wilson & Cowan, 1972). The input synaptic activity to each neuronal unit can

22


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

aCC-BY-NC-ND 4.0 International license.

also be evaluated and combinations of this input activity were related to the fMRI BOLD signals
via a forward model.

In an earlier version of the model (Horwitz et al., 2005), half the neural populations

within the model were 'non task-specific’ neurons that served as noise generators to ‘task-
specific’ neurons that processed shapes during the DMS task. The model generated time series
of simulated electrical neuronal and synaptic activity for each module that represents a brain
region. The time series of synaptic activity, convolved with a hemodynamic response function,
was then used to compute simulated fMRI BOLD signal for each module representing a brain

region, as well as functional connectivity among key brain regions (see (Horwitz et al., 2005) for

details on this method). This model was able to perform the DMS task, generate simulated
neural activities in the various brain regions that matches empirical data from non-human
preparations, and produces simulated functional neuroimaging data that generally agree with

human experimental findings (see (Tagamets & Horwitz, 1998) and (Horwitz et al., 2005) for

details). In the current paper, we employ the version of the model introduced by Ulloa and

Horwitz (Ulloa & Horwitz, 2016) in which non task-specific neurons are replaced by noise-

generated activity from neural elements in The Virtual Brain software simulator (Sanz Leon et

al., 2013).

b. The Virtual Brain

The Virtual Brain (TVB) software (Sanz Leon et al., 2013; Sanz-Leon et al., 2015) is a simulator of

primarily resting state brain activity that combines: (i) white matter structural connections

among brain regions to simulate long-range connections, and (ii) a given neuronal population
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model to simulate local brain activity. It also employs forward models that convert simulated
neural activity into simulated functional neuroimaging data. TVB source code and
documentation are freely available from https://github.com/the-virtual-brain.

In the current paper, for the structural model, we chose the DSI-based connectome described

by (Hagmann et al., 2008), which contains 998 nodes. For the neural model for each node, we

employed Wilson-Cowan population neuronal units (Wilson & Cowan, 1972) to model the local

brain activity because our in-house LSNM simulators use modified Wilson-Cowan equations as
their basic neuronal unit. Our forward model that converts simulated neural activity into
simulated fMRI is a modification of the Balloon-Windkessel model of Friston et al. (Friston,

Mechelli, Turner, & Price, 2000; Stephan, Marshall, Penny, Friston, & Fink, 2007) that is

included in the TVB.

Integrating TVB and LSNM

To perform our computational study, we concurrently ran two neural simulators: Our Large-
Scale Neural Model (LSNM) simulator, which generated task-driven neural activity of the brain
regions directly involved in the visual DMS task, and The Virtual Brain simulator (TVB) (Sanz

Leon et al., 2013) to generate resting-state neural activity in the brain regions not involved in

the task. Because the task-based brain nodes were embedded within resting-state brain ROls,
we expected that the neuroimaging activity in key connectome ROIs would differ between

passive fixation (PF), passive viewing (PV), and task-based simulations. Here, we sought to
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guantify those differences, first by comparing the pattern of functional connectivity across

conditions, then by using graph theoretical methods to quantify those differences.

Within the LSNM, connections and parameter choices closely follow those in the original
papers. Likewise, the connections and parameter choices among TVB nodes closely follow

those described by Sanz-Leon et al. (Sanz-Leon et al., 2015). There are two differences between

the simulations presented in this paper and the previous (Ulloa & Horwitz, 2016) paper: The

location of the FR units has been changed to PreSMA and the global coupling parameter has

been changed (after a parameter search procedure detailed below).

a. Task-based model node placement in the TVB

The connectome derived by Hagmann and colleagues (Hagmann et al., 2008) serves as a

source of neural noise to our task-based neural model. Such a connectome was obtained by
averaging the weighted network of five experimental subjects, where each one of the 998
nodes represents a region of interest covering a surface area of approximately 1.5 cm?®. The
connection weights among the nodes represent cortico-cortical connections given by white
matter connection density among the given nodes. As stated above, each node is represented
by a Wilson-Cowan population unit and thus each node is assumed to be comprised of one
excitatory and one inhibitory neural population. We implemented noise as an additive term to

the stochastic Euler integration scheme provided by the TVB software.

The locations of the four PFC nodes (FS, D1, D2, FR) require some comment. The

inclusion of these four neural populations in the original LSNMs was based on the
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electrophysiological studies of Funahashi et al. (Funahashi, Bruce, & Goldman-Rakic, 1990) that

found in monkey PFC four distinct neuronal responses during a delayed response task: neurons
that (1) increased their activity when a stimulus was present (FS), (2) increased their activity
during the delay part of the task (D1), (3) increased their activity during both when a stimulus
was present and during the delay period (D2), and (4) increased their activity prior to making a
correct response (FR). It is not known if these neuronal types are found in separate anatomical
locations in PFC or are intermixed within the same brain area, although the latter is the more
likely case (except possibly for the FR population). In the original modeling studies of Tagamets

and Horwitz (Tagamets & Horwitz, 1998) and Husain et al. (Husain, Tagamets, Fromm, Braun, &

Horwitz, 2004), the functional neuroimaging data represented a single region that included all
four nodes. To illustrate the integrated synaptic activity and fMRI signal for each one of the
modules of the combined LSNM / TVB model separately, we have assigned a different spatial
location to each one of the four PFC sub-modules. We have used the Talairach coordinates of

the prefrontal cortex, based on (Haxby et al., 1991), for the submodule D1 and have designated

spatial locations in adjacent regions of interest for the FS and D2 submodules. The FR
submodule has been allocated to a spatial location determined by an fMRI study of working

memory in humans (Pessoa et al., 2002). See Table 1 for coordinate locations of each

module/submodule of the visual short-term memory nodes within the structural connectome.

b. Simulating electrical activity and fMRI activity

Electrical activities of each node in Hagmann’s connectome (TVB equations)
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Each one of the nodes in Hagmann’s connectome is represented as a Wilson-Cowan
model of excitatory (E) and inhibitory (I) neuronal populations, as described in Sanz-Leon et al.

(Sanz-Leon et al., 2015):

% = %(—Ei + (kg — 15E;)SE [aE (CEEEi — cipl; — 05 + T(E, E, uij))])
and
% = T_ll(_li + (k; — S, [051 (CEIEi —cyli— 0, + I'(Ei,E, uij))])

where S; and S; are sigmoid functions described by

c
1 4 e(raGF(@a)-b)

Salf(@)] =

Cgg» Cgp €11, €1 are the connections within the single neuronal unit itself; note that, although
the original TVB Wilson-Cowan population model allows us to consider the influence of a local
neighborhood of neuronal populations, we have not used this feature in our current

simulations and have left that term out of the equations above; I'(Ey, E, uy;) is the long-range

coupling function, defined as
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l n
F(Ei'E'uij) = dar <z 1U.UE](t _Tij) + z 1ul]E'J(t - Tij))
J= =

where [ is the number of nodes in the connectome and n is the number of LSNM units
connected to a connectome node; ar is a global coupling parameter (see Supplementary Table

S1 and Table S2 for the definition and value of the parameters in the above equations).

Electrical activities of each LSNM unit

Each one of the submodules of the LSNM model contains 81 neuronal population units.
Each one of those units is modeled as a Wilson-Cowan population of excitatory (E) and
inhibitory (I) elements. The electrical activities of each one of those elements at time t is given

by the following equations:

dE;(t) _ A( 1 ) — SE(D)

dt 1 4+ e KelWegEi(®)+wigli(£)+in;g(t)-¢pp+N ()]

and

dI;(t) 1
—A ( . ) — 8I,()
dt 1 + e KilWglEi(®)+in;(©)—¢+N ()]

where A is the rate of change, ¢ is the rate of decay, Kg, K; are gain constants, ¢, ¢; are input
threshold values, N(t) is a noise term, wgg, W;g, Wg; are the weights within a unit (the values of
A, 6,K, 1, N are given in the Supplementary Table S3); in;z(t), in;;(t) are the inputs coming

from other brain regions at time t. in;z(t) is given by:
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ings (£) = ) WEE(D) + ) whi;(© + ) uz£6(0)
J J J

where wj]

and wj’i are the weights originating from excitatory (E) or inhibitory (I) unit j from
another LSNM unit into the ith excitatory element, C; is the connectome excitatory unit j with
connections to the LSNM unit /, Zﬁ is the value of the anatomical connection weight from
connectome unit j to LSNM unit j, and c;;is a coupling term, which was obtained by using

Python’s Gaussian pseudo-random number generator (random.gauss), using ar/81 as the

mean value. The input coming into the ith inhibitory element, in;; (t), is given by:

ing (t) = z wiEr (t) + z wii . (£)
3 3

where wi; and wi; are the weights originating from excitatory (E) or inhibitory (I) unit k from
another LSNM unit into the ith inhibitory element. Note that there are no connections from the
connectome to LSNM inhibitory units. See Supplementary Tables S4 and S5 for details. Note
also that, whereas TVB simulator incorporates transmission delay among the connectome

nodes, the LSNM nodes do not.

Integrated synaptic activity

Prior to computing fMRI BOLD activities we compute the synaptic activity, spatially
integrated over each LSNM module (or connectome node) and temporally integrated over 50

milliseconds as described by (Horwitz & Tagamets, 1999)
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615

616 rSYN = z IN,()
t,i

617

618  where IN;(t) is the sum of absolute values of all inputs to both E and / elements of unit i, at

619 timet, andis given by:

620

621 ING) = WepB(6) + we Bi() + Wishi ()] + ) wiaEie(6)
ki

622

623  Note that the first three terms above are the synaptic weights from within unit j and the last
624  term is the sum of synaptic connections originating in all other LSNM units and connectome
625 nodes connected to unitj. Note also that, in our current scheme, there are no long-range
626  connections from inhibitory populations.

627

628  Generation of subjects and task performance of the LSNM model

629 We generated simulated subjects by creating several different sets of connection

630  weights among submodules of the LSNM visual network until we obtained the number of

631 desired subjects whose task performance was above 60 percent. However, the weights among
632  the nodes with the TVB connectome remained unchanged across subjects. The generation of
633  different connectome sets to simulate individual subjects is outside the scope of the current
634  paper but will be essential for future simulation studies investigating the effects of a behavioral

635  task on non-task brain nodes. Task performance was measured as the proportion of correct
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responses over an experiment. A response in the response module (FR, described in the caption
to Fig. 1) was considered a correct response in each trial if at least 2 units had neuronal
electrical responses above a threshold of 0.7 during the response period. To create different
sets of weights that were different from the ideal subject, we multiplied feedforward
connections among modules in the LSNM visual model by a random proportion of between

0.95 and 1.

Equations for the forward fMRI BOLD model

We implemented the BOLD signal model described by (Stephan et al., 2007). We use the

output of the integrated synaptic activity above as the neural state equation to the
hemodynamic state equations below. The BOLD signal for each region of interest, y(t), is

computed as follows:

y(©) = Vy <k1(1 —q@) 4 (1-T0) + k- v(t))>-

where the coefficients k4, k,, k3 are computed as:

k1 = 4.3190EOTE
k2 == SroEoTE

k3:1_£
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where Vj is the resting venous blood volume fraction, g is the deoxyhemoglobin content, v is
the venous blood volume, Ej is the oxygen extraction fraction at rest, € is the ratio of intra- and
extravascular signals, and 7y-is the slope of the relation between the intravascular relaxation
rate and oxygen saturation, 9, is the frequency offset at the outer surface of the magnetized
vessel for fully deoxygenated blood at 3T, and TE is the echo time. The evolution of the venous
blood volume v and deoxyhemoglobin content g is given by the balloon model hemodynamic

state equations, as follows:

d
700 = f(©) ~v(O)V®
dg . 1-QQ—E)Yf e 4@
TOE_f(t) L] — ()Y )

where 7y-is the hemodynamics transit time, arepresents the resistance of the venous balloon

(vessel stiffness), and f(t) is the blood inflow at time t and is given by

df
dt

where s is an exponentially decaying, vasodilatory signal given by

EOIGORE
T

S
Tl ex(t) - o
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where €is the efficacy with which neuronal activity x(t) (i.e., integrated synaptic activity) causes

an increase in signal, 7¢-is the time constant for signal decay, and 74-is the time constant for

autoregulatory feedback from blood flow (Friston et al., 2000). See Supplementary Table S6 for

the values of the above parameters. The simulated fMRI BOLD time series resulting from the

above equations were low-pass filtered (<0.25Hz) and down-sampled every two seconds.

Resting State parameter exploration
We performed a global parameter exploration (for which we used exclusively the TVB simulator
and the structural connectome with no task nodes) to obtain a reasonable match between

empirical and model FC (Cabral et al., 2011). We obtained the empirical functional connectivity

datasets from (Hagmann et al., 2008) which we used as a target for our simulated FC. Note that

we used a low resolution (66 nodes) FC of matrices to perform the comparisons between

empirical and resting state simulations (Honey et al., 2009): We transformed all correlation

coefficients to Fisher’s Z values and averaged the FC matrices across subjects within each
condition. We then calculated low-resolution (66 ROIs) matrices (each ROI corresponding to a

brain region in the Desikan-Killiany parcellation (Desikan et al., 2006) for each condition

(Hagmann et al., 2008; Honey et al., 2009) by averaging FC coefficients within each one of the

low-resolution ROIs (Hagmann et al., 2008) and converted back to correlation coefficients using

an inverse Fisher’s Z transformation. We systematically varied the global coupling parameter
(ar in the long-range coupling equation above) and the white matter conduction speed and
conducted a 198-second resting state simulation for each parameter combination. We

calculated a Pearson correlation coefficient between the model FC matrix (for each parameter
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combination) and the empirical FC matrix. Then, we chose the parameter combination that
gave us the highest correlation value and used that combination for the PF, PV and DMS
simulations of our study. The global strength parameter range used was between 0.0042 and
0.15 with a step of 0.01. The conduction speed parameter range used was between 1 and 10
m/s with a step of 1. The best combination of parameters was (0.15, 3) which yielded a
correlation value between simulated and empirical FC of r=0.37. Note that absent structural

connections were removed from this correlation calculation as in (Honey et al., 2009), but not

in the rest of the paper.

From RS to PF, PV, and DMS
After finding an optimal match between empirical and simulated RS, we performed a simulation

of RS with stimulation in visual task nodes using only the TVB simulator (Sanz-Leon et al., 2015).

The correlation between RS FC and RS with stimulation FC was 0.90. Subsequently, we used a
blend of our LSNM simulator and TVB to simulated PF. The correlation between RS with
stimulation and PF was 0.9. As a last step, we performed a DMS simulation and compared it to
the PF simulation (correlation was 0.79). Thus, we used a TVB RS simulation (matched to

empirical RS) as a starting point for our PF and task-based simulations.

Network construction
The simulations were performed using the TVB simulator with the 998-node Hagmann
connectome and the LSNM visual short-term memory simulator described above. We isolated

the synaptic activity timeseries of connectome nodes from the task nodes’ synaptic activity. We
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used the Balloon model to estimate fMRI BOLD activation over each one of the 998 nodes, for
each condition, and for each subject separately. We calculated zero lag Pearson correlation
coefficients for each pair of the BOLD timeseries to obtain a FC matrix for each condition and
for each subject. We used the weighted FC matrices within each condition to construct graphs
where each one of the 998 ROIs corresponded to a graph node and the correlation coefficients

between each pair of ROIs corresponded to graph edges (Bolt, Nomi, et al., 2017; Di et al.,

2013). To keep the same number of edges across conditions, we thresholded the network

edges to a sparsity level of between 5% and 40% (Di et al., 2013) with a step size of 5%.

Graph theory analysis

A set of eight graph theoretical metrics (global efficiency, local efficiency, clustering coefficient,
characteristic path length, eigenvector centrality, betweenness centrality, participation
coefficient, and modularity) were calculated using the FC matrices for each of the conditions

using the Brain Connectivity Toolbox (Rubinov & Sporns, 2010) in Python, publicly available at

https://github.com/aestrivex/bctpy. We calculated graph metrics for each individual FC matrix,

for each condition and for each density threshold. Then we calculated the average and standard
deviation of each graph metric for each density threshold.

Global efficiency (Latora & Marchiori, 2001) measures “functional integration” (Rubinov &

Sporns, 2010) and indicates how well nodes are coupled through functional connections across
the entire brain. Global efficiency is calculated as the average inverse shortest path length

(Rubinov & Sporns, 2010). Local efficiency is the inverse of the average shortest path

connecting a given node to its neighbors (Lee et al., 2017). Clustering coefficient (Watts &
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743  Strogatz, 1998) is a measure of “functional segregation” (Rubinov & Sporns, 2010). The

744  clustering coefficient of a network node is the proportion of the given node’s neighbors that are
745  functionally connected to each other. Whole brain clustering coefficient is calculated as the

746  average of the clustering coefficients in a functional connectivity matrix (Rubinov & Sporns,

747  2010). Characteristic path length is the average shortest path length between all node pairsin a

748  network (Rubinov & Sporns, 2010). Eigenvector centrality is a measure of centrality that

749  considers degree of a given node and degree of that node’s neighbors (Fornito, Zalesky, &

750 Bullmore, 2016 2016). Betweenness centrality is the fraction of shortest paths that cross a given

751  network node (Rubinov & Sporns, 2010). Participation coefficient is a measure of each node’s

752  participation in a given set of network communities. We used a set of six network communities

753  for the participation coefficient calculation, as shown in Table S1 of (Hagmann et al., 2008),

754  Table S1. Modularity (Newman, 2004) is a metric of functional segregation and it detects

755  community structure in a network by dividing a functional connectivity matrix into sets of non-
756  overlapping modules and it measures how well a network can be divided into those modules

757  (Rubinov & Sporns, 2010).

758

759  SUPPORTING INFORMATION

760  Table S1. Parameters used in the Wilson-Cowan equation for each connectome within TVB.
761  Table S2. Parameters used for simulating the Hagmann connectome within the TVB simulator.
762  Table S3. Parameters used in the Wilson-Cowan unit model of each LSNM submodule.

763  Table S4. Connection patterns among submodules of the LSNM model.

764  Table S5. Connection weights among submodules in the prefrontal cortex regions of LSNM.
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Table S6. Parameters used for the Balloon model of hemodynamic response.

ACKNOWLEDGEMENTS

This research was funded by the Division of Intramural Research of the National Institute on
Deafness and Other Communication Disorders. We thank Olaf Sporns and Chris Honey for
sharing the functional and structural connectivity data sets from their empirical studies used in
the present paper. We thank Paul Corbitt for useful discussions related to the simulation code
used for our analysis and the parameters used for converting synaptic activity to fMRI BOLD
time-series. We thank Marmaduke Woodman for helping us navigate technical aspects of the

TVB simulator.

REFERENCES

Adams, R. A,, Shipp, S., & Friston, K. J. (2013). Predictions not commands: active inference in
the motor system. Brain Struct Funct, 218(3), 611-643. doi:10.1007/s00429-012-0475-5

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring
and manipulating networks. International AAAI conference on weblogs and social media,
361-362.

Benjamin, C., Lieberman, D. A., Chang, M., Ofen, N., Whitfield-Gabrieli, S., Gabrieli, J. D., &
Gaab, N. (2010). The influence of rest period instructions on the default mode network.

Front Hum Neurosci, 4, 218. doi:10.3389/fnhum.2010.00218

37


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

785  Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the
786 motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 34(4),
787 537-541.

788  Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of

789 communities in large networks. J, Stat. Mech.(2008), P10008. doi:DOI: 10.1088/1742-
790 5468/2008/10/P10008

791  Bluhm, R. L., Clark, C. R., McFarlane, A. C., Moores, K. A., Shaw, M. E., & Lanius, R. A. (2011).
792 Default network connectivity during a working memory task. Hum Brain Mapp, 32(7),
793 1029-1035. d0i:10.1002/hbm.21090

794  Bolt, T., Anderson, M. L., & Uddin, L. Q. (2017). Beyond the evoked/intrinsic neural process
795 dichotomy. Network Neuroscience, 0(0), 1-22. doi:10.1162/NETN_a_00028

796  Bolt, T., Nomi, J. S., Rubinov, M., & Uddin, L. Q. (2017). Correspondence between evoked and
797 intrinsic functional brain network configurations. Hum Brain Mapp.

798 doi:10.1002/hbm.23500

799 Branco, P., Seixas, D., Deprez, S., Kovacs, S., Peeters, R., Castro, S. L., & Sunaert, S. (2016).
800 Resting-State Functional Magnetic Resonance Imaging for Language Preoperative
801 Planning. Front Hum Neurosci, 10, 11. doi:10.3389/fnhum.2016.00011

802  Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., . . . Johnson, K. A.

803 (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment
804 of stability, and relation to Alzheimer's disease. J Neurosci, 29(6), 1860-1873.
805 doi:10.1523/JNEUROSCI.5062-08.2009

38


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

aCC-BY-NC-ND 4.0 International license.

Cabral, J., Hugues, E., Sporns, O., & Deco, G. (2011). Role of local network oscillations in resting-
state functional connectivity. [Yes-HL]. Neuroimage, 57(1), 130-139. doi:S1053-
8119(11)00388-0 [pii]

10.1016/j.neuroimage.2011.04.010

Chaudhuri, R., Knoblauch, K., Gariel, M. A., Kennedy, H., & Wang, X. J. (2015). A Large-Scale
Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex. Neuron,
88(2), 419-431. d0i:10.1016/j.neuron.2015.09.008

Cohen, J. R., & D'Esposito, M. (2016). The Segregation and Integration of Distinct Brain
Networks and Their Relationship to Cognition. J Neurosci, 36(48), 12083-12094.
doi:10.1523/JNEUROSCI.2965-15.2016

Cole, M. W,, Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-
evoked network architectures of the human brain. Neuron, 83(1), 238-251.
doi:10.1016/j.neuron.2014.05.014

Cole, M. W,, Ito, T., Bassett, D. S., & Schultz, D. H. (2016). Activity flow over resting-state
networks shapes cognitive task activations. Nat Neurosci, 19(12), 1718-1726.
doi:10.1038/nn.4406

DeSalvo, M. N., Douw, L., Takaya, S., Liu, H., & Stufflebeam, S. M. (2014). Task-dependent
reorganization of functional connectivity networks during visual semantic decision
making. Brain Behav, 4(6), 877-885. doi:10.1002/brb3.286

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., ... Killiany, R. J.

(2006). An automated labeling system for subdividing the human cerebral cortex on MRI

39


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

aCC-BY-NC-ND 4.0 International license.

scans into gyral based regions of interest. Neuroimage, 31(3), 968-980.
doi:10.1016/j.neuroimage.2006.01.021

Di, X., Gohel, S., Kim, E. H., & Biswal, B. B. (2013). Task vs. rest-different network configurations
between the coactivation and the resting-state brain networks. Front Hum Neurosci, 7,
493. doi:10.3389/fnhum.2013.00493

Fornito, A., Zalesky, A., & Bullmore, E. T. (2016). Fundamental of brain network analysis.
Amsterdam ; Boston: Elsevier/Academic Press.

Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous
neuronal activity distinguishes human dorsal and ventral attention systems. Proc Nat/
Acad Sci U S A, 103(26), 10046-10051. doi:10.1073/pnas.0604187103

Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear responses in fMRI: the
Balloon model, Volterra kernels, and other hemodynamics. Neuroimage, 12(4), 466-477.
doi:10.1006/nimg.2000.0630

Fuertinger, S., Horwitz, B., & Simonyan, K. (2015). The Functional Connectome of Speech
Control. PLoS Biol, 13(7), €1002209. doi:10.1371/journal.pbio.1002209

Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1990). Visuospatial coding in primate
prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol, 63(4), 814-831.
doi:10.1152/jn.1990.63.4.814

Ghosh, A,, Rho, Y., McIntosh, A. R., Kotter, R., & Jirsa, V. K. (2008). Noise during rest enables the
exploration of the brain's dynamic repertoire. PLoS Comput Biol, 4(10), e1000196.

doi:10.1371/journal.pcbi.1000196

40


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

848  Gilson, M., Moreno-Bote, R., Ponce-Alvarez, A., Ritter, P., & Deco, G. (2016). Estimation of

849 Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries
850 of Cortical Connectome. PLoS Comput Biol, 12(3), e1004762.
851 doi:10.1371/journal.pcbi.1004762

852 Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the
853 resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S
854 A, 100(1), 253-258. doi:10.1073/pnas.0135058100

855 Hagmann, P.,, Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O.
856 (2008). Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7), e159.
857 doi:10.1371/journal.pbio.0060159

858 Hansen, E. C., Battaglia, D., Spiegler, A., Deco, G., & Jirsa, V. K. (2015). Functional connectivity
859 dynamics: modeling the switching behavior of the resting state. Neuroimage, 105, 525-
860 535. doi:10.1016/j.neuroimage.2014.11.001

861  Havlicek, M., Roebroeck, A., Friston, K., Gardumi, A., lvanov, D., & Uludag, K. (2015).

862 Physiologically informed dynamic causal modeling of fMRI data. Neuroimage, 122, 355-
863 372. doi:10.1016/j.neuroimage.2015.07.078

864  Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., . . . Rapoport,
865 S.1.(1991). Dissociation of object and spatial visual processing pathways in human

866 extrastriate cortex. Proc. Natl. Acad. Sci. USA, 88, 1621-1625.

867  Haxby, J. V., Ungerleider, L. G., Horwitz, B., Rapoport, S. |., & Grady, C. L. (1995). Hemispheric
868 differences in neural systems for face working memory: A PET-rCBF study. Human Brain

869 Mapp., 3(2), 68-82. doi:DOI 10.1002/hbm.460030204

41


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

aCC-BY-NC-ND 4.0 International license.

Heinzle, J., Koopmans, P. J., den Ouden, H. E., Raman, S., & Stephan, K. E. (2016). A
hemodynamic model for layered BOLD signals. Neuroimage, 125, 556-570.
doi:10.1016/j.neuroimage.2015.10.025

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., & Hagmann, P.
(2009). Predicting human resting-state functional connectivity from structural
connectivity. Proc Natl Acad Sci U S A, 106(6), 2035-2040. doi:10.1073/pnas.0811168106

Horwitz, B., & Tagamets, M.-A. (1999). Predicting human functional maps with neural net
modeling. Human Brain Mapp., 8, 137-142.

Horwitz, B., Warner, B., Fitzer, J., Tagamets, M. A., Husain, F. T., & Long, T. W. (2005).
Investigating the neural basis for functional and effective connectivity. Application to
fMRI. Philos Trans R Soc Lond B Biol Sci, 360(1457), 1093-1108.
doi:10.1098/rstb.2005.1647

Husain, F. T., Tagamets, M. A., Fromm, S. J.,, Braun, A. R., & Horwitz, B. (2004). Relating neuronal
dynamics for auditory object processing to neuroimaging activity: a computational
modeling and an fMRI study. Neuroimage, 21(4), 1701-1720.
doi:10.1016/j.neuroimage.2003.11.012

Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C., & Behrens, T. E. (2015). Measuring
macroscopic brain connections in vivo. Nat Neurosci, 18(11), 1546-1555.
doi:10.1038/nn.4134

Krienen, F. M., Yeo, B. T., & Buckner, R. L. (2014). Reconfigurable task-dependent functional
coupling modes cluster around a core functional architecture. Philos Trans R Soc Lond B

Biol Sci, 369(1653). doi:10.1098/rstb.2013.0526

42


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

aCC-BY-NC-ND 4.0 International license.

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Phys Rev Lett,
87(19), 198701. doi:10.1103/PhysRevLett.87.198701

Lee, W. H., Bullmore, E., & Frangou, S. (2017). Quantitative evaluation of simulated functional
brain networks in graph theoretical analysis. Neuroimage, 146, 724-733.
doi:10.1016/j.neuroimage.2016.08.050

Liu, H., Buckner, R. L., Talukdar, T., Tanaka, N., Madsen, J. R., & Stufflebeam, S. M. (2009). Task-
free presurgical mapping using functional magnetic resonance imaging intrinsic activity.
J Neurosurg, 111(4), 746-754. doi:10.3171/2008.10.JNS08846

Maier-Hein, K. H., Neher, P. F., Houde, J. C., Cote, M. A., Garyfallidis, E., Zhong, J., . ..
Descoteaux, M. (2017). The challenge of mapping the human connectome based on
diffusion tractography. Nat Commun, 8(1), 1349. doi:10.1038/s41467-017-01285-x

Mcintosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport, S. |., & Horwitz, B.
(1994). Network analysis of cortical visual pathways mapped with PET. J. Neurosci., 14,
655-666.

Meunier, D., Fonlupt, P., Saive, A. L., Plailly, J., Ravel, N., & Royet, J. P. (2014). Modular structure
of functional networks in olfactory memory. Neuroimage, 95, 264-275.
doi:10.1016/j.neuroimage.2014.03.041

Moussa, M. N., Vechlekar, C. D., Burdette, J. H., Steen, M. R., Hugenschmidt, C. E., & Laurienti,
P.J.(2011). Changes in cognitive state alter human functional brain networks. Front
Hum Neurosci, 5, 83. doi:10.3389/fnhum.2011.00083

Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Phys Rev

E Stat Nonlin Soft Matter Phys, 69(6 Pt 2), 066133. d0i:10.1103/PhysRevE.69.066133

43


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

aCC-BY-NC-ND 4.0 International license.

Obata, T., Liu, T. T., Miller, K. L., Luh, W.-M., Wong, E. C., Frank, L. R., & Buxton, R. B. (2004).
Discrepancies between BOLD and flow dynamics in primary and supplementary motor
areas: application of the balloon model to the interpretation of BOLD transients.
Neuroimage, 21(1), 144-153. doi:10.1016/j.neuroimage.2003.08.040

Pessoa, L., Gutierrez, E., Bandettini, P., & Ungerleider, L. (2002). Neural correlates of visual
working memory: fMRI amplitude predicts task performance. Neuron, 35(5), 975-987.

Petit, L., Courtney, S. M., Ungerleider, L. G., & Haxby, J. V. (1998). Sustained activity in the
medial wall during working memory delays. J Neurosci, 18(22), 9429-9437.

Ponce-Alvarez, A., He, B. J., Hagmann, P., & Deco, G. (2015). Task-Driven Activity Reduces the
Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling. [Yes-HL].
PLoS Comput Biol, 11(8), €1004445. doi:10.1371/journal.pcbi.1004445

Roy, D., Sigala, R., Breakspear, M., Mclntosh, A. R., Jirsa, V. K., Deco, G., & Ritter, P. (2014).
Using the virtual brain to reveal the role of oscillations and plasticity in shaping brain's
dynamical landscape. Brain Connect, 4(10), 791-811. doi:10.1089/brain.2014.0252

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and
interpretations. Neuroimage, 52(3), 1059-1069. doi:10.1016/j.neuroimage.2009.10.003

Sanz Leon, P., Knock, S. A., Woodman, M. M., Domide, L., Mersmann, J., McIntosh, A. R., & Jirsa,
V. (2013). The Virtual Brain: a simulator of primate brain network dynamics. [Yes-HL].
Front Neuroinform, 7, 10. doi:10.3389/fninf.2013.00010

Sanz-Leon, P., Knock, S. A., Spiegler, A., & Jirsa, V. K. (2015). Mathematical framework for large-
scale brain network modeling in The Virtual Brain. Neuroimage, 111, 385-430.

doi:10.1016/j.neuroimage.2015.01.002

44


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

aCC-BY-NC-ND 4.0 International license.

Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C,, Fox, P. M., Mackay, C. E., ... Beckmann, C. F.
(2009). Correspondence of the brain's functional architecture during activation and rest.
Proc Natl Acad Sci U S A, 106(31), 13040-13045. doi:10.1073/pnas.0905267106

Stephan, K. E., Marshall, J. C., Penny, W. D., Friston, K. J., & Fink, G. R. (2007). Interhemispheric
integration of visual processing during task-driven lateralization. J Neurosci, 27(13),
3512-3522. doi:10.1523/INEUROSCI.4766-06.2007

Stevens, A. A., Tappon, S. C., Garg, A., & Fair, D. A. (2012). Functional brain network modularity
captures inter- and intra-individual variation in working memory capacity. PLoS One,
7(1), e30468. doi:10.1371/journal.pone.0030468

Tagamets, M.-A., & Horwitz, B. (1998). Integrating electrophysiological and anatomical
experimental data to create a large-scale model that simulates a delayed match-to-
sample human brain imaging study. Cereb. Cortex, 8, 310-320.

Tomasi, D., Wang, R., Wang, G. J., & Volkow, N. D. (2014). Functional connectivity and brain
activation: a synergistic approach. Cereb Cortex, 24(10), 2619-2629.
doi:10.1093/cercor/bht119

Tommasin, S., Mascali, D., Gili, T., Assan, I. E., Moraschi, M., Fratini, M., . . . Giove, F. (2017).
Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default
Mode Network. Front Phys, 5. doi:10.3389/fphy.2017.00031

Ulloa, A., & Horwitz, B. (2016). Embedding Task-Based Neural Models into a Connectome-Based

Model of the Cerebral Cortex. Front Neuroinform, 10, 32. doi:10.3389/fninf.2016.00032

45


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

aCC-BY-NC-ND 4.0 International license.

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A.
Goodale, & R. J. W. Mansfield (Eds.), Analysis of Visual Behavior (pp. 549-586).
Cambridge: MIT Press.

Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010).
Intrinsic functional connectivity as a tool for human connectomics: theory, properties,
and optimization. J Neurophysiol, 103(1), 297-321. d0i:10.1152/jn.00783.2009

Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E. A. (2015).
Default mode network connectivity during task execution. Neuroimage, 122, 96-104.
doi:10.1016/j.neuroimage.2015.07.053

Waites, A. B., Stanislavsky, A., Abbott, D. F., & Jackson, G. D. (2005). Effect of prior cognitive
state on resting state networks measured with functional connectivity. Hum Brain
Mapp, 24(1), 59-68. d0i:10.1002/hbm.20069

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature,
393(6684), 440-442. doi:10.1038/30918

Wen, X., Zhang, D., Liang, B., Zhang, R., Wang, Z., Wang, J., . .. Huang, R. (2015).
Reconfiguration of the Brain Functional Network Associated with Visual Task Demands.
PLoS One, 10(7), e0132518. doi:10.1371/journal.pone.0132518

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized
populations of model neurons. Biophys. J., 12, 1-24.

Yan, C, Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., ... Zang, Y. (2009). Spontaneous brain activity in
the default mode network is sensitive to different resting-state conditions with limited

cognitive load. PLoS One, 4(5), e5743. doi:10.1371/journal.pone.0005743

46


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

978

979

980

981

982

983

984

985

aCC-BY-NC-ND 4.0 International license.

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., . . . Buckner,
R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic
functional connectivity. J Neurophysiol, 106(3), 1125-1165. doi:10.1152/jn.00338.2011

Yue, Q., Martin, R. C., Fischer-Baum, S., Ramos-Nunez, A. |,, Ye, F., & Deem, M. W. (2017). Brain
Modularity Mediates the Relation between Task Complexity and Performance. J Cogn

Neurosci, 29(9), 1532-1546. doi:10.1162/jocn_a_01142

47


https://doi.org/10.1101/250894
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/250894; this version posted January 20, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

986 Table 1. Hypothesized locations, in Talairach coordinates, of visual LSNM modules, along with
987 the closest node in the Hagmann et al. connectome. Note that the locations of FS and D2 are
988 not explicitly known (see text) and were chosen only to demonstrate validity of the method.
989

Visual submodule Talairach location Source Host connectome node
V1/V2 (18, -88, 8) (Haxby, Ungerleider, (14, -86,7)
Horwitz, Rapoport, &
Grady, 1995)

V4 (30,-72,-12) (Haxby et al., 1995) (33,-70, -7)
IT (28, -36, -8) (Haxby et al., 1995) (31, -39, -6)
FS Location selected for illustrative purposes (47,19,9)
D1 (42, 26, 20) (Haxby et al., 1995) (43,29, 21)
D2 Location selected for illustrative purposes (42, 39,2)
FR (1,7, 48) (Pessoa et al., 2002) (8, 6,50)
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991
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selective
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NN

Vertical
Input selective
units

V1/V2

v4
993

994  Figure 1. Visual short-term memory model consisted of interconnected neural populations that
995 represent primary and secondary visual (V1/V2, V4), inferotemporal (IT), and prefrontal cortex
996 (PFC). Each one of the sub-modules (shown above as squares) within a given brain module is
997 modeled with 81 (9x9) modified Wilson-Cowan neuronal population units. Solid arrows

998 represent Excitatory to Excitatory connections and dashed arrows represent Excitatory to

999 Inhibitory connections. Adapted from (Horwitz et al., 2005).
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1001

1002
1003  Figure 2. Graphical representation of the location where each of the visual short-term memory

1004 nodes was embedded within Hagmann’s connectome (Hagmann et al., 2008). Also

1005 shown are direct anatomical connections to connectome nodes from each one of the

1006 embedded LSNM nodes.
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1009
1010  Figure 3. Typical electrical and in neuronal populations of task-related brain regions during one
1011 trail of each of the simulated conditions. Key: PF (blue line), PV (green line), DMS (red line).
1012  Whatis shown is the average across all cortical columns in a brain region.
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BOLD activity in non-task brain regions
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Figure 4. Average BOLD signal of non-task brain regions with direct connections to task related
brain regions. A complete trial corresponding to 91 scans is shown above. for the PV and DMS
conditions, each experiment above contains 6 task blocks (shaded regions) interspersed with
rest blocks.
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Figure 5. Representative correlation-based functional connectivity matrices for the three
conditions simulated. Subject 12 is shown above. (A) The nodes in each matrix are arranged
using the standard connectome files in (Hagmann et al., 2008). (B) Nodes in the matrix have
been rearranged to match Yeo et al (Yeo et al., 2011) parcellation (7 modules). Brain
parcellation was displayed using Freesurfer.
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1037  Figure 6. Correlation between PF and PV and between PF and DMS weighted functional
1038  connectivity matrices.
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1046  Figure 8. Relative difference between PF and PV and between PF and DMS for each one of the

1047  graph metrics in Figure 7. Error bars correspond to standard deviation.
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1053  Figure 9. Eigenvector centrality (A) and betweenness centrality (B) depicted on a node-by-node
1054  basis on sagittal (left) and axial (right) views of the brain. The density threshold used for the

1055  depiction above was 10%.
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(A) PF
[8 modules]
1056
(B) PV
[6 modules]
1057
(C) DMS
[3 modules]
1058

1059  Figure 10. Modular structure of functional connectivity between non-task nodes in conditions
1060 (A) PF, (B) PV, and (C) DMS. The graphs used unweighted, undirected functional connectivity
1061  matrices at a density threshold of 10%. These graphs were rendered using the radial axis layout
1062  of Gephi (Bastian et al., 2009) and the modular structures were computed using the algorithm
1063  of (Blondel et al., 2008).
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Parameter Description Value
CeE Excitatory to excitatory weight 12.0
CIE Inhibitory to excitatory weight 4.0
Cpr Excitatory to inhibitory weight 13.0
crr Inhibitory to inhibitory weight 11.0
TE Membrane time-constant, excitatory population 10.0
T Membrane time-constant, inhibitory population 10.0
ag Slope of excitatory response function 1.2
bg Position of maximum slope of excitatory sigmoid function 2.8
cg Amplitude of excitatory response function 1.0
O Excitatory threshold 0.0
a, Slope of inhibitory response function 1.0
b, Position of maximum slope of inhibitory sigmoid function 4.0
0, Inhibitory threshold 0.0
cr Amplitude of inhibitory response function 1.0
g Excitatory refractory period 1.0
r; Inhibitory refractor period 1.0
kg Maximum value of excitatory response function 1.0
k; Maximum value of inhibitory response function 1.0
ag Balance between excitatory and inhibitory 1.0
a Balance between excitatory and inhibitory 1.0

1064

1065 Table S1. Parameters used in the Wilson-Cowan equation for each connectome node within
1066  TVB. The parameters shown above are the default parameters within TVB and are also shown in
1067 Table 11(a) of (Sanz-Leon et al., 2015).

1068
1069
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Parameter Value
Number of nodes 998
Global coupling strength 0.15
White matter transmission speed (mm/ms) 3.0
Integrator Euler stochastic (dt=5)

Table S2. Parameters used for simulating the Hagmann et al. (Hagmann et al., 2008)

connectome within the TVB resting state simulator. Please note the values of Global coupling
strength and white matter transmission speed above are different to those presented in (Ulloa
& Horwitz, 2016). In the present study we implemented a parameter search to better
reproduce empirical RS FC of (Hagmann et al., 2008). See methods sections for details.
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Parameter E element I element
K 9.0 20.0
0] 0.3 0.1
N +0.025 +0.025
A 0.5 0.5
1) 0.5 0.5

1077
1078 Table S3. Parameters used in the Wilson-Cowan unit model of each LSNM submodule
1079
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Source Destination Fanout Mean/SD Percent to create Comments
LGN V1 7x7 34 @ 0.003+0.003 100 Highest values
2x5@ 0.006 +0.003 oriented either
1x5@ 0.020 +0.002 vertically or
horizontally
V1h V4h 1x5 0.04 +£0.01 50
Vv Vv 5x1 0.04 +£0.01 50
V1h Véc 3x3 4 @0.0£0.01 50 Lowest values at
5@ 0.02+£0.01 the corners
Vliv Véc 3x3 4 @0.0+0.01 50 Lowest values at
5@ 0.02+£0.01 the corners
V4 1T 5x5 0.01 £0.01 50 Learned
1T FS Ix1 0.2+0.02 100
D2 V4 5x5 0.0014 + 0.0007 100
D1 1T Ix1 0.03 £0.001 100 Inhibitory
D2 1T 1x1 0.01 £0.002 100
1T V4 4x4 0.00125 £+ 0.0006 100

Table S4. Connection patterns among submodules of LSNM model
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Source Destination Element Weight
FS D2 E 0.07
FS FR E 0.05
D1 FR E 0.06
D1 D2 E 0.105
D2 Dl E 0.10
Dl FS I 0.02
FS Dl I 0.05
FR Dl I 0.03
FR D2 I 0.065

1083
1084  Table S5. Connection weights among submodules in the prefrontal cortex region of LSNM
1085
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Parameter

Description Value Reference
T, Rate constant of vasodilatory signal decay in seconds 1.54 (Heinzle, Koopmans, den
Ouden, Raman, & Stephan,
2016)

T5 Time of flow-dependent elimination in seconds 2.44 (Heinzle et al., 2016)

a Grubb’s vessel stiffness exponent 0.32 (Heinzle et al., 2016)
Tg Hemodynamic transit time in seconds 2.0 (Havlicek et al., 2015)

€ Efficacy of synaptic activity to induce signal 0.1 (Friston et al., 2000)
T Slope of intravascular relaxation rate in Hertz 108.0 (Havlicek et al., 2015)
Y, Frequency offset at outer surface of magnetized vessels 80.6 (Obata et al., 2004)

£ Ratio of intra- and extravascular BOLD signal at rest 0.47 (Heinzle et al., 2016)
Vo Resting blood volume fraction 0.02 (Obata et al., 2004)

E, Resting oxygen extraction fraction 0.34 (Heinzle et al., 2016)
TE Echo time 0.03 (Heinzle et al., 2016)

Table S6. Parameters used for the Balloon model of hemodynamic response used in our
simulations. Values are based on a 3T MRI magnet.
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